Improved tests of entanglement and
Bell inequalities with LHC tops
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Tops are good candidates to test entanglement
and Bell inequalities at high energy

See Afik’s presentation in this conference



Tops are good candidates to test entanglement
and Bell inequalities at high energy

See Afik’s presentation in this conference

A pretty large amount of work has been devoted to this
subject in the last 1-2 years:

Afik and Nova, 2021, 2022

Fabbrichesi, Floreanini and Panizzo 2021
Severi, Boschi, Maltoni and Sioli 2021
Aoude, Madge, Maltoni and Mantani, 2022



Top pairs are copiously produced at the LHC through gluon fusion and
g annihilation
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The generated #f system is generically in a (mixed) entangled state of spin,
i.e.a 2-qubit system, suitable to test entanglement & Bell inequalities

Afik and Nova, 2021



How to measure entanglement and (violation of)
Bell inequalities at the LHC with tops

(Brief review)

In general, an entangled (not necessarily pure) state of two subsystems,
Alice and Bob, is described by a density matrix,

Pent E Psep = D, P P ® pF
n

with an = 1, and p Hermitian, positive semi-definite and Trp = 1



How to measure entanglement and (violation of)

Bell inequalities at the LHC with tops
(Brief review)

In general, an entangled (not necessarily pure) state of two subsystems,
Alice and Bob, is described by a density matrix,

Pent E Psep = D, P P ® pF
n

with an = 1, and p Hermitian, positive semi-definite and Trp = 1

For two qubits p can be expressed in a basis of Hermitian operators,

{IA 01’02’03}@) {IB 01’02’53}
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Hermiticity and Tr p = 1 are automatically, but not semi-positivity
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p=7|I®1+ Y B o®I+B I®c)+ ) C;0,Q0

i=1,2,3 ij=1273

Hermiticity and Tr p = 1 are automatically, but not semi-positivity

Moreover P,CP > Bl.i = (), Cij = Cji

The conditions for the semi-positivity of p are complicated, but they get quite simplified

once one takes into account that in the helicity basis (see later) C;; ~ C,3 ~ 0

Semi-positivity
|C11 + Cu| £ 1-C54
@ and

14C2 4+ (Cy; — Cn)? "> < 14 Cy;




Entanglement

Mathematically, a necessary and sufficient condition for entanglement in joint
systems of two qubits is provided by the Peres-Horodecki criterion:

First construct pT2 .
p — p-
by transposing only the indices

associated to the Bob (or Alice)
Hilbert space.

Then, if pT2 is not a legal density matrix, in particular it has some negative
eigenvalues, then the system is entangled



In our case

1+ B + By + Css
By + Cs1 +1i(B; + C32)
Bl + Ci3 + (B + Ca3)
C11 — Caz +i(Ci2 + C21)

o=

1+ Bi + By + Css
Bi + C31 —i(By + Cs2)
Bf_ + Ci3 + Z(B;_ + Ca3)
Ci1 + Ca2 —i(Chr2 — C21)

T

A

The eigenvalues of,OT2 are complicated expressions of Bii,

Entanglement

By + (31 — i(By + Cs2)
1+ B — By —Css
Ci1 4 Caz —i(Ch2 — C21)
B — Ci3 +i(By — Ca3)

By + Cs1 +i(By + Cs2)
14+ B;f — By —Cs3
Ci1 — Ca2 +i(Ci2 + C2)
Bf — Ci3 +i(Bf — Cas)

Bf 4 Ci3 —i(By + Ca3)
Ci1 + Ca2 +i(Chr2 — C21)
1— B; + By — Cs3
Bl_ — 031 —|— 7/(32_ _— 032)

Bf + Ci3 — i(BY + Cas)
C11 — Caz —i(Ci2 + C21)
1—Bf +B; —Css
B; — C31 —i(B; — Csg)

C;.

Ci1 — Caz —i(Ci2 + C21)

Bf — Ci3 — i(BY — Cas)

By — Cs1 —i(B; — C32)
1-— B;_ — BS_ + Cs3

Ci1 4+ Ca2 +i(Chr2 — C21)

Bl — C13 — (B — C23)

By — Cs1 +i(By — Cs2)
1-— B?;l— — Bg_ + Cs3

but, again things get

simplified for B;" = 0, C;j = C;; (due to BPCP)and (3 = Cy3 = 0 (helicity basis):

Negativity of p’2
(Entanglement)

