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Tops are good candidates to test entanglement 
and Bell inequalities at high energy

See Afik’s presentation in this conference
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Tops are good candidates to test entanglement 
and Bell inequalities at high energy

See Afik’s presentation in this conference

A pretty large amount of work has been devoted to this 
subject in the last 1-2 years:

Afik and Nova, 2021, 2022

Fabbrichesi, Floreanini and Panizzo 2021

Severi, Boschi, Maltoni and Sioli 2021

Aoude, Madge, Maltoni and Mantani, 2022

…
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Top pairs are copiously produced at the LHC through gluon fusion and 
  annihilationqq̄

The generated   system is generically in a (mixed) entangled state of spin, 
i.e. a 2-qubit system, suitable to test entanglement & Bell inequalities

tt̄

Afik and Nova, 2021
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How to measure entanglement and (violation of) 
Bell inequalities at the LHC with tops

(Brief review)

In general, an entangled (not necessarily pure) state of two subsystems, 
Alice and Bob, is described by a density matrix,

ρent ≠ ρsep = ∑
n

pn ρA
n ⊗ ρB

n

with  , and   Hermitian, positive semi-definite and  ∑ pn = 1 ρ Tr ρ = 1
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How to measure entanglement and (violation of) 
Bell inequalities at the LHC with tops

(Brief review)

In general, an entangled (not necessarily pure) state of two subsystems, 
Alice and Bob, is described by a density matrix,

ρent ≠ ρsep = ∑
n

pn ρA
n ⊗ ρB

n

with  , and   Hermitian, positive semi-definite and  ∑ pn = 1 ρ Tr ρ = 1

For two qubits   can be expressed in a basis of Hermitian operators,

                            

ρ

{IA, σA
1 , σA

2 , σA
3 } ⊗ {IB, σB

1 , σB
2 , σB

3 }
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ρ =
1
4

I ⊗ I + ∑
i=1,2,3

(B+
i σi ⊗ I + B−

i I ⊗ σi) + ∑
i, j=1,2,3

Cij σi ⊗ σj

Hermiticity and   are automatically, but not semi-positivity Tr ρ = 1
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ρ =
1
4

I ⊗ I + ∑
i=1,2,3

(B+
i σi ⊗ I + B−

i I ⊗ σi) + ∑
i, j=1,2,3

Cij σi ⊗ σj

Hermiticity and   are automatically, but not semi-positivity Tr ρ = 1

P, CP ⇒ B±
i = 0, Cij = CjiMoreover 

The conditions for the semi-positivity of   are complicated, but they get quite simplified 
once one takes into account that in the helicity basis (see later)  

ρ
C13 ≃ C23 ≃ 0

Semi-positivity 
|C11 + C22 | ≤ 1 − C33

|4C2
12 + (C11 − C22)2 |1/2 ≤ 1 + C33

and
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Mathematically, a necessary and sufficient condition for entanglement in joint 
systems of two qubits is provided by the Peres-Horodecki criterion: 

ρ ⟶ ρT2
First construct   ρT2

by transposing only the indices 
associated to the Bob (or Alice) 
Hilbert space. 

Then, if    is not a legal density matrix, in particular it has some negative 
eigenvalues, then the system is entangled

ρT2

Entanglement
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In our case

explicit forms of ⇢, ⇢T2 read

⇢ =
1
4

2

6664

1 +B+
3 +B�

3 + C33 B�
1 + C31 � i(B�

2 + C32) B+
1 + C13 � i(B+

2 + C23) C11 � C22 � i(C12 + C21)

B�
1 + C31 + i(B�

2 + C32) 1 +B+
3 �B�

3 � C33 C11 + C22 + i(C12 � C21) B+
1 � C13 � i(B+

2 � C23)

B+
1 + C13 + i(B+

2 + C23) C11 + C22 � i(C12 � C21) 1�B+
3 +B�

3 � C33 B�
1 � C31 � i(B�

2 � C32)

C11 � C22 + i(C12 + C21) B+
1 � C13 + i(B+

2 � C23) B�
1 � C31 + i(B�

2 � C32) 1�B+
3 �B�

3 + C33

3

7775
(5)
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The eigenvalues of ⇢T2 are extremely involved combinations of the various parameters, and so are

the necessary and su�cient conditions for entanglement (i.e. the existence of at least one negative

eigenvalue). Fortunately, very useful su�cient conditions for entanglement are much easier to obtain,

by simply probing the negativity of vT⇢T2v for di↵erent 4-vectors v. In particular, using

v = (1, 0, 0,±1)T , (0, 1,±1, 0)T (7)

we get four completely general su�cient conditions for entanglement, which can be cast as

|C11 + C22| > 1 + C33 ,

|C11 � C22| > 1� C33 , (8)

(it is enough that one of the conditions (8) is fulfilled to guarantee entanglement). We remark that

the two conditions (8) are equivalent to the pairs of conditions that can also be obtained for any

permutation of the 1,2,3 indices: It can be shown that if neither of (8) hold, then the analogous

conditions with index permutations are not fulfilled either.

