Towards testing beyond-quantum theories in particle physics

Proc. R. Soc. A. 478:20210806 (2022), arXiv:2103.12000 Michał Eckstein ${ }^{1,2}$ \& Paweł Horodecki ${ }^{2,3}$
${ }^{1}$ Institute of Theoretical Physics, Jagiellonian University, Kraków, Poland
${ }^{2}$ International Center for Theory of Quantum Technologies, University of Gdańsk, Poland
${ }^{3}$ Gdańsk University of Technology, Poland

JAGIELLONIAN UNIVERSITY IN KRAKÓW

University of Gdańsk

Bell nonlocality - the black box approach

2 parties (Alice and Bob) - 2 inputs $(x, y)-2$ outputs (a, b)

$$
P(a, b \mid x, y)
$$

The experimental (frequency) correlation function
[Sandu Popescu, Nature Physics 10, 264 (2014)]

Quantum Mechanics [Cirelson (1980)]

Bell nonlocality - the black box approach

2 parties (Alice and Bob) - 2 inputs $(x, y)-2$ outputs (a, b)

$$
P(a, b \mid x, y)
$$

The experimental (frequency) correlation function:

$$
C_{e}(x, y)=\frac{N_{++}+N_{--}-N_{+-}-N_{-+}}{N_{++}+N_{--}+N_{+-}+N_{-+}}
$$

[Sandu Popescu, Nature Physics 10, 264 (2014)]
\square

Bell nonlocality - the black box approach

2 parties (Alice and Bob) - 2 inputs $(x, y)-2$ outputs (a, b)

$$
P(a, b \mid x, y)
$$

The experimental (frequency) correlation function:

$$
C_{e}(x, y)=\frac{N_{++}+N_{--}-N_{+-}-N_{-+}}{N_{++}+N_{--}+N_{+-}+N_{-+}}
$$

[Sandu Popescu, Nature Physics 10, 264 (2014)]
Local hidden variables [Bell (1964) / Clauser, Horne, Shimony, Holt (1969)]

$$
S_{\mathrm{LHV}}:=C_{\mathrm{LHV}}(x, y)+C_{\mathrm{LHV}}\left(x, y^{\prime}\right)+C_{\mathrm{LHV}}\left(x^{\prime}, y\right)-C_{\mathrm{LHV}}\left(x^{\prime}, y^{\prime}\right) \leq 2
$$

Bell nonlocality - the black box approach

2 parties (Alice and Bob) - 2 inputs $(x, y)-2$ outputs (a, b)

$$
P(a, b \mid x, y)
$$

The experimental (frequency) correlation function:

$$
C_{e}(x, y)=\frac{N_{++}+N_{--}-N_{+-}-N_{-+}}{N_{++}+N_{--}+N_{+-}+N_{-+}}
$$

[Sandu Popescu, Nature Physics 10, 264 (2014)]
Local hidden variables [Bell (1964) / Clauser, Horne, Shimony, Holt (1969)]

$$
S_{\mathrm{LHV}}:=C_{\mathrm{LHV}}(x, y)+C_{\mathrm{LHV}}\left(x, y^{\prime}\right)+C_{\mathrm{LHV}}\left(x^{\prime}, y\right)-C_{\mathrm{LHV}}\left(x^{\prime}, y^{\prime}\right) \leq 2
$$

Quantum Mechanics [Cirelson (1980)]

$$
S_{\mathrm{QM}}:=C_{\mathrm{QM}}(x, y)+C_{\mathrm{QM}}\left(x, y^{\prime}\right)+C_{\mathrm{QM}}\left(x^{\prime}, y\right)-C_{\mathrm{QM}}\left(x^{\prime}, y^{\prime}\right) \leq 2 \sqrt{2}
$$

Bell nonlocality - beyond quantum mechanics

$$
S:=C(x, y)+C\left(x, y^{\prime}\right)+C\left(x^{\prime}, y\right)-C\left(x^{\prime}, y^{\prime}\right)
$$

- Alice and Bob can communicate,
- or their settings are pre-correlated.

But can we do it assuming:

- no-signalling:

- freedom of choice: $P(x, y \mid \lambda)=P(x) \cdot P(y)$? Yes!

otherwise,

$$
S_{\mathrm{PR}}=4 .
$$

Bell nonlocality - beyond quantum mechanics

$$
S:=C(x, y)+C\left(x, y^{\prime}\right)+C\left(x^{\prime}, y\right)-C\left(x^{\prime}, y^{\prime}\right) \leq 4
$$

- Alice and Bob can communicate,
- or their settings are pre-correlated.

But can we do it assuming:

- no-signalling.

- freedom of choice: $P(x, y \mid \lambda)=P(x) \cdot P(y)$? Yes!

otherwise,

Bell nonlocality - beyond quantum mechanics

$$
S:=C(x, y)+C\left(x, y^{\prime}\right)+C\left(x^{\prime}, y\right)-C\left(x^{\prime}, y^{\prime}\right) \leq 4
$$

Can we achieve $S=4$?

- Alice and Bob can communicate,
- or their settings are pre-correlated.

