

Traditio et Innovatio

MuCol Study – Survey of some low loss vity geometries and the TESLA cavity

24.01.2023 **Sosoho-Abasi Udongwo | UNIVERSITÄT ROSTOCK | Fakultät für Informatik und Elektrotechnik**

Some note

• The results of the analysis of the mid cell of the ILC-LL, ICHIRO, NLSF, NSLF-A and TESLA [1] cavities are

presented

 Each cavity analysed comprised of 9 mid cells and no beam pipes for eigenmode analysis and with beampipes for wakefield analysis

[1] N. Juntong, R.M. Jones, High-gradient SRF Cavity with minimized surface E.M. fields and superior bandwidth for the ILC, Proceedings of SRF2009, Berlin, Germany. https://accelconf.web.cern.ch/SRF2009/papers/thppo024.pdf

24.01.2023 Sosoho-Abasi Udongwo | UNIVERSITÄT ROSTOCK | Fakultät für Informatik und Elektrotechnik

Some Formulas

$$L_{\text{active}} = \frac{N_{\text{cell}}\lambda_0}{2} \qquad L_{\text{cavity}} = L_{\text{active}} + 2\lambda$$
$$N_{\text{cav}} = \frac{V_{\text{rf}}}{E_{\text{acc}} \cdot L_{\text{active}}}$$

$$k_{\parallel,\mathrm{FM}} = rac{\omega_{\mathrm{FM}}}{4} \Big(rac{R}{Q}\Big)_{\parallel,\mathrm{FM}} \,\mathrm{e}^{-\left(rac{\omega_{\mathrm{FM}}\sigma_z}{c}
ight)^2}$$

 $k_{\text{HOM}} = k_{\parallel} - k_{\parallel,\text{FM}}$

 $P_{\rm HOM} = k_{\parallel,\rm HOM} I_0 e N_{\rm b}$

$$P_{\rm dyn} = V_{\rm rf} \frac{E_{\rm acc} \cdot L_{\rm active}}{\frac{R}{Q}_{\parallel,\rm FM}} \cdot Q_0$$
$$P_{\rm stat} = \frac{L_{\rm cavity} \cdot V_{\rm rf}}{L_{\rm active} \cdot E_{\rm acc}}$$

$P_{dyn}/cav = \frac{P_{dyn}}{N_{cav}}, P_{stat}/cav = \frac{P_{stat}}{N_{cav}}$ Universität Rostock

 $\lambda_0 \qquad L_{active}: \text{Active cavity length, } N_{cell}: \text{Number of cells per cavity,} \\ \lambda_0: \text{Accelerating mode wavelength, } L_{cavity}: \text{Total cavity length (with beampipes),} \\ E_{acc}: \text{Accelerating gradient, } V_{rf}: \text{RF voltage}$

 $k_{\parallel,\text{FM}}$: Fundamental mode loss factor, ω_{FM} : Fundamental mode angular frequency, σ_z : Bunch length, $\left(\frac{R}{Q}\right)_{\parallel,\text{FM}}$: Fundamental mode R/Q, *c*: Speed of light

 k_{HOM} : Higher order mode power loss factor, k_{\parallel} : Total loss factor

 P_{HOM} : Higher order mode power, I_0 : Beam current, e: muon charge, N_b : Bunch intensity

*P*_{dyn}: Dynamic power loss

P_{stat}: Static power loss

Summary Table

	ILC-LL	ICHIRO	NLSF	NLSF-A	TESLA
A [mm]	50.05/50.05	50.05/50.05	47.15/47.15	47.65/47.65	42/42
$B [{ m mm}]$	36.5/36.5	34.22/34.22	31.35/31.35	32.91/32.91	42/42
$a \; [\mathrm{mm}]$	7.6/7.6	7.6/7.6	10.5/10.5	10.0/10.0	12/12
$b [{ m mm}]$	10/10	9.95/9.95	15.5/15.5	15.5/15.5	19/19
$R_{ m i}$	30/30	30/30	32/32	31/31	35/35
$L \; [\mathrm{mm}]$	57.7/57.7	57.7/57.7	57.7/57.7	57.7/57.7	57.7/57.7
$R_{\rm eq} [{\rm mm}]$	98.58/98.58	98.14/98.14	98.58/98.58	98.58/98.58	103.3/103.3
$\alpha[^{\circ}]$	90.12/90.12	90.11/90.11	90.14/90.14	90.14/90.14	103.31/103.31
$R/Q[\Omega]$	1201.25	1204.0	1148.32	1172.67	1022.88
$G[\Omega]$	284.44	283.91	276.66	277.98	271.33
$G.R/Q[10^4\Omega^2]$	341680.79	341827.26	317691.85	325982.38	277541.32
$E_{\rm pk}/E_{\rm acc}$	2.31	2.32	2.09	2.07	1.98
$B_{\rm pk}/E_{\rm acc}[{ m mT\over MV/m}]$	3.62	3.61	3.84	3.77	4.17
$ k_{ m FM} [{ m V/pC}]$	1.6507	1.6545	1.578	1.6114	1.4056
$ k_{\parallel} $ [SR][V/pC]	2.253	2.246	2.06	2.126	1.755
k_{\perp} [V/pC/m]	68.45	68.36	58.72	63.98	47.06
$N_{\rm cav/beam}$	670	670	670	670	670
$P_{\rm stat}/{\rm cav}[{ m W}]$	7.44	7.44	7.44	7.44	7.44
$P_{\rm dyn}/{\rm cav}[{ m W}]$	96.83	96.73	106.51	103.04	126.0
$P_{\rm HOM}/{\rm cav[kW]}$	4.99	4.91	4.0	4.27	2.9

RCS Stage 1

Beam current -20.38 mA Bunch length -23.1 mm

Universität Rostock Traditio et Innovatio

24.01.2023 Sosoho-Abasi Udongwo | UNIVERSITÄT ROSTOCK | Fakultät für Informatik und Elektrotechnik

FM Quantities of Interest (QOIs)

Bar plot of normalized fundamental mode quantities of interest

Wakefield Impedance – (100 m wakelength)

Bar plot of normalized loss and kick factors, and HOM power

Input Power and Power Loss

Bar plot of normalized number of cavities, static, dynamic power loss and input power

Input Power and Power Loss

Plot of static and dynamic power loss, no of cav./beam and input power (P_{in}) vs E_{acc} .

End note

- The properties of the compared cavities were not drastically different from each other
- The end-cells of the compared cavities are not available to run a full analysis so the results only give a rough approximation of what is obtainable. The end-cell can be optimized to reduce the HOMs impedance, loss and kick factors
- Since the properties of the analysed cavities are quite similar, the impedance plots do not really show much. At this time, the threshold impedance values are not yet available