=

or

|C1+ G| > 1+ G5

[4CE, + (Cyy = G "7 > 1= Cy




Entanglement

Semi-positivity of p and “negativity” of p’2 (entanglement) get further simplified
if C122 < Clzl, (3222 (as it is the case):

|C11 + Cpn| £1 -G53 |Ci1+ Gl > 1+ G5

and or
|C1 — Cp| £ 1+ G5 |Ci1 — Cpl > 1 =G5
Semi-positivity of p “negativity” of pT2 (entanglement)

y

Sufficient (and almost necessary) conditions
Note they require C;, Cy,, C33 # 0

Hence, the straightforward way to show entanglement is to measure the Cij
and check these relations



Bell (CHSH) inequalities

The physical consequence of entanglement that departs from classical intuition is the
violation of Bell inequalities, an impossible result in any local-realistic (“classical”) theory of

nature.
(except perhaps in Everett's interpretation of QM!, see Timpson's talk)

CHSH

Alice (Bob) chooses to measure certain (bi-valued) observables, A,A’ (B,B’). Then,
classically,

|(AB) — (AB)) + (A'B) + (A'B)| <2 (CHSH)

The goal is to choose A, A’, B, B’ s.t. CHSH is experimentally maximally violated.



Bell (CHSH) inequalities

Defining

a-Cb-D) + a’-C(b+b’)‘ <2 (CHSH)

The maximal value of the Lh.s.is 24/4; + A, , with 4;, A, the largest eigenvalues of C'C

Horodecki, Horodecki, Horodecki ‘95

This corresponds to @, a’, b, b’ that depend on C itself.
p p
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Bell (CHSH) inequalities

Hence, the optimal strategy seems to (experimentally) determine Cij and the largest
eigenvalues of C!C. If they satisfy Ay + 4, > 1, CHSH are violated

see Fabbrichesi, Floreanini, Panizzo 21

However, to implement this approach is a subtle matter:

The fact that C'C is positive implies that the uncertainties in A;, 4, are likely biased to

values larger than the real ones
Severi, Boschi, Maltoni, Sioli 202 |
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Bell (CHSH) inequalities

Hence, the optimal strategy seems to (experimentally) determine CZJ and the largest
eigenvalues of CT C. If they satisfy A; + A, > 1, CHSH are violated

see Fabbrichesi, Floreanini, Panizzo 21

However, to implement this approach is a subtle matter:

The fact that C'C is positive implies that the uncertainties in A;, 1, are likely biased to

values larger than the real ones
Severi, Boschi, Maltoni, Sioli 202 |

For example, for a 2 X 2 matrix
a Ooc
(56 b ) a>b>0, 6c~0

The largest eigenvalue is

/11=%<a—b+\/(a+b)2+4(5c)2> > q

even if the uncertainty of dc is symmetrically distributed around 6c = O (the true value)



Bell (CHSH) inequalities

Thus, implementing the A; + 4, > 1 criterion and derive statistical uncertainties on CHSH

violation is a subtle task. see Fabbrichesi, Floreanini, Panizzo 21,
Severi, Boschi, Maltoni, Sioli "2 |

T-Cb-b)+ a-Cb+b)| <2 (CHSH)
Namely , A = O, U = Oy
1
bi=-bl=t—, b=b=t—, b ;=0

11
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Bell (CHSH) inequalities

|G+ C;| > /2 CHSH

i\( Simple linear (non-biased) combinations

7//\\\7 Opens the possibility to design dedicated observables to directly
measure C;; = C;; and thus the CHSH violation

How far is this simple criterion from A, + 4, > 1 ?

From the eigenvalue interlacing theorem:

1
VIHT 2 (@4 2 (G +(Cp? 2 ﬁlcﬁicjjl v

. C; (1C;l = 1C;1)?
The > are close to equalitiessupto (@ corrections

|Gil +[Cyl Gyl + | G

Aguilar-Saavedra, JAC



How to strengthen the sensitivity to entanglement
and CHSH violation

Two strategies:

j’\( Select gg-fusion events at the tt threshold

Sie Design dedicated experimental observables to directly
measure entanglement and CHSH violation

13



How to strengthen the sensitivity to entanglement
and CHSH violation

f—cut

At the tt threshold the tt state generated by gluon fusion is close to the
singlet state

1
NG

which is maximally entangled. In contrast, gg production leads to a separable tt state.

)L =111

14
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How to strengthen the sensitivity to entanglement

and CHSH violation
f—cut

At the tt threshold the tt state generated by gluon fusion is close to the
singlet state

1
NG

which is maximally entangled. In contrast, gg production leads to a separable tt state.

)L =111

An upper cut on the velocity of the tt system:

pitp;

p= E +E;

S ﬂcut

reduces the gg production, due to the different PDFs of valence quarks and sea anti-quarks
inside the protons, thus enhancing th entanglement



How to strengthen the sensitivity to entanglement
and CHSH violation

Dedicated observables (entanglement)

Consider the conditions for entanglement:

|C11+C22| >1+C33
or

|Ci1— Cxp|l > 1-C55

which, depending on the values of C;; leads to a different optimal observable:
—C =G =G> 1

Can we measure these observables in a direct way?

