CZ+SK 2023 HEP workshop 28th - 29th June 2023

B-Physics Measurements at ATLAS

Pavel Řezníček (Charles University)

B-Physics & ATLAS

- ATLAS is a general purpose detector, but performance good also for B-physics
 - B-mass resolution ~10x MeV, B-proper decay time resolution ~100 fs
- 40 MHz pp-bunch collisions with ~30 pp interactions producing ~10⁶x b \overline{b} / second
 - A B-factory, but with access to B_s , B_c , Λ_b , and other b-hadrons
- To utilize the high x-section, must collect low- p_T data
 - B-p_T ~20 MeV in analyses, low w.r.t. other ATLAS physics

B-Physics Program

Focusing on New Physics searches in promising channels, QCD measurements, new hadron states

Rare Decays

Search for New Physics in leptonic and semileptonic decays as $B_s \rightarrow \mu\mu$, $B \rightarrow K^*\mu\mu$, or LFV decays or LFU tests

Precision measurements

Search for deviation from SM predictions in B-decays with (relatively) high BR

Spectroscopy

- Search for new decays, new excited states, penta/tetra-quarks
- Properties of doubly-heavy decays as B_c

Heavy flavour production

- Production x-sections of quarkonia, b/c-hadrons
- Associated quarkonia production

B-Physics Analysis Chain

B-Physics Trigger

- 20/40 MHz collision rate \rightarrow < 2 kHz recording
- B-physics concentrates on low-p_T di-muon signatures:
 - Quarkonia: $J/\psi \rightarrow \mu\mu$, $Y \rightarrow \mu\mu$, etc.
 - Exclusive $B \to J/\psi(\mu\mu) X$ decays
 - Rare and semi-rare $B \to \mu \mu (X)$ decays
- Trigger on low- p_T (4,6 GeV) di-muon
 - 2 muons at L1 (HW-based)
 - Confirmed at HLT
 - Tracks vertex fit and mass cuts at HLT
- 8 TeV data:
 - Low-p_T maintained introducing barrel triggers (central part of the detector with better resolution)
- 13 TeV data:
 - Low-p_⊤ maintained using barrel triggers, introduce coarse topological cuts (HW, opening angle, inv. mass) in 2016

Rare Decays

• Search for New Physics

New Physics Searches in Rare Decays

• Search for NP indirectly, through its contributions in decays of known particles

- Can change known decays branching ratio or differential decay cross-section
- FCNC especially sensitive: Proceed via loops, no tree diagrams; presence of small CKM elements ($|V_{ts}| \sim 0.04$, $|V_{td}| \sim 0.01$); GIM suppression in loops with charm or down-type quarks: $(m_s^2 m_d^2) / M_W^2$; Helicity suppression in radiative or leptonic decays: helicity flip $\sim m_{b,s} / M_W$
 - While New Physics can include tree diagrams, no GIM/heliciy supression

Rare B-decays at ATLAS

• Measurement of BR of $B_{(s)} \to \mu \mu$ and angular analysis of $B \to K^* \mu \mu$

- Search for new (excited) states and decay modes
- Test QCD predictions for the production
 & spectrum of these states

Excited States

- First new particle observed at ATLAS: $\chi_b(3P)$ in B-physics group
- First observation of excited B_c(2S) state decaying to B_c and two pions (but also studies of ground state B_c production x-section and decays)

CZ+SK HEP workshop, Bratislava, Pavel Řezníček, reznicek@ipnp.mff.cuni.cz, Charles University, Prague

- Almost 30k of X(3872) \rightarrow J/ $\psi\pi\pi$ allow thorough studies (production x-section, $\pi\pi$ mass spectra), search for equivalent $X_b \rightarrow \text{Upsilon} + \pi\pi$ (not found)
- 4-muon resonances $T_{cccc} \rightarrow J/\psi J/\psi$ observed (supports LHCb observation)
- Pentaquark search in $\Lambda_{\rm b} \rightarrow J/\psi p K$ (supports LHCb observation), Searches for X(5586) \rightarrow B_s π seen by D0 (not confirmed),

CZ+SK HEP workshop, Bratislava, Pavel Rezníček, reznicek@ipnp.mff.cuni.cz, Charles University, Praque

Heavy Flavour Production

- QCD calculation under test...
- Measurements serve as input to MC generators as HF is important background in many other ATLAS analyses

J/ψ and $\psi(2S)$ Production

- Two distinct charmonium production mechanisms at LHC:
 - **Prompt:** produced directly in the pp or through feed-down decays of heavier states NRQCD
 - **Non-prompt:** produced in decays of b-hadrons => displaced vertex

- FONLL
- Around 35% of prompt J/ ψ come from feed-down, ψ (2S) are almost all produced direct
- Use mass-lifetime fits to distinguish signal/background prompt/non-prompt

J/ψ and $\psi(2S)$ Production

• Measure differential x-section (p_T , pseudorapidity) and fraction of prompt quarkonia

Production of b/c-hadrons

- Production x-section of b $\to D^*\mu,\,B^{\scriptscriptstyle +}\to J/\psi K^{\scriptscriptstyle +},\,b$ -quark fragmentation f_s/f_d
- Production of b-hadron pairs, Production of b-hadrons within jets

Associated J/ ψ Production (+ J/ ψ / W / Z)

- Test predictions of QCD (single parton scattering)
- Study J/ψ production models
- Measure double-parton scattering (background for NP searches)
 - DPS has more uniform shape in opening angle between the objects, while direct associated productions peaks at same or opposite direction (large/small $\Delta \phi$)

Precision Measurements

- Test SM predictions at high stat.
- CPV, oscillations, Λ_b polarization, ...

B-Meson Mixing

- CPV in $B_s \rightarrow J/\psi \phi$ decay searching for New Physics in CPV phase ϕ_s (CPV due to interference of mixing and direct decay)
 - Almost 500k of signal decays
- $\Delta\Gamma_d/\Gamma_d$ measurement using ratio of B decays to CP eigen-state J/ ψK_s and to flavor specific J/ ψK^*
 - 150k / 700k candidates, best single precision measurement of $\Delta\Gamma_d/\Gamma_d$ at that time

28.06.2023

Summary

- Anomalies in flavour physics an exciting indication of possible New Physics
 - But still at statistics boundaries, some anomalies recently "disappeared": $B_{(s)} \rightarrow \mu \mu$, R(K*)
- Experimental reach in B-decays exciting
 - Very rare decays becoming observable
 - Enough statistics for angular analyses of rare decays
 - Experimental errors getting closer to theory uncertainties
 - Huge statistics in non-rare decays
 - Complicated analysis chains, with enough signal => useful for students training

• But...

 In New Physics and exotic structures searches the ATLAS precision in B-analysis is usually not the best among other (not-only) LHC experiments, providing comparable precision at best, less precise cross-checks only in the other cases

B-Physics @ ATLAS Upgrade

28.06.2023

CZ+SK HEP workshop, Bratislava, Pavel Řezníček, reznicek@ipnp.mff.cuni.cz, Charles University, Prague

20

B-Physics @ ATLAS Upgrade

CZ+SK HEP workshop, Bratislava, Pavel Řezníček, reznicek@ipnp.mff.cuni.cz, Charles University, Prague

21