But can we do it assuming:

- no-signalling:

- freedom of choice: $P(x, y \mid \lambda)=P(x) \cdot P(y)$? Yes!

otherwise,

Bell nonlocality - beyond quantum mechanics

$$
S:=C(x, y)+C\left(x, y^{\prime}\right)+C\left(x^{\prime}, y\right)-C\left(x^{\prime}, y^{\prime}\right) \leq 4
$$

Can we achieve $S=4$? Obviously yes, if

- Alice and Bob can communicate,
- or their settings are pre-correlated.

But can we do it assuming:

- no-signalling:
- freedom of choice: $P(x, y \mid \lambda)=P(x) \cdot P(y)$? Yes!

Bell nonlocality - beyond quantum mechanics

$$
S:=C(x, y)+C\left(x, y^{\prime}\right)+C\left(x^{\prime}, y\right)-C\left(x^{\prime}, y^{\prime}\right) \leq 4
$$

Can we achieve $S=4$? Obviously yes, if

- Alice and Bob can communicate,
- or their settings are pre-correlated.

But can we do it assuming:

- no-signalling:
- freedom of choice: $P(x, y \mid \lambda)=P(x) \cdot P(y)$? Yes!
otherwise,

Bell nonlocality - beyond quantum mechanics

$$
S:=C(x, y)+C\left(x, y^{\prime}\right)+C\left(x^{\prime}, y\right)-C\left(x^{\prime}, y^{\prime}\right) \leq 4
$$

Can we achieve $S=4$? Obviously yes, if

- Alice and Bob can communicate,
- or their settings are pre-correlated.

But can we do it assuming:

- no-signalling:
- freedom of choice: $P(x, y \mid \lambda)=P(x) \cdot P(y)$? Yes!
otherwise,

Bell nonlocality - beyond quantum mechanics

$$
S:=C(x, y)+C\left(x, y^{\prime}\right)+C\left(x^{\prime}, y\right)-C\left(x^{\prime}, y^{\prime}\right) \leq 4
$$

Can we achieve $S=4$? Obviously yes, if

- Alice and Bob can communicate,
- or their settings are pre-correlated.

But can we do it assuming:

- freedom of choice: $P(x, y \mid \lambda)=P(x) \cdot P(y)$? Yes!
otherwise,

Bell nonlocality - beyond quantum mechanics

$$
S:=C(x, y)+C\left(x, y^{\prime}\right)+C\left(x^{\prime}, y\right)-C\left(x^{\prime}, y^{\prime}\right) \leq 4
$$

Can we achieve $S=4$? Obviously yes, if

- Alice and Bob can communicate,
- or their settings are pre-correlated.

But can we do it assuming:

- no-signalling: $\sum_{b} P(a, b \mid x, y)=\sum_{b} P\left(a, b \mid x, y^{\prime}\right)$, for all a, x, y, y^{\prime}, $\sum_{a} P(a, b \mid x, y)=\sum_{a} P\left(a, b \mid x^{\prime}, y\right)$, for all b, x, x^{\prime}, y;
- freedom of choice: $P(x, y \mid \lambda)=P(x) \cdot P(y)$? Yes!

Bell nonlocality - beyond quantum mechanics

$$
S:=C(x, y)+C\left(x, y^{\prime}\right)+C\left(x^{\prime}, y\right)-C\left(x^{\prime}, y^{\prime}\right) \leq 4
$$

Can we achieve $S=4$? Obviously yes, if

- Alice and Bob can communicate,
- or their settings are pre-correlated.

But can we do it assuming:

- no-signalling: $\sum_{b} P(a, b \mid x, y)=\sum_{b} P\left(a, b \mid x, y^{\prime}\right)$, for all a, x, y, y^{\prime}, $\sum_{a} P(a, b \mid x, y)=\sum_{a} P\left(a, b \mid x^{\prime}, y\right)$, for all $b, x, x^{\prime}, y ;$
- freedom of choice: $P(x, y \mid \lambda)=P(x) \cdot P(y)$? Yes!

Bell nonlocality - beyond quantum mechanics

$$
S:=C(x, y)+C\left(x, y^{\prime}\right)+C\left(x^{\prime}, y\right)-C\left(x^{\prime}, y^{\prime}\right) \leq 4=S_{\mathrm{PR}}>S_{\mathrm{QM}}=2 \sqrt{2}
$$

Can we achieve $S=4$? Obviously yes, if

- Alice and Bob can communicate,
- or their settings are pre-correlated.

But can we do it assuming:

- no-signalling: $\sum_{b} P(a, b \mid x, y)=\sum_{b} P\left(a, b \mid x, y^{\prime}\right)$, for all a, x, y, y^{\prime},

$$
\sum_{a} P(a, b \mid x, y)=\sum_{a} P\left(a, b \mid x^{\prime}, y\right), \text { for all } b, x, x^{\prime}, y ;
$$

- freedom of choice: $P(x, y \mid \lambda)=P(x) \cdot P(y)$? Yes!