15



How to strengthen the sensitivity to entanglement
and CHSH violation

Dedicated observables (entanglement)

—

Here it is convenient to work in the helicity basis, &, r,

a0

Beam Line

(From Severi et al.)
Antitop

Then, given the predicted (SM) values of the various Cij in the different kinematical
regions, the most useful observable for entanglement is

E=|Cyu+C,|-C,,—1>0

16
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How to strengthen the sensitivity to entanglement

and CHSH violation

Dedicated observables (entanglement)

EElckk+Crr|_Cnn_1>O

inclusive  IC+Cyl-Cpp-1
— 1.6

| 10‘OO‘ )
. my (GeV) Boosted region,
Threshold region, E=Cy+C.—C, —1>0

E=—-(Cyu+C,+C,)—1>0

500



How to strengthen the sensitivity to entanglement
and CHSH violation

C,+C,.+C, canbe measured by

1 do 1
— = — (1 + a,04,D cos Qab)
ocdcos@, 2

with

1 A A
D= E(Ckk +C,.+C,) cos0,, =D, - Dy Bernreuther, Si, 2015

18



How to strengthen the sensitivity to entanglement
and CHSH violation

C,+C,.+C, canbe measured by

1 do 1
— = — (1 + a,04,D cos Hab)
ocdcos@, 2

with

1 A
D = E(Ckk +C,.+C,) cos O, =P, - Py Bernreuther, Si, 2015

Similarly C,, + C,. — C,, can be measured by

1 do 1
—— = — (1 + a,0,,D; cos Qc’lb)
ocdcos@, 2

with

1 N
D; = E(Ckk +Cy—C,) cost, =p,- D, Aguilar-Saavedra, JAC, 2022

Reflected in the k-r plane

18



How to strengthen the sensitivity to entanglement

and CHSH violation

Improvement in entanglement detection (only statistical uncertainty):

f—cut
LHC Run 2 139 fb-!

threshold [B] E: 0.559+0.017 —» 0.679 £ 0.019

boosted [D;] E: 0.671+£0.069 —» 0.663 4 0.056

e

dedicated observable

.27 %

.23 %

The improvement is more important for the boosted region, as it has less
statistics, and systematic and statistical uncertainties are probably comparable:

19



How to strengthen the sensitivity to entanglement
and CHSH violation

Dedicated observables (CHSH)

These CHSH tests depend just on two parameters

B=|CyxCil—1/2>0

In the helicity basis, the best choices are

Cy+C,  atthreshold,

C,—C,  atthe boosted region

-




How to strengthen the sensitivity to entanglement
and CHSH violation

Dedicated observables (CHSH)

These CHSH tests depend just on two parameters

B=|CyxCil—1/2>0

In the helicity basis, the best choices are

Cy+C,, atthreshold, butthe beam basis X, J,Z works slightly better

C,—C,  atthe boosted region

-

Cy +C,

20
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How to strengthen the sensitivity to entanglement

and CHSH violation

Dedicated observables (CHSH)

These CHSH tests depend just on two parameters

B=|CyxCil—1/2>0

In the helicity basis, the best choices are

Cy+C,, atthreshold, butthe beam basis X, y ,Z works slightly better

C,—C,  atthe boosted region

-

Ci.t+ G,
Ciix C;  can be measured with the observable
N(cos(gp, F @) > 0) — N(cos(g, F ¢,) < 0)

A+ = X Cll + C22
~ N(cos(g, F @) > 0) + N(cos(p, F ¢p) <0)




How to strengthen the sensitivity to entanglement
and CHSH violation

Dedicated observables (CHSH)

Improvement in CHSH detection:

Setting systematics aside, there is an improvement of the statistical
uncertainty of the "CHSH violation indicators” B = |Ci + C;i| — V2

LHC Run 2+3 300 fb-!
threshold [3,A+] B: 0.021+£0.053 — 0.121£0.045 6.8 x

boosted [A-] B: 02184£0.141 — 0.208£0.125 1.13 x

In all cases the statistics are small, therefore an improvement of the
statistical sensitivity is very welcome.

HL-LHC 3 ab-!
threshold [B,As] B: 0.024+£0.017 —» 0.124+0.013 6.8 x

boosted [A-] B: 0218+£0.041 — 0.208£0.036 1.13 x

21
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Summary and Conclusions

(O Top pairs produced at the LHC looks a promising system to test entanglement
and CHSH violation at high energy

O  We have explored two strategies to strengthen the detection of both

phenomena:
DG Select gg-fusion events at the tt threshold (f—cut)
Sie Design dedicated experimental observables to directly

measure indicators of entanglement and CHSH

O We have only analyzed the improvement on the stat. uncertainty. The results
are quite promising and it seems feasible to detect entanglement in Run 2 and

CHSH violation at HL LHC.