One may wonder to which extent the previous inequalities (8) are in practice not only su�cient,

but also necessary conditions for entanglement. To this end, let us note that one can make some

sound approximations in the original density matrix of the tt̄ system (4). As shown in Ref. [17],

P and CP invariance in the tt̄ production leads to B±
i = 0, Cij = Cji, thus reducing the number

of parameters from 15 to 6. This is an excellent approximation due to the smallness of the weak

corrections to the QCD production mechanism of tt̄ at the LHC. Besides, using the so-called helicity

basis (defined below) as reference system, all the o↵-diagonal Cij but one (say C12 ' C21), are

generated by P -odd absorptive parts of the mixed QCD-weak corrections at one-loop, and are very

small [17]. In summary, it is a very good approximation in that basis to keep C11, C22, C33 and

C12 = C21 as the only non-vanishing parameters in (4). Under this assumption it is possible to

extract simple necessary and su�cient conditions for the negativity of ⇢T2 :

|C11 + C22| > 1 + C33 ,

|4C2
12 + (C11 � C22)

2|1/2 > 1� C33 , (9)

(equivalent conditions are obtained by performing cyclic perturbations in the indices). Thus, in

the previous approximation, it is su�cient and necessary that one of the relations (9) is fulfilled to

guarantee entanglement. It is interesting that the first condition in (9) remains unchanged by the

inclusion of C12 6= 0 and typically represents the most relevant test of entanglement when C11, C22
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3

The eigenvalues of   are complicated expressions of   , but, again things get 
simplified for   (due to P, CP) and    (helicity basis):

ρT2 B±
i , Cij

B±
i = 0, Cij = Cji C13 ≃ C23 ≃ 0

|C11 + C22 | > 1 + C33

|4C2
12 + (C11 − C22)2 |1/2 > 1 − C33

Negativity of   
(Entanglement)    

ρT2
or⇒

Entanglement
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 “negativity” of         (entanglement) 

Note they require  C11, C22, C33 ≠ 0

Semi-positivity of   and “negativity” of    (entanglement) get further simplified 
if     (as it is the case):

ρ ρT2

C2
12 ≪ C2

11, C2
22

|C11 + C22 | ≤ 1 − C33

|C11 − C22 | ≤ 1 + C33
and

|C11 + C22 | > 1 + C33

|C11 − C22 | > 1 − C33

or

ρSemi-positivity of  ρT2

Sufficient (and almost necessary) conditions  

Hence, the straightforward way to show entanglement is to measure the   
and check these relations  

Cij

Entanglement
7



Bell (CHSH) inequalities

The physical consequence of entanglement that departs from classical intuition is the 
violation of Bell inequalities, an impossible result in any local-realistic (“classical") theory of 
nature. 

(except perhaps in Everett’s interpretation of QM!,  see Timpson’s talk)

CHSH

Alice (Bob) chooses to measure certain (bi-valued) observables,   . Then, 
classically,

A, A′� (B, B′ �)

⟨AB⟩ − ⟨AB′�⟩ + ⟨A′�B⟩ + ⟨A′�B′�⟩ ≤ 2

The goal is to choose   s.t. CHSH is experimentally maximally violated.A, A′�, B, B′ �

(CHSH)

8



A = aiσA
i , A′� = a′�iσA

i , B = biσB
i , B′� = b′�iσB

i

Bell (CHSH) inequalities

Defining

⃗a ⋅ C( ⃗b − ⃗b′�) + ⃗a′� ⋅ C( ⃗b + ⃗b′�) ≤ 2 (CHSH)

The maximal value of the l.h.s. is    , with   the largest eigenvalues of  2 λ1 + λ2 λ1, λ2 CTC
Horodecki, Horodecki, Horodecki ‘95

This corresponds to   that depend on   itself. ⃗a , ⃗a′�, ⃗b , ⃗b′� C

9



Bell (CHSH) inequalities

Hence, the optimal strategy seems to (experimentally) determine   and the largest 

eigenvalues of  . If they satisfy  , CHSH are violated 

Cij
CTC λ1 + λ2 > 1

The fact that   is positive implies that the uncertainties in   are likely biased to 
values larger than the real ones

CTC λ1, λ2

Severi, Boschi, Maltoni, Sioli 2021

see Fabbrichesi, Floreanini, Panizzo ‘21

However, to implement this approach is a subtle matter:
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Bell (CHSH) inequalities

Hence, the optimal strategy seems to (experimentally) determine   and the largest 

eigenvalues of  . If they satisfy  , CHSH are violated 

Cij
CTC λ1 + λ2 > 1

The fact that   is positive implies that the uncertainties in   are likely biased to 
values larger than the real ones

CTC λ1, λ2

Severi, Boschi, Maltoni, Sioli 2021

For example, for a   matrix2 × 2

see Fabbrichesi, Floreanini, Panizzo ‘21

However, to implement this approach is a subtle matter:

✓
a �c
�c b

◆
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a > b > 0, δc ∼ 0

The largest eigenvalue is 

λ1 =
1
2 (a − b + (a + b)2 + 4(δc)2) ≥ a

even if the uncertainty of   is symmetrically distributed around   (the true value)δc δc = 0

10



Bell (CHSH) inequalities

Thus, implementing the   criterion and derive statistical uncertainties on CHSH 
violation is a subtle task.