No-signalling boxes [Popescu, Rohrlich (1994)]

$$
P(a, b \mid x, y)=\left\{\begin{array}{ll}
\frac{1}{2}, & \text { if } a \oplus b=x y, \\
0, & \text { otherwise },
\end{array} \quad S_{\mathrm{PR}}=4\right.
$$

Beyond-quantum theories

(1) Beyond-quantum correlations

- No-signalling boxes
[N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani,
S. Wehner, Rev. Mod. Phys. 86, 419 (2014)]
- 3-party monogamy violation
(2) General Probabilistic Theories [G. Chiribella, R.W. Spekkens (Eds.), Quantum Theory: Informational Foundations and Foils, Springer, 2016]

Beyond-quantum theories

(1) Beyond-quantum correlations

- No-signalling boxes
[N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, S. Wehner, Rev. Mod. Phys. 86, 419 (2014)]

(2) General Probabilistic Theories [G. Chiribella, R.W. Spekkens (Eds.), Quantum Theory: Informational Foundations and Foils, Springer, 2016]

Beyond-quantum theories

(1) Beyond-quantum correlations

- No-signalling boxes
[N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, S. Wehner, Rev. Mod. Phys. 86, 419 (2014)]
- 3-party monogamy violation

[P. Horodecki,
R. Ramanathan, Nat. Comm.
10, 1701 (2019)]

(2) General Probabilistic Theories [G. Chiribella, R.W. Spekkens (Eds.), Quantum Theory: Informational Foundations and Foils, Springer, 2016]

Beyond-quantum theories

(1) Beyond-quantum correlations

- No-signalling boxes
[N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, S. Wehner, Rev. Mod. Phys. 86, 419 (2014)]
- 3-party monogamy violation

[P. Horodecki,
R. Ramanathan, Nat. Comm.
10, 1701 (2019)]

(2) General Probabilistic Theories [G. Chiribella, R.W. Spekkens (Eds.), Quantum Theory: Informational Foundations and Foils, Springer, 2016]
- Inspired by information-theoretic axiomatisation of QM

Beyond-quantum theories

(1) Beyond-quantum correlations

- No-signalling boxes
[N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, S. Wehner, Rev. Mod. Phys. 86, 419 (2014)]
- 3-party monogamy violation

[P. Horodecki,
R. Ramanathan, Nat. Comm.
10, 1701 (2019)]

(2) General Probabilistic Theories [G. Chiribella, R.W. Spekkens (Eds.), Quantum Theory: Informational Foundations and Foils, Springer, 2016]
- Inspired by information-theoretic axiomatisation of QM

Beyond-quantum theories

(1) Beyond-quantum correlations

- No-signalling boxes
[N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, S. Wehner, Rev. Mod. Phys. 86, 419 (2014)]
- 3-party monogamy violation

[P. Horodecki,
R. Ramanathan, Nat. Comm.
10, 1701 (2019)]

(2) General Probabilistic Theories [G. Chiribella, R.W. Spekkens (Eds.), Quantum Theory: Informational Foundations and Foils, Springer, 2016]
- Inspired by information-theoretic axiomatisation of QM

Purely operational 'theories' - model-independent approach

Objective collapse models

(3) Wave function collapse models
[A. Bassi, K. Lochan, S. Satin, T.P. Singh, H. Ulbricht, Rev. Mod. Phys. 85, 471 (2013)]

Objective collapse models

(3) Wave function collapse models
[A. Bassi, K. Lochan, S. Satin, T.P. Singh, H. Ulbricht, Rev. Mod. Phys. 85, 471 (2013)]

- Aimed at explaining the 'quantum-to-classical' transition
- nonlinearity - modified Schrödinger equation
- stochasticity - 'collapse noise

Objective collapse models

(3) Wave function collapse models
[A. Bassi, K. Lochan, S. Satin, T.P. Singh, H. Ulbricht, Rev. Mod. Phys. 85, 471 (2013)]

- Aimed at explaining the 'quantum-to-classical' transition.
- nonlinearity - modified Schrödinger equation
- stochasticity - 'collapse noise

Objective collapse models

(3) Wave function collapse models
[A. Bassi, K. Lochan, S. Satin, T.P. Singh, H. Ulbricht, Rev. Mod. Phys. 85, 471 (2013)]

- Aimed at explaining the 'quantum-to-classical' transition.
- nonlinearity - modified Schrödinger equation
- stochasticity - 'collapse noise

Objective collapse models

(3) Wave function collapse models
[A. Bassi, K. Lochan, S. Satin, T.P. Singh, H. Ulbricht, Rev. Mod. Phys. 85, 471 (2013)]

- Aimed at explaining the 'quantum-to-classical' transition.
- nonlinearity - modified Schrödinger equation
- stochasticity - 'collapse noise'

Collapse models involve deviations from unitarity and linearity.

Beyond-quantum physics?

- Is there a gap between QM and QFT?

- Is QFT only an effective description of Nature at small scales?

Beyond-quantum physics?

- Is there a gap between QM and QFT?

$$
\begin{array}{ll}
C_{q s}=\left\{\langle\psi| A_{a}^{x} \otimes B_{b}^{y}|\psi\rangle\right\}, & |\psi\rangle \in \mathcal{H}_{A} \otimes \mathcal{H}_{B}, \\
C_{q c}=\left\{\langle\psi| A_{a}^{x} B_{b}^{y}|\psi\rangle\right\}, & |\psi\rangle \in \mathcal{H} \text { and }\left[A_{a}^{x}, B_{b}^{y}\right]=0 .
\end{array}
$$

- Is QFT only an effective description of Nature at small scales?

Beyond-quantum physics?