Figure 1: Dependence on m;; and fcn of the spin correlation coefficients Cyi, Cr, Cpnp and Ck,., at
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Entanglement

my | cosOom| B o N
Threshold g < 390 - — 3.59 pb 108000
Threshold 5 < 390 - <0.9 2.76pb 83000
Boosted > 800 < 0.6 — 310 fb 9400

Table 1: Kinematical cuts on my; (in GeV), cosfcy and 5 used to optimise the figure of merit
Sg. The fourth column gives the tree-level cross section with the corresponding cuts, and the fifth
column the expected number of events after reconstruction (see the text for details).

Ckk Crr Chn Clr Crx C:
Threshold ﬂ —0.619 -0.372 —-0.568 0.080 —0.606 —0.356
Threshold 5 —0.668 —0.417 —-0.593 0.071 —-0.632 —0.415
Boosted 0.51 0.64 —0.52 0.15 —0.05 0.76

Table 2: Parton-level values of the spin correlation coefficients in the helicity and beamline bases
with the kinematical selection in Table 1. In the helicity basis Cf, = C}1, and in the beamline basis
Cyzz = Cyy. The rest of coefficients are below 0.01.

Threshold g Threshold 3 Boosted
Individual 0.560 £0.020 0.680 4 0.022 0.671 £ 0.069
Direct 0.559 £0.017 0.678 £0.019 0.663 £ 0.056

Table 3: Values of the entanglement indicator E in (40) obtained from 200 pseudo-experiments with
L =139 fb~! and the kinematical cuts in Table 1. The row labeled as ‘individual”~ presents results
from individual determinations of Cy, C, and Cp,. The row labeled as ‘direct’ corresponds to
results obtained measuring either D (at threshold) or D3 (in the boosted regime).



mg | cosfom| g o N

Threshold ﬂ < 353 - - 303 fb 19600
CHSH viol. Threshold 5 < 353 — <0.8 181 fb 11700
Boosted > 1000 < 0.2 - 23.3 tb 1500

Table 4: Kinematical cuts on my; (in GeV), cosfcnm and B used to optimise the figure of merit
Sp. The fourth column gives the tree-level cross section with the corresponding cuts, and the fifth
column the expected number of events after reconstruction (see the text for details).

Okk Or'r Cnn Ckr Cxaf: sz
Threshold g —0.677 —0.562 —0.712 0.067 —0.719 —0.506
Threshold g —0.743 —-0.640 —-0.761 0.052 —0.767 —0.602
Boosted 0.659 0.874  —0.760 0.037 —0.043 0.878

Table 5: Parton-level values of the spin correlation coefficients in the helicity and beamline bases
with the kinematical selection in Table 4. In the helicity basis Ci, = C,1, and in the beamline basis
Cyz = Cyy. The rest of coefficients are below 0.01.

Threshold #  Threshold 3 Boosted
Individual 0.021 £0.053 0.119£0.074 0.218 £0.141
Direct 0.027 £0.035 0.121 £0.045 0.208 £0.125

Table 6: Values of the CHSH indicators By 2 in (42), (43) obtained from 1000 pseudo-experiments
with with L = 300 fb~! and the kinematical cuts in Table 4. The row labeled as ‘individual” gives
the results from individual determinations of spin correlation coefficients. The row labeled as ‘direct’
corresponds to results obtained measuring azimuthal asymmetries (see the text for details).

Threshold f  Threshold 8 Boosted
Individual 0.024 £0.017 0.120 +0.021 0.218 £ 0.041
Direct 0.027 £ 0.010 0.124 £0.013 0.210 £ 0.036

Table 7: The same as Table 6, for L = 3000 fb™1.



In this work we mainly use as reference system to express the ¢t density matrix (4) the helicity
basis, with vectors (7,7, k) defined as

e K-axis (helicity): k: is a normalised vector in the direction of the top quark three-momentum
in the tt rest frame.

e R-axis: 7 is in the production plane and defined as 7 = sign(y,) (P —yp/%)/rp, with p, = (0,0,1)
the direction of one proton in the laboratory frame, y, = k-pp, rp = (1 — yf,)l/ 2. The definition
for 7 is the same if we use the direction of the other proton —p,.

e N-axis: fi = k x # is orthogonal to the production plane and can also be written as n =
sign(yp)(Pp X k)/rp, which again is independent of the proton choice.