λ1 + λ2 > 1

Namely ,

see Fabbrichesi, Floreanini, Panizzo ’21,
      Severi, Boschi, Maltoni, Sioli ’21

An easier approach is to choose fixed   directions in⃗a , ⃗a′�, ⃗b , ⃗b′�

⃗a ⋅ C( ⃗b − ⃗b′�) + ⃗a′� ⋅ C( ⃗b + ⃗b′�) ≤ 2 (CHSH)

ak = δki, a′�k = δkj,

bi = − b′�i = ± 1

2
, bj = b′�j = ± 1

2
, bk≠i, j = 0

|Cii ± Cjj | > 2

11



Bell (CHSH) inequalities

|Cii ± Cjj | > 2 CHSH

Simple linear (non-biased) combinations 

Opens the possibility to design dedicated observables to directly 
measure   and thus the CHSH violationCii ± Cjj

How far is this simple criterion from     ?λ1 + λ2 > 1

From the eigenvalue interlacing theorem:

λ + λ′� ≥ (C2)ii + (C2)jj ≥ (Cii)2 + (Cjj)2 ≥
1

2
|Cii ± Cjj |

The   are close to equalities up to≥ 𝒪 (
C2

ij

|Cii | + |Cjj |
,

( |Cii | − |Cjj | )2

|Cii | + |Cjj | ) corrections

Aguilar-Saavedra, JAC
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How to strengthen the sensitivity to entanglement 
and CHSH violation

Select gg-fusion events at the tt threshold

Design dedicated experimental observables to directly 
measure entanglement and CHSH violation

Two strategies:

13



At the tt threshold the tt state generated by gluon fusion is close to the 
singlet state

1

2
( | ↑ ⟩ ⊗ | ↓ ⟩ − | ↓ ⟩ ⊗ | ↑ ⟩)

which is maximally entangled. In contrast,   production leads to a separable tt state.qq̄

How to strengthen the sensitivity to entanglement 
and CHSH violation

 cutβ−
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At the tt threshold the tt state generated by gluon fusion is close to the 
singlet state

1

2
( | ↑ ⟩ ⊗ | ↓ ⟩ − | ↓ ⟩ ⊗ | ↑ ⟩)

which is maximally entangled. In contrast,   production leads to a separable tt state.qq̄

An upper cut on the velocity of the tt system:

β ≡
pz

t + pz
t̄

Et + Et̄
≤ βcut

reduces the   production, due to the different PDFs of valence quarks and sea anti-quarks 
inside the protons, thus enhancing th entanglement

qq̄

How to strengthen the sensitivity to entanglement 
and CHSH violation

 cutβ−

14



Consider the conditions for entanglement:

which, depending on the values of   leads to a different optimal observable:Cii

Can we measure these observables in a direct way?

How to strengthen the sensitivity to entanglement 
and CHSH violation

Dedicated observables

|C11 + C22 | > 1 + C33

|C11 − C22 | > 1 − C33

or

−C11 − C22 − C33 > 1

−C11 + C22 + C33 > 1
C11 − C22 + C33 > 1

Dedicated observables (entanglement)

15
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Here it is convenient to work in the helicity basis,  ⃗k , ⃗r, ⃗n

(From Severi et al.) 

How to strengthen the sensitivity to entanglement 
and CHSH violation

Dedicated observables

3

Fig. 2: Schematic representation of the decay of a top quark
that ultimately leads to the emission of a charged lepton, in
the top rest frame.

codes spin correlations, and it is measurable.3 The differen-
tial cross section for pp! tt̄ ! `+`�bb̄nn̄ can be expressed
as [11]:

1
s

ds
dxi j

=
Ci j xi j �1

2
log

��xi j

��, (7)

where xi j ⌘ cosqi cos q̄ j, qi is the angle between the antilep-
ton momentum and the i-th axis in its parent top rest frame,
and q̄ j the angle between the lepton momentum and the j-
th axis in its parent anti-top rest frame.4 Spin is measured
fixing a suitable reference frame. An advantageous choice is
the helicity basis {k̂, r̂, n̂},
8
>>><

>>>:

k̂ = top direction

r̂ =
p̂� k̂ cosq

sinq
n̂ = k̂⇥ r̂ ,

(8)

where p̂ is the beam axis and q is the top scattering angle
in the center of mass frame, see also Figure 3. The helicity
basis is defined in terms of the top quark and also applies to
the anti-top, which moves in direction �k̂.

The amount and type of spin correlations strongly de-
pend on the production mechanism as well as the phase space
region (energy and angle) of the top quarks. Two comple-
mentary regimes are important: at threshold, i.e., when the
top quarks are slow in their rest frame, and when they are
ultra-relativistic. At threshold, gluon fusion gg ! tt̄ leads to
an entangled spin-0 state while qq̄ ! tt̄ to a spin-1 state. The
latter is subdominant at the LHC and acts as an irreducible
background [2].

It can be shown [7] that the tt̄ spin density matrix (6)
is separable (that is, not entangled) if and only if the partial

3Since Ci j ⇡ Cji, the C matrix can be made (almost) diagonal with
an appropriate choice of basis, thus reducing the system to the simple
density matrix (4).
4Relevant reference frames are identified in a two step process: boost-
ing first to the tt̄ center of mass frame, then to each top with a rotation
free boost.

Fig. 3: Schematic representation of a pp ! tt̄ event in the
center of mass frame, with the helicity basis {k̂, r̂, n̂} drawn,
together with the scattering angle q . The n̂ axis is into the
page.

transpose ( ⌦T )r , obtained by acting with the identity on
the first term of the tensor product and transposing the sec-
ond, is positive definite. As shown in [2], this implies that

��C11 +C22
���C33 > 1 (9)

is a sufficient condition for the presence of entanglement. It
generalises the Werner condition h > 1/3 to the case where
the Cii’s are not equal. The inequality (9) does not depend
on the basis, but we will use the helicity basis (8) in the
following.