- Is there a gap between QM and QFT?

$$
\begin{array}{ll}
C_{q s}=\left\{\langle\psi| A_{a}^{x} \otimes B_{b}^{y}|\psi\rangle\right\}, & |\psi\rangle \in \mathcal{H}_{A} \otimes \mathcal{H}_{B}, \\
C_{q c}=\left\{\langle\psi| A_{a}^{x} B_{b}^{y}|\psi\rangle\right\}, & |\psi\rangle \in \mathcal{H} \text { and }\left[A_{a}^{x}, B_{b}^{y}\right]=0 .
\end{array}
$$

$\overline{C_{q s}} \subsetneq C_{q c} \quad$ [Z. Ji, A. Natarajan, T. Vidick, J. Wright, H. Yuen, arXiv:2001.04383]

- Is QFT only an effective description of Nature at small scales?

Beyond-quantum physics?

- Is there a gap between QM and QFT?

$$
\begin{array}{ll}
C_{q s}=\left\{\langle\psi| A_{a}^{x} \otimes B_{b}^{y}|\psi\rangle\right\}, & |\psi\rangle \in \mathcal{H}_{A} \otimes \mathcal{H}_{B}, \\
C_{q c}=\left\{\langle\psi| A_{a}^{x} B_{b}^{y}|\psi\rangle\right\}, & |\psi\rangle \in \mathcal{H} \text { and }\left[A_{a}^{x}, B_{b}^{y}\right]=0 .
\end{array}
$$

$\overline{C_{q s}} \subsetneq C_{q c} \quad$ [Z. Ji, A. Natarajan, T. Vidick, J. Wright, H. Yuen, arXiv:2001.04383]

- Is QFT only an effective description of Nature at small scales?

Quantum-data boxes

- We regard a chosen physical system as a Q-data box, which can be probed with quantum information.
- Quantum mechanics is valid outside the box, but not necessarily inside.

- The pure input state is prepared, $P: x \rightarrow \psi_{\mathrm{in}}$
- The output state is reconstructed via quantum tomography from the outcomes of projective measurements $M: \rho_{\text {out }} \rightarrow a$.
- n are classical parameters (e.g. scattering kinematics)

Quantum-data boxes

- We regard a chosen physical system as a Q-data box, which can be probed with quantum information.
- Quantum mechanics is valid outside the box, but not necessarily inside.

- The pure input state is prepared, $P: x \rightarrow \psi_{\mathrm{in}}$
- The output state is reconstructed via quantum tomography from the outcomes of projective measurements $M: \rho_{\text {out }} \rightarrow a$.
- n are classical parameters

Quantum-data boxes

- We regard a chosen physical system as a Q-data box, which can be probed with quantum information.
- Quantum mechanics is valid outside the box, but not necessarily inside.

[Nat. Phys. 10, 264 (2014)]
- The pure input state is prepared, $P: x \rightarrow \psi_{\text {in }}$.
- The output state is reconstructed via quantum tomography from the outcomes of projective measurements $M: \rho_{\text {out }} \rightarrow a$.
- p are classical parameters (e.g. scattering kinematics)

Quantum-data boxes

- We regard a chosen physical system as a Q-data box, which can be probed with quantum information.
- Quantum mechanics is valid outside the box, but not necessarily inside.

[Nat. Phys. 10, 264 (2014)]
- The pure input state is prepared, $P: x \rightarrow \psi_{\text {in }}$.
- The output state is reconstructed via quantum tomography from the outcomes of projective measurements $M: \rho_{\text {out }} \rightarrow a$.

[R. Ashby-Pickering, A.J. Barr, A. Wierzchucka, arXiv:2209.13990]

Quantum-data boxes

- We regard a chosen physical system as a Q-data box, which can be probed with quantum information.
- Quantum mechanics is valid outside the box, but not necessarily inside.

[Nat. Phys. 10, 264 (2014)]
- The pure input state is prepared, $P: x \rightarrow \psi_{\text {in }}$.
- The output state is reconstructed via quantum tomography from the outcomes of projective measurements $M: \rho_{\text {out }} \rightarrow a$.
- p are classical parameters (e.g. scattering kinematics)

[R. Ashby-Pickering, A.J. Barr, A.
Wierzchucka, arXiv:2209.13990]

Quantum-data tests

A Q-data test consists in probing a given Q-data box with prepared input states.

- For every input state $\%$ one needs to perform the full tomography of pout
- A Q-data test yields a dataset $\left\{\psi_{\text {in }}^{(k)}, p^{(\ell)} ; \rho_{\text {out }}^{(k, \ell)}\right\}_{k}$

A particular instance of a Q-data test is the quantum process tomography

- QM implies that any $\operatorname{man} \mathcal{E}: \mathcal{H}_{\text {in }} \rightarrow S\left(\mathcal{H}_{\text {out }}\right)$ is CPTP
- CPTP map can be reconstructed from $\left\{\psi_{\text {in }}^{(k)} ; \rho_{\text {out }}^{(k)}\right\}_{k}, k=1, \ldots,(\operatorname{dim} \mathcal{\mathcal { L }} \text { in })^{2}$
- We can test CPTP by taking $\left\{U \psi_{\text {in }}{ }^{(k)}\right\}_{k}$ and checking that $\mathcal{E}_{U}=\mathcal{E}_{U^{\prime}}$

Quantum-data tests

A Q-data test consists in probing a given Q-data box with prepared input states.

- For every input state $\psi_{\text {in }}$ one needs to perform the full tomography of $\rho_{\text {out }}$
- A Q-data test yields a dataset $\left\{\psi_{\text {in }}^{(k)}, p^{(\ell)} ; \rho_{\text {out }}^{(k, \ell)}\right\}_{k, \ell}$

A particular instance of a Q-data test is the quantum process tomography

- QM implies that any $\operatorname{map} \mathcal{E}: \mathcal{H}_{\text {in }} \rightarrow S\left(\mathcal{H}_{\text {out }}\right)$ is CPTP
- CPTP map can be reconstructed from $\left\{\psi_{\text {in }}^{(k)} ; \rho_{\text {out }}^{(k)}\right\}_{k}, k=1$
- We can test CPTP by taking $\left\{U \psi_{i n}^{(k)}\right\}$, and checking that $\mathcal{E}_{U}=\mathcal{E}_{1}$

Quantum-data tests

A Q-data test consists in probing a given Q-data box with prepared input states.

- For every input state $\psi_{\text {in }}$ one needs to perform the full tomography of $\rho_{\text {out }}$.
- A Q-data test yields a dataset

A particular instance of a Q-data test is the quantum process tomography

- QM implies that any map $\mathcal{E}: \mathcal{H}_{\text {in }} \rightarrow S\left(\mathcal{H}_{\text {out }}\right)$ is CPTP
- CPTP map can be reconstructed from $\{$
- We can test CPTP by taking $\left\{U \psi_{\text {in }}^{(k)}\right\}_{k}$ and checking that $\mathcal{E}_{U}=\mathcal{E}_{U}$

Quantum-data tests

A Q-data test consists in probing a given Q-data box with prepared input states.

- For every input state $\psi_{\text {in }}$ one needs to perform the full tomography of $\rho_{\text {out }}$.
- A Q-data test yields a dataset $\left\{\psi_{\text {in }}^{(k)}, p^{(\ell)} ; \rho_{\text {out }}^{(k, \ell)}\right\}_{k, \ell}$.

A particular instance of a Q-data test is the quantum process tomography

- QM implies that any map $\mathcal{E}: \mathcal{H}_{\text {in }} \rightarrow S\left(\mathcal{H}_{\text {out }}\right)$ is CPTP
- CPTP map can be reconstructed from $\left\{\mu \psi_{\text {in }}^{(k)} ; \rho_{0 u t}^{(k)}\right\}_{k}, k=1$

- We can test CPTP by taking $\left\{U \psi_{\text {in }}^{(k)}\right\}_{k}$ and checking that $\mathcal{E}_{U}=\mathcal{E}_{U}$

Quantum-data tests

A Q-data test consists in probing a given Q-data box with prepared input states.

- For every input state $\psi_{\text {in }}$ one needs to perform the full tomography of $\rho_{\text {out }}$.
- A Q-data test yields a dataset $\left\{\psi_{\text {in }}^{(k)}, p^{(\ell)} ; \rho_{\text {out }}^{(k, \ell)}\right\}_{k, \ell}$.

A particular instance of a Q-data test is the quantum process tomography:

- QM implies that any map $\mathcal{E}: \mathcal{H}_{\text {in }} \rightarrow S\left(\mathcal{H}_{\text {out }}\right)$ is CPTP.
- CPTP map can be reconstructed from \{
- We can test CPTP by taking $\left\{U_{v},{ }_{i n}^{(k)}\right\}$, and checking that $\varepsilon_{U}=\varepsilon_{l}$

Quantum-data tests

A Q-data test consists in probing a given Q-data box with prepared input states.

- For every input state $\psi_{\text {in }}$ one needs to perform the full tomography of $\rho_{\text {out }}$.
- A Q-data test yields a dataset $\left\{\psi_{\text {in }}^{(k)}, p^{(\ell)} ; \rho_{\text {out }}^{(k, \ell)}\right\}_{k, \ell}$.

A particular instance of a Q-data test is the quantum process tomography:

- QM implies that any map $\mathcal{E}: \mathcal{H}_{\text {in }} \rightarrow S\left(\mathcal{H}_{\text {out }}\right)$ is CPTP.

Quantum-data tests

A Q-data test consists in probing a given Q-data box with prepared input states.

- For every input state $\psi_{\text {in }}$ one needs to perform the full tomography of $\rho_{\text {out }}$.
- A Q-data test yields a dataset $\left\{\psi_{\text {in }}^{(k)}, p^{(\ell)} ; \rho_{\text {out }}^{(k, \ell)}\right\}_{k, \ell}$.

A particular instance of a Q-data test is the quantum process tomography:

- QM implies that any map $\mathcal{E}: \mathcal{H}_{\text {in }} \rightarrow S\left(\mathcal{H}_{\text {out }}\right)$ is CPTP.
- CPTP map can be reconstructed from $\left\{\psi_{\text {in }}^{(k)} ; \rho_{\text {out }}^{(k)}\right\}_{k}, k=1, \ldots,\left(\operatorname{dim} \mathcal{H}_{\text {in }}\right)^{2}$.

Quantum-data tests

A Q-data test consists in probing a given Q-data box with prepared input states.

- For every input state $\psi_{\text {in }}$ one needs to perform the full tomography of $\rho_{\text {out }}$.
- A Q-data test yields a dataset $\left\{\psi_{\text {in }}^{(k)}, p^{(\ell)} ; \rho_{\text {out }}^{(k, \ell)}\right\}_{k, \ell}$.