At tt̄ production threshold Ckk +Crr < 0, so inequality
(9) reads:

�Ckk �Crr �Cnn > 1. (10)

The second regime corresponds to high transverse momen-
tum top quarks, i.e. when the system is characterised by
mtt̄ � mt and CMF scattering angle q ⇠ p

2 . In this case,
an entangled spin-1 state is produced as a consequence of
conservation of angular momentum regardless of production
channel. Since in this region Ckk +Crr > 0, inequality (9) is
written as:

Ckk +Crr �Cnn > 1. (11)

As for BIs, as shown in [8, 12] the maximal deviation
predicted by QM in the CHSH inequality (2) is:

max
aa0 bb0

��habi�hab
0i+ ha0bi+ ha0b0i

��= 2
p

l +l 0, (12)

where l and l 0 are the two largest eigenvalues of C
T

C. In
[3] it was argued that requiring l +l 0 > 1 provides an easy
way to test the CHSH violation. Unfortunately, we find that
the method suggested in [3] entails a rather serious bias. Es-
timating the eigenvalues of random matrices is a notoriously
hard problem [13]. Random fluctuations are more likely to

Then, given the predicted (SM) values of the various   in the different kinematical 
regions, the most useful observable for entanglement is

Cij

E ≡ |Ckk + Crr | − Cnn − 1 > 0

Dedicated observables (entanglement)
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How to strengthen the sensitivity to entanglement 
and CHSH violation

Dedicated observables (entanglement)

Threshold region,  

E ≡ |Ckk + Crr | − Cnn − 1 > 0

Figure 2: Dependence of the entanglement indicator E in (40) on mtt̄ and ✓CM.

in Ref. [8]. For comparison, using a typical event selection and a tt̄ kinematical reconstruction, an

e�ciency of 0.17 was found in Ref. [27] using Pythia [28] for hadronisation and showering and

Delphes [29] for a fast simulation of the detector. This e�ciency is used to obtain the number

of events, given the tt̄ ! `+⌫b`�⌫̄ b̄ cross section in the phase space region considered and the

luminosity.

We devise three sets of simple kinematical cuts to enhance the observability of E near threshold

and at the boosted regime; in the former case, with and without the use of �, to illustrate the

improvement. Since statistical uncertainties are proportional to 1/
p
�, we use the figure of merit

SE = E ⇥
p
� (41)

to guide the selection of the kinematical cuts, collected in Table 1, together with the tree-level cross

section after these cuts. The last column corresponds to the number of events with a luminosity

L = 139 fb�1 collected at the LHC Run 2, assuming a K factor of 1.8 to normalise the total

cross section to next-to-next-to-leading order [11] and using a selection and reconstruction e�ciency

of 0.12. For reference, we collect the value of spin correlation coe�cients with this kinematical

selection in Table 2. For the threshold analysis the beamline basis is equivalent to the helicity basis,

because the relevant observable, D = Tr C is the same. For the boosted analysis, where the relevant

observable is D3, the helicity basis is superior.

mtt̄ | cos ✓CM| � � N

Threshold ���  390 – – 3.59 pb 108000

Threshold �  390 –  0.9 2.76 pb 83000

Boosted � 800  0.6 – 310 fb 9400

Table 1: Kinematical cuts on mtt̄ (in GeV), cos ✓CM and � used to optimise the figure of merit

SE . The fourth column gives the tree-level cross section with the corresponding cuts, and the fifth

column the expected number of events after reconstruction (see the text for details).

For each set of cuts we estimate the statistical uncertainty in the measurement of E by performing

n = 200 pseudo-experiments. In each pseudo-experiment we select a random set of N tt̄ events (with

11

E = − (Ckk + Crr + Cnn) − 1 > 0

Boosted region,  

E = Ckk + Crr − Cnn − 1 > 0
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How to strengthen the sensitivity to entanglement 
and CHSH violation

Ckk + Crr + Cnn can be measured by 

1
σ

dσ
d cos θab

=
1
2 (1 + αaαbD cos θab)

with 

D =
1
3

(Ckk + Crr + Cnn) cos θab ≡ ̂pa ⋅ ̂pb Bernreuther, Si, 2015
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How to strengthen the sensitivity to entanglement 
and CHSH violation

Ckk + Crr + Cnn can be measured by 

1
σ

dσ
d cos θab

=
1
2 (1 + αaαbD cos θab)

with 

D =
1
3

(Ckk + Crr + Cnn) cos θab ≡ ̂pa ⋅ ̂pb Bernreuther, Si, 2015

Similarly     can be measured by Ckk + Crr − Cnn

1
σ

dσ
d cos θ′�ab

=
1
2 (1 + αaαbD3 cos θ′�ab)

with 

D3 =
1
3

(Ckk + Ckk − Cnn) cos θ′�ab ≡ ̂pa ⋅ ̂p′�b Aguilar-Saavedra, JAC, 2022

Reflected in the k-r plane
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Top pair entanglement                                                            8/8

How much is the improvement?

Setting systematics aside, there is an improvement of the statistical 
uncertainty of the `entanglement indicator´ E = |Ckk + Crr| − Cnn − 1

Near threshold there are quite large statistics, but in the boosted central 
region there are not. 

1.23 × improvement in statistical sensitivity for the boosted region is 
equivalent to 50% more luminosity!