A particular instance of a Q-data test is the quantum process tomography:

- QM implies that any map $\mathcal{E}: \mathcal{H}_{\text {in }} \rightarrow S\left(\mathcal{H}_{\text {out }}\right)$ is CPTP.
- CPTP map can be reconstructed from $\left\{\psi_{\text {in }}^{(k)} ; \rho_{\text {out }}^{(k)}\right\}_{k}, k=1, \ldots,\left(\operatorname{dim} \mathcal{H}_{\text {in }}\right)^{2}$.
- We can test CPTP by taking $\left\{U \psi_{\text {in }}^{(k)}\right\}_{k}$ and checking that $\mathcal{E}_{U}=\mathcal{E}_{U^{\prime}}$.

An example - the Helstrom test

- Suppose that we have two available inputs $\psi_{\text {in }}^{(1)}, \psi_{\text {in }}^{(2)}$.
- We choose randomly the input (with probability $1 / 2$)
- The task is to guess, which of the two states was input.
- Define the success rate: $P_{\text {succ }}\left(v_{\text {in }}^{(1)}, \psi_{\text {in }}^{(2)}\right):=\frac{1}{2} \sum_{k=1}^{2} P\left(a=k \mid \psi_{\text {in }}^{(k)}\right)$
- In quantum theory $P_{\text {succ }}$ cannot exceed the Helstrom bound

- Make a Q-data test with $\left\{\psi_{\text {in }}^{(k)} ; \rho_{\text {out }}^{(k)}\right\}_{k=1,2}$
- If $P_{\text {succ }}\left(P_{\text {out }}^{(1)}, P_{\text {out }}^{(2)}\right)>P_{\text {succ }}\left(\psi_{i}^{(1)}, \psi^{(2)}\right)$ then the Q-data box is not quantum
- Violation of the Helstrom bound occurs in nonlinear modifications of QM

An example - the Helstrom test

- Suppose that we have two available inputs $\psi_{\mathrm{in}}^{(1)}, \psi_{\mathrm{in}}^{(2)}$.
- We choose randomly the input (with probability $1 / 2$).
- The task is to guess, which of the two states was input.
- Define the success rate: $P_{\text {succ }}\left(\psi_{\text {in }}^{(1)}, \psi_{\text {in }}^{(2)}\right):=\frac{1}{2} \sum_{k=1}^{2} P\left(a=k \mid \psi_{\text {in }}^{(k)}\right)$
- In quantum theory $P_{\text {succ }}$ cannot exceed the Helstrom bound

- Make a Q-data test with $\left\{\psi_{\text {in }}^{(k)} ; \rho_{\text {out }}^{(k)}\right\}_{k=1,2}$
- If $P_{\text {succ }}\left(P_{\text {out }}^{(1)}, P_{\text {out }}^{(2)}\right)>P_{\text {succ }}\left(\psi_{i}(1), \psi_{i}^{(2)}\right)$ then the Q-data box is not quantum
- Violation of the Helstrom bound occurs in nonlinear modifications of QM

An example - the Helstrom test

- Suppose that we have two available inputs $\psi_{\text {in }}^{(1)}, \psi_{\text {in }}^{(2)}$.
- We choose randomly the input (with probability $1 / 2$).
- The task is to guess, which of the two states was input.
- Define the success rate: $P_{\text {succ }}\left(\psi_{\text {in }}^{(1)}, \psi_{\text {in }}^{(2)}\right):=\frac{1}{2} \sum_{k}^{2}$
- In quantum theory $P_{\text {succ }}$ cannot exceed the Helstrom bound

- Make a Q-data test with $\left\{\psi_{\text {in }}^{(k)} ; \rho_{\text {out }}^{(k)}\right\}_{k=1,2}$
- If $P_{\text {succ }}\left(\rho_{\text {out }}^{(1)}, \rho_{\text {out }}^{(2)}\right)>P_{\text {succ }}\left(\psi_{i}^{(1)}, \psi^{(2)}\right)$ then the Q-data box is not quantum
- Violation of the Helstrom bound occurs in nonlinear modifications of QM

An example - the Helstrom test

- Suppose that we have two available inputs $\psi_{\text {in }}^{(1)}, \psi_{\text {in }}^{(2)}$.
- We choose randomly the input (with probability $1 / 2$).
- The task is to guess, which of the two states was input.
- Define the success rate: $P_{\text {succ }}\left(\psi_{\text {in }}^{(1)}, \psi_{\text {in }}^{(2)}\right):=\frac{1}{2} \sum_{k=1}^{2} P\left(a=k \mid \psi_{\text {in }}^{(k)}\right)$.
- In quantum theory $P_{\text {succ }}$ cannot exceed the Helstrom bound

- Make a Q-data test with $\left\{\psi_{\text {in }}^{(k)} ; \rho_{\text {out }}^{(k)}\right\}_{k=1,2}$
- If $P_{\text {succ }}\left(p_{\text {out }}^{(1)}, p_{\text {out }}^{(2)}\right)>P_{\text {succ }}\left(\psi_{\text {in }}^{(1)}, \psi_{\text {in }}^{(2)}\right)$ then the Q-data box is not quantum
- Violation of the Helstrom bound occurs in nonlinear modifications of QM

An example - the Helstrom test

- Suppose that we have two available inputs $\psi_{\text {in }}^{(1)}, \psi_{\text {in }}^{(2)}$.
- We choose randomly the input (with probability $1 / 2$).
- The task is to guess, which of the two states was input.
- Define the success rate: $P_{\text {succ }}\left(\psi_{\text {in }}^{(1)}, \psi_{\text {in }}^{(2)}\right):=\frac{1}{2} \sum_{k=1}^{2} P\left(a=k \mid \psi_{\text {in }}^{(k)}\right)$.
- In quantum theory $P_{\text {succ }}$ cannot exceed the Helstrom bound

$$
P_{\text {succ }} \leq P_{\text {succ }}^{\mathrm{QM}}:=\frac{1}{2}\left(1+\sqrt{1-\left|\left\langle\psi_{\mathrm{in}}^{(1)} \mid \psi_{\mathrm{in}}^{(2)}\right\rangle\right|^{2}}\right) .
$$

- Make a Q-data test with
- If $\left.P_{\text {succ }}\left({ }^{(1)}{ }^{(1)}\right)^{(2)}\right) \geqslant P_{\text {succ }}(2)$
- Violation of the Helstrom bound occurs in nonlinear modifications of QM

An example - the Helstrom test

- Suppose that we have two available inputs $\psi_{\text {in }}^{(1)}, \psi_{\text {in }}^{(2)}$.
- We choose randomly the input (with probability $1 / 2$).
- The task is to guess, which of the two states was input.
- Define the success rate: $P_{\text {succ }}\left(\psi_{\text {in }}^{(1)}, \psi_{\mathrm{in}}^{(2)}\right):=\frac{1}{2} \sum_{k=1}^{2} P\left(a=k \mid \psi_{\text {in }}^{(k)}\right)$.
- In quantum theory $P_{\text {succ }}$ cannot exceed the Helstrom bound

$$
P_{\text {succ }} \leq P_{\mathrm{succ}}^{\mathrm{QM}}:=\frac{1}{2}\left(1+\sqrt{1-\left|\left\langle\psi_{\mathrm{in}}^{(1)} \mid \psi_{\mathrm{in}}^{(2)}\right\rangle\right|^{2}}\right)
$$

- Make a Q-data test with $\left\{\psi_{\text {in }}^{(k)} ; \rho_{\text {out }}^{(k)}\right\}_{k=1,2}$.
- Violation of the Helstrom bound occurs in nonlinear modifications of QM

An example - the Helstrom test

- Suppose that we have two available inputs $\psi_{\text {in }}^{(1)}, \psi_{\text {in }}^{(2)}$.
- We choose randomly the input (with probability $1 / 2$).
- The task is to guess, which of the two states was input.
- Define the success rate: $P_{\text {succ }}\left(\psi_{\text {in }}^{(1)}, \psi_{\mathrm{in}}^{(2)}\right):=\frac{1}{2} \sum_{k=1}^{2} P\left(a=k \mid \psi_{\text {in }}^{(k)}\right)$.
- In quantum theory $P_{\text {succ }}$ cannot exceed the Helstrom bound

$$
P_{\text {succ }} \leq P_{\mathrm{succ}}^{\mathrm{QM}}:=\frac{1}{2}\left(1+\sqrt{1-\left|\left\langle\psi_{\mathrm{in}}^{(1)} \mid \psi_{\mathrm{in}}^{(2)}\right\rangle\right|^{2}}\right)
$$

- Make a Q-data test with $\left\{\psi_{\text {in }}^{(k)} ; \rho_{\text {out }}^{(k)}\right\}_{k=1,2}$.
- If $P_{\text {succ }}\left(\rho_{\text {out }}^{(1)}, \rho_{\text {out }}^{(2)}\right)>P_{\text {succ }}\left(\psi_{\text {in }}^{(1)}, \psi_{\text {in }}^{(2)}\right)$ then the Q-data box is not quantum.
- Violation of the Helstrom bound occurs in nonlinear modifications of QM.

An example - the Helstrom test

- Suppose that we have two available inputs $\psi_{\text {in }}^{(1)}, \psi_{\text {in }}^{(2)}$.
- We choose randomly the input (with probability $1 / 2$).
- The task is to guess, which of the two states was input.
- Define the success rate: $P_{\text {succ }}\left(\psi_{\text {in }}^{(1)}, \psi_{\text {in }}^{(2)}\right):=\frac{1}{2} \sum_{k=1}^{2} P\left(a=k \mid \psi_{\text {in }}^{(k)}\right)$.
- In quantum theory $P_{\text {succ }}$ cannot exceed the Helstrom bound

$$
P_{\text {succ }} \leq P_{\text {succ }}^{\mathrm{QM}}:=\frac{1}{2}\left(1+\sqrt{1-\left|\left\langle\psi_{\text {in }}^{(1)} \mid \psi_{\text {in }}^{(2)}\right\rangle\right|^{2}}\right) .
$$

- Make a Q-data test with $\left\{\psi_{\text {in }}^{(k)} ; \rho_{\text {out }}^{(k)}\right\}_{k=1,2}$.
- If $P_{\text {succ }}\left(\rho_{\text {out }}^{(1)}, \rho_{\text {out }}^{(2)}\right)>P_{\text {succ }}\left(\psi_{\text {in }}^{(1)}, \psi_{\text {in }}^{(2)}\right)$ then the Q-data box is not quantum.
- Violation of the Helstrom bound occurs in nonlinear modifications of QM.