26

threshold [β]

boosted [D3]

1.27 ×

1.23 ×
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E : 0.671± 0.069 �! 0.663± 0.056

LHC Run 2 139 fb-1

How to strengthen the sensitivity to entanglement 
and CHSH violation

Improvement in entanglement detection (only statistical uncertainty):

 cutβ−

dedicated observable

The improvement is more important for the boosted region, as it has less 
statistics, and systematic and statistical uncertainties are probably comparable:
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How to strengthen the sensitivity to entanglement 
and CHSH violation

Dedicated observablesDedicated observables (CHSH)

B ≡ |Cii ± Cjj | − 2 > 0

These CHSH tests depend just on two parameters

In the helicity basis, the best choices are

Ckk + Cnn at threshold,  

Crr − Cnn at the boosted region
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How to strengthen the sensitivity to entanglement 
and CHSH violation

Dedicated observablesDedicated observables (CHSH)

B ≡ |Cii ± Cjj | − 2 > 0

These CHSH tests depend just on two parameters

In the helicity basis, the best choices are

Ckk + Cnn at threshold,    but the beam basis   works slightly better⃗̂x , ⃗̂y , ⃗ ̂z

Crr − Cnn at the boosted region

Cxx + Cyy

Cii ± Cjj can be measured with the observable

A± =
N(cos(φa ∓ φb) > 0) − N(cos(φa ∓ φb) < 0)
N(cos(φa ∓ φb) > 0) + N(cos(φa ∓ φb) < 0)

∝ C11 ± C22
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How to strengthen the sensitivity to entanglement 
and CHSH violation

Dedicated observables (CHSH)

Improvement in CHSH detection:

CHSH inequalities in top pair production                                5/6

How much is the improvement? 

Setting systematics aside, there is an improvement of the statistical 
uncertainty of the `CHSH violation indicators´ B = ⎮Cii ± Cjj⎮ − √2

In all cases the statistics are small, therefore an improvement of the 
statistical sensitivity is very welcome.

38

threshold [β, A+]

boosted [A−]

6.8 ×

1.13 ×

LHC Run 2+3 300 fb-1

threshold [β, A+]

boosted [A−]

6.8 ×

1.13 ×
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Summary and Conclusions

We have explored two strategies to strengthen the detection of both 
phenomena:

Top pairs produced at the LHC looks a promising system to test entanglement 
and CHSH violation at high energy

Select gg-fusion events at the tt threshold ( cut)β−

Design dedicated experimental observables to directly 
measure indicators of entanglement and CHSH

We have only analyzed the improvement on the stat. uncertainty. The results 
are quite promising and it seems feasible to detect entanglement in Run 2  and 
CHSH violation at HL LHC.
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Figure 1: Dependence on mtt̄ and ✓CM of the spin correlation coe�cients Ckk, Crr, Cnn and Ckr, at

the parton level without kinematical cuts.

4.1 Observation of entanglement

In view that in the helicity basis Cnn  0 and Ckk, Crr have typically the same sign, the most useful

entanglement condition among Eqs. (26) is

E ⌘ |Ckk + Crr|� Cnn � 1 > 0 . (40)

For brevity, we label the entanglement indicator in the l.h.s. of the inequality (40) as E. Near

threshold both Ckk and Crr are negative (see Fig. 1), therefore E = �Ckk�Crr�Cnn�1 = �3D�1,

c.f. (28). For boosted central tops Ckk, Crr > 0, and E = Ckk +Crr �Cnn � 1 = 3D3 � 1, as follows

from (33) by choosing the third axis in the n̂ direction.

As discussed below Eq. (1), an upper cut on � potentially enhances the entanglement near

threshold. In Fig. 2, left panel, we plot E (evaluated from the individual values of Cii) as a function

of mtt̄ and ✓CM without applying any kinematical cut, whereas in the right panel we require �  0.8.

The enhancement is notable near threshold, while the requirement on � has little e↵ect at the

boosted, central region. Of course, in order to optimise the sensitivity to entanglement one has

to consider the uncertainty in the measurement in each case. In this work we do not consider

systematic uncertainties, which cannot be addressed without a full detector simulation, a complete

reconstruction of the tt̄ kinematics, and unfolding to parton-level. Instead, we just focus on statistical

uncertainties. These basically depend on the size of the signal sample after event selection. In this

work we assume an event selection and reconstruction e�ciency of 0.12, the average value found
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Figure 2: Dependence of the entanglement indicator E in (40) on mtt̄ and ✓CM.

in Ref. [8]. For comparison, using a typical event selection and a tt̄ kinematical reconstruction, an

e�ciency of 0.17 was found in Ref. [27] using Pythia [28] for hadronisation and showering and

Delphes [29] for a fast simulation of the detector. This e�ciency is used to obtain the number

of events, given the tt̄ ! `+⌫b`�⌫̄ b̄ cross section in the phase space region considered and the

luminosity.

We devise three sets of simple kinematical cuts to enhance the observability of E near threshold

and at the boosted regime; in the former case, with and without the use of �, to illustrate the

improvement. Since statistical uncertainties are proportional to 1/
p
�, we use the figure of merit

SE = E ⇥
p
� (41)

to guide the selection of the kinematical cuts, collected in Table 1, together with the tree-level cross

section after these cuts. The last column corresponds to the number of events with a luminosity

L = 139 fb�1 collected at the LHC Run 2, assuming a K factor of 1.8 to normalise the total

cross section to next-to-next-to-leading order [11] and using a selection and reconstruction e�ciency

of 0.12. For reference, we collect the value of spin correlation coe�cients with this kinematical

selection in Table 2. For the threshold analysis the beamline basis is equivalent to the helicity basis,

because the relevant observable, D = Tr C is the same. For the boosted analysis, where the relevant

observable is D3, the helicity basis is superior.

mtt̄ | cos ✓CM| � � N

Threshold ���  390 – – 3.59 pb 108000

Threshold �  390 –  0.9 2.76 pb 83000

Boosted � 800  0.6 – 310 fb 9400

Table 1: Kinematical cuts on mtt̄ (in GeV), cos ✓CM and � used to optimise the figure of merit

SE . The fourth column gives the tree-level cross section with the corresponding cuts, and the fifth

column the expected number of events after reconstruction (see the text for details).

For each set of cuts we estimate the statistical uncertainty in the measurement of E by performing

n = 200 pseudo-experiments. In each pseudo-experiment we select a random set of N tt̄ events (with
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Ckk Crr Cnn Ckr Cxx Czz

Threshold ��� �0.619 �0.372 �0.568 0.080 �0.606 �0.356

Threshold � �0.668 �0.417 �0.593 0.071 �0.632 �0.415

Boosted 0.51 0.64 �0.52 0.15 �0.05 0.76

Table 2: Parton-level values of the spin correlation coe�cients in the helicity and beamline bases

with the kinematical selection in Table 1. In the helicity basis Ckr = Crk, and in the beamline basis

Cxx = Cyy. The rest of coe�cients are below 0.01.

N in the last column of Table 1) and calculate E, either from the individual measurements of Cii,

or with a direct measurement using D or D3.4 The mean and standard deviation of the pseudo-

experiments are presented in Table 3. The standard deviation obtained from the pseudo-experiments

is a good estimation of the statistical uncertainty that would be present in such dataset. For the

‘individual’ measurements the uncertainties can also be estimated by simple error propagation.

Because the statistical uncertainty in asymmetries is 1/
p
N (provided the asymmetries are small, as

is our case), the C coe�cients have an uncertainty of 4/
p
N , see (25), and summing in quadrature

their uncertainties results in 4
p

3/N . For N = 108000, 83000, 9400 in Table 1, this yields ±0.021,

±0.024 and ±0.071, in quite good agreement with the uncertainties in the first line of Table 3.

Threshold ��� Threshold � Boosted

Individual 0.560± 0.020 0.680± 0.022 0.671± 0.069

Direct 0.559± 0.017 0.678± 0.019 0.663± 0.056

Table 3: Values of the entanglement indicator E in (40) obtained from 200 pseudo-experiments with

L = 139 fb�1 and the kinematical cuts in Table 1. The row labeled as ‘individual� presents results

from individual determinations of Ckk, Crr and Cnn. The row labeled as ‘direct’ corresponds to

results obtained measuring either D (at threshold) or D3 (in the boosted regime).

At threshold, the use of � and the direct determination improve the statistical significance by a

factor of 1.27, from E = 0.560 ± 0.020 to E = 0.678 ± 0.019. This is quite remarkable, because it

would amount to an increase in luminosity by a factor of 1.6. However, for this measurement the

statistics are already large, and it is very likely that the uncertainty will be dominated by systematics,

so this improvement may not have a great impact in the total uncertainty. In the boosted regime

there is an improvement by a factor of 1.23, equivalent to an increase in luminosity by a factor of 1.5,

and brings statistical uncertainties below the 10% level. Provided systematic uncertainties are at

the same level, the 5� observation of tt̄ entanglement in the boosted regime seems quite feasible. In

summary, from Table 3 the two ingredients that can improve the observability of the entanglement

are manifest:

• The application of an upper cut on � (only for the threshold analysis), which reduces the qq̄

4The pools of events from which the random samples are selected contain five times more events, therefore the

random sets contain some common events. By using di↵erent values of n we have checked that the overlap does not

bias the determination of the statistical uncertainty. A further check for the uncertainties in the ‘individual’ row is

the comparison with those obtained by simple error propagation.

12

Ckk Crr Cnn Ckr Cxx Czz

Threshold ��� �0.619 �0.372 �0.568 0.080 �0.606 �0.356

Threshold � �0.668 �0.417 �0.593 0.071 �0.632 �0.415

Boosted 0.51 0.64 �0.52 0.15 �0.05 0.76

Table 2: Parton-level values of the spin correlation coe�cients in the helicity and beamline bases

with the kinematical selection in Table 1. In the helicity basis Ckr = Crk, and in the beamline basis

Cxx = Cyy. The rest of coe�cients are below 0.01.

N in the last column of Table 1) and calculate E, either from the individual measurements of Cii,

or with a direct measurement using D or D3.4 The mean and standard deviation of the pseudo-

experiments are presented in Table 3. The standard deviation obtained from the pseudo-experiments

is a good estimation of the statistical uncertainty that would be present in such dataset. For the

‘individual’ measurements the uncertainties can also be estimated by simple error propagation.

Because the statistical uncertainty in asymmetries is 1/
p
N (provided the asymmetries are small, as

is our case), the C coe�cients have an uncertainty of 4/
p
N , see (25), and summing in quadrature

their uncertainties results in 4
p

3/N . For N = 108000, 83000, 9400 in Table 1, this yields ±0.021,

±0.024 and ±0.071, in quite good agreement with the uncertainties in the first line of Table 3.

Threshold ��� Threshold � Boosted

Individual 0.560± 0.020 0.680± 0.022 0.671± 0.069

Direct 0.559± 0.017 0.678± 0.019 0.663± 0.056

Table 3: Values of the entanglement indicator E in (40) obtained from 200 pseudo-experiments with

L = 139 fb�1 and the kinematical cuts in Table 1. The row labeled as ‘individual� presents results

from individual determinations of Ckk, Crr and Cnn. The row labeled as ‘direct’ corresponds to

results obtained measuring either D (at threshold) or D3 (in the boosted regime).

At threshold, the use of � and the direct determination improve the statistical significance by a

factor of 1.27, from E = 0.560 ± 0.020 to E = 0.678 ± 0.019. This is quite remarkable, because it

would amount to an increase in luminosity by a factor of 1.6. However, for this measurement the
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so this improvement may not have a great impact in the total uncertainty. In the boosted regime

there is an improvement by a factor of 1.23, equivalent to an increase in luminosity by a factor of 1.5,

and brings statistical uncertainties below the 10% level. Provided systematic uncertainties are at

the same level, the 5� observation of tt̄ entanglement in the boosted regime seems quite feasible. In

summary, from Table 3 the two ingredients that can improve the observability of the entanglement

are manifest:

• The application of an upper cut on � (only for the threshold analysis), which reduces the qq̄

4The pools of events from which the random samples are selected contain five times more events, therefore the

random sets contain some common events. By using di↵erent values of n we have checked that the overlap does not
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the comparison with those obtained by simple error propagation.
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Figure 4: Dependence of the ⇠⇠⇠⇠CHSH indicators B2,3 in (43) on mtt̄ and ✓CM.

to devise a simple set of kinematical cuts, either using � or not in the case of the threshold analysis,

in order to optimise the statistical significance of B1,2. The sets of cuts are collected in Table 4. For

each set of cuts we give the tree-level cross section, as well as the number of expected events with

a luminosity of 300 fb�1, assuming a K factor of 1.8 to normalise the total cross section to next-

to-next-to-leading order [11] and using a selection and reconstruction e�ciency of 0.12. The value

of spin correlation coe�cients with these kinematical cuts are presented in Table 5. Clearly, for the

threshold analysis the beamline basis is better, while the opposite happens for the boosted analysis.

Note also that the o↵-diagonal spin correlation coe�cients are quite small; therefore, the estimators

B2,3 are very close to the optimal ones. For each set of cuts we estimate the statistical uncertainty

mtt̄ | cos ✓CM| � � N

Threshold ���  353 – – 303 fb 19600

Threshold �  353 –  0.8 181 fb 11700

Boosted � 1000  0.2 – 23.3 fb 1500

Table 4: Kinematical cuts on mtt̄ (in GeV), cos ✓CM and � used to optimise the figure of merit

SB. The fourth column gives the tree-level cross section with the corresponding cuts, and the fifth

column the expected number of events after reconstruction (see the text for details).

Ckk Crr Cnn Ckr Cxx Czz

Threshold ��� �0.677 �0.562 �0.712 0.067 �0.719 �0.506

Threshold � �0.743 �0.640 �0.761 0.052 �0.767 �0.602

Boosted 0.659 0.874 �0.760 0.037 �0.043 0.878

Table 5: Parton-level values of the spin correlation coe�cients in the helicity and beamline bases

with the kinematical selection in Table 4. In the helicity basis Ckr = Crk, and in the beamline basis

Cxx = Cyy. The rest of coe�cients are below 0.01.

in the measurement of B1,2 by performing n = 1000 pseudo-experiments, and present the results for

luminosities of 300 and 3000 fb�1 in Tables 6 and 7, respectively. The rows labeled as ‘individual’
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Note also that the o↵-diagonal spin correlation coe�cients are quite small; therefore, the estimators

B2,3 are very close to the optimal ones. For each set of cuts we estimate the statistical uncertainty

mtt̄ | cos ✓CM| � � N

Threshold ���  353 – – 303 fb 19600

Threshold �  353 –  0.8 181 fb 11700

Boosted � 1000  0.2 – 23.3 fb 1500

Table 4: Kinematical cuts on mtt̄ (in GeV), cos ✓CM and � used to optimise the figure of merit

SB. The fourth column gives the tree-level cross section with the corresponding cuts, and the fifth

column the expected number of events after reconstruction (see the text for details).

Ckk Crr Cnn Ckr Cxx Czz

Threshold ��� �0.677 �0.562 �0.712 0.067 �0.719 �0.506

Threshold � �0.743 �0.640 �0.761 0.052 �0.767 �0.602

Boosted 0.659 0.874 �0.760 0.037 �0.043 0.878

Table 5: Parton-level values of the spin correlation coe�cients in the helicity and beamline bases

with the kinematical selection in Table 4. In the helicity basis Ckr = Crk, and in the beamline basis

Cxx = Cyy. The rest of coe�cients are below 0.01.

in the measurement of B1,2 by performing n = 1000 pseudo-experiments, and present the results for

luminosities of 300 and 3000 fb�1 in Tables 6 and 7, respectively. The rows labeled as ‘individual’
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give the results obtained from the measurement of individual correlation coe�cients (only one of

them in the threshold analysis, as proposed in Ref. [9]), while the rows labeled as ‘direct’ give the

results from the measurement of azimuthal asymmetries. From error propagation, one estimates

for the ‘individual’ measurements an statistical uncertainty of 4
p

2/N , which yields ±0.040, ±0.052

and ±0.15, respectively, for N = 19600, 11700 and 1500 in Table 4. The uncertainties quoted in

Table 6 are slightly larger, but consistent with these estimations.

Threshold ��� Threshold � Boosted

Individual 0.021± 0.053 0.119± 0.074 0.218± 0.141

Direct 0.027± 0.035 0.121± 0.045 0.208± 0.125

Table 6: Values of the ⇠⇠⇠⇠CHSH indicators B1,2 in (42), (43) obtained from 1000 pseudo-experiments

with with L = 300 fb�1 and the kinematical cuts in Table 4. The row labeled as ‘individual� gives

the results from individual determinations of spin correlation coe�cients. The row labeled as ‘direct’

corresponds to results obtained measuring azimuthal asymmetries (see the text for details).

Threshold ��� Threshold � Boosted

Individual 0.024± 0.017 0.120± 0.021 0.218± 0.041

Direct 0.027± 0.010 0.124± 0.013 0.210± 0.036

Table 7: The same as Table 6, for L = 3000 fb�1.

Near threshold, we observe a great improvement of the statistical significance, e.g. from 0.4� to

2.7� with 300 fb�1, by the combination of a � cut and the dedicated observable A+. With 3000 fb�1,

the statistical uncertainty of B1 is at the 10% level. Therefore, provided the systematic uncertainties

are at the same level, a 5� observation of the violation of the CHSH inequalities seems feasible. At

the boosted regime the statistical uncertainty in B2 is 17% for 3000 fb�1, thereby allowing for a 5�

observation of B2 > 0.

5 Discussion

In this work we have investigated novel approaches to improve the observability of entanglement

and CHSH violation in top pair production at the LHC. The first one is the increase of the gg

fraction by a simple upper cut on the tt̄ velocity �, which enhances the entanglement near threshold.

The second one is the use of dedicated observables that directly extract the relevant combinations

of spin correlation coe�cients Cij from data, thereby reducing the statistical uncertainty in the

measurements.

For simplicity, we have not attempted the optimisation of the kinematical cuts in the (mtt̄, cos ✓CM)

plane, nor in the (mtt̄, cos ✓CM,�) volume, to achieve the highest possible statistical significance in

each case. Instead, we have applied simple rectangular cuts on these variables. Further optimisations

of the event selection are quite possible, but out of the scope of this work.

As we restrict ourselves to considering statistical uncertainties, our study is performed at the

parton level, without detector simulation nor unfolding from detector-level quantities. In particu-
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scattering angle in the center of mass frame ✓CM, we generate samples of tt̄ events in 50 GeV slices of

mtt̄ between [300, 350] and [750, 800] GeV, and 100 GeV slices between [0.8, 0.9] and [1.2, 1.3] TeV,

totaling 3.4 ⇥ 107 events. Three additional samples of 5 ⇥ 106 events each are generated, with an

upper cut mtt̄  360 GeV, with a lower cut mtt̄ � 1 TeV and without cuts on mtt̄.

In our Monte Carlo calculations we work at the parton level and do not set any cut on the

transverse momenta of the visible particles (charged leptons and b-quark jets) nor missing energy,

in order to obtain predictions for the full phase space. An experimental analysis involves some loose

lower cuts on the transverse momenta of the visible particles, and some upper cuts on their rapidities,

typically |⌘|  2.5. A veto is also placed on events where the two leptons have the same flavour and

invariant mass m`` ⇠ MZ , in order to suppress the Drell-Yan background. In addition, the momenta

of the top quark and anti-quark have to be reconstructed from those of the observed particles and

the missing energy. Therefore, the detector-level observables and/or distributions measured have to

be unfolded to take into account acceptance, detector and reconstruction e↵ects, and recover their

parton-level values. This is a well-established procedure (see for example Refs. [30,31]) and, because

we are only interested on the improvement of the statistical sensitivity, we do not address these

issues. Instead, we use the parton-level information (momenta of all the particles, including top

quarks) to determine the theoretical predictions of the observables considered.

In this work we mainly use as reference system to express the tt̄ density matrix (4) the helicity

basis, with vectors (r̂, n̂, k̂) defined as

• K-axis (helicity): k̂ is a normalised vector in the direction of the top quark three-momentum

in the tt̄ rest frame.

• R-axis: r̂ is in the production plane and defined as r̂ = sign(yp)(p̂p�ypk̂)/rp, with p̂p = (0, 0, 1)

the direction of one proton in the laboratory frame, yp = k̂ · p̂p, rp = (1�y2p)
1/2. The definition

for r̂ is the same if we use the direction of the other proton �p̂p.

• N-axis: n̂ = k̂ ⇥ r̂ is orthogonal to the production plane and can also be written as n̂ =

sign(yp)(p̂p ⇥ k̂)/rp, which again is independent of the proton choice.

We point out that, unlike other works [7, 17] we use the same basis for the top quark and anti-

quark. For the test of the CHSH inequalities at threshold we use a fixed beamline basis (x̂, ŷ, ẑ)

with x̂ = (1, 0, 0), ŷ = (0, 1, 0), ẑ = (0, 0, 1).

In order to motivate the choice of observables in the following subsections, we present in Fig. 1

the dependence on mtt̄ and ✓CM of the diagonal spin correlation coe�cients Ckk, Crr, Cnn in the

helicity basis, as well as the largest o↵-diagonal coe�cient Ckr = Crk. The integrated values of the

spin correlation coe�cients are Ckk = �0.346, Crr = �0.021, Cnn = �0.334, Ckr = 0.109, close

to the NLO values [17]. Note that Cnn  0 across all the range studied, while for Ckk and Crr

there can be large correlations of either sign. In particular, although in average Crr is the smallest

correlation, when the values in separate regions are considered, Ckr is by far the smallest one. All the

figures are approximately symmetric in cos ✓CM but we prefer to keep the [�1, 1] range of variation

of this variable in order to have a visual estimation of the statistical uncertainty of our Monte Carlo

results. We note that for simplicity, throughout this work we calculate the individual spin correlation

coe�cients from forward-backward asymmetries of the type (25). In the next subsections we study

in more detail how the use of an upper cut on � improves the observability of quantum correlations

and the violation of the CHSH inequalities.
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