Towards experimental quantum process tomography

Main idea:

(1) Prepare a 'quantum-programmed' particle carrying $\psi_{\text {in }}$, e.g. electron's spin or photon's polarization
(2) Scatter it on a nucleonic target.
(3) Perform projective measurements
on the outgoing projectiles.
(4) Reconstruct the output state $\rho_{\text {out }}$

Challenges:

- Need to prepare the quantum state of GeV particles
- Abundance of projectiles in high-energy collisions
- Nead to measure spin/polarization of individual projectiles \rightsquigarrow ???

Towards experimental quantum process tomography

Main idea:

(1) Prepare a 'quantum-programmed' particle carrying $\psi_{\text {in }}$, e.g. electron's spin or photon's polarization.

(2) Scatter it on a nucleonic target.
(3) Perform projective measurements on the outgoing projectiles.
(9) Reconstruct the output state $\rho_{\text {out }}$

Challenges:

- Need to prepare the quantum state of GeV particles
- Abundance of projectiles in high-energy collisions
- Need to measure spin/polarization of individual projectiles \rightsquigarrow ???

Towards experimental quantum process tomography

Main idea:

(1) Prepare a 'quantum-programmed' particle carrying $\psi_{\text {in }}$, e.g. electron's spin or photon's polarization.
(2) Scatter it on a nucleonic target.
(3) Perform projective measurements on the outgoing projectiles.

a Reconstruct the output state pout Challenges:

- Need to prepare the quantum state of GeV particles
- Abundance of projectiles in high-energy collisions
- Need to measure spin/polarization of individual projectiles \rightsquigarrow ???

Towards experimental quantum process tomography

Main idea:

(1) Prepare a 'quantum-programmed' particle carrying $\psi_{\text {in }}$, e.g. electron's spin or photon's polarization.
(2) Scatter it on a nucleonic target.
(3) Perform projective measurements on the outgoing projectiles.

(9) Reconstruct the output state $\rho_{\text {out }}$ Challenges:

- Need to prepare the quantum state of GeV particles
- Abundance of projectiles in high-energy collisions
- Need to measure spin/polarization of individual projectiles \rightsquigarrow ???

Towards experimental quantum process tomography

Main idea:

(1) Prepare a 'quantum-programmed' particle carrying $\psi_{\text {in }}$, e.g. electron's spin or photon's polarization.
(2) Scatter it on a nucleonic target.
(3) Perform projective measurements on the outgoing projectiles.

(9) Reconstruct the output state $\rho_{\text {out }}$.

Challenges:

- Need to prepare the quantum state of GeV particles
- Abundance of projectiles in high-energy collisions
- Need to measure spin/polarization of individual projectiles \rightsquigarrow ???

Towards experimental quantum process tomography

Main idea:

(1) Prepare a 'quantum-programmed' particle carrying $\psi_{\text {in }}$, e.g. electron's spin or photon's polarization.
(2) Scatter it on a nucleonic target.
(3) Perform projective measurements on the outgoing projectiles.

(9) Reconstruct the output state $\rho_{\text {out }}$.

Challenges:

- Need to prepare the quantum state of GeV particles
- Abundance of projectiles in high-energy collisions
- Need to measure spin/polarization of individual projectiles $\rightsquigarrow>? ?$

Towards experimental quantum process tomography

Main idea:

(1) Prepare a 'quantum-programmed' particle carrying $\psi_{\text {in }}$, e.g. electron's spin or photon's polarization.
(2) Scatter it on a nucleonic target.
(3) Perform projective measurements on the outgoing projectiles.

(9) Reconstruct the output state $\rho_{\text {out }}$.

Challenges:

- Need to prepare the quantum state of GeV particles
- Abundance of projectiles in high-energy collisions
- Need to measure spin/polarization of individual projectiles \rightsquigarrow ???

Towards experimental quantum process tomography

Main idea:

(1) Prepare a 'quantum-programmed' particle carrying $\psi_{\text {in }}$, e.g. electron's spin or photon's polarization.
(2) Scatter it on a nucleonic target.
(3) Perform projective measurements on the outgoing projectiles.

(9) Reconstruct the output state $\rho_{\text {out }}$.

Challenges:

- Need to prepare the quantum state of GeV particles \rightsquigarrow polarized beams
- Abundance of projectiles in high-energy collisions
- Need to measure spin/polarization of individual projectiles \rightsquigarrow ???

Towards experimental quantum process tomography

Main idea:

(1) Prepare a 'quantum-programmed' particle carrying $\psi_{\text {in }}$, e.g. electron's spin or photon's polarization.
(2) Scatter it on a nucleonic target.
(3) Perform projective measurements on the outgoing projectiles.
(4) Reconstruct the output state $\rho_{\text {out }}$.

Challenges:

- Need to prepare the quantum state of GeV particles \rightsquigarrow polarized beams
- Abundance of projectiles in high-energy collisions
- Need to measure spin/polarization of individual projectiles \rightsquigarrow ???

Towards experimental quantum process tomography

Main idea:

(1) Prepare a 'quantum-programmed' particle carrying $\psi_{\text {in }}$, e.g. electron's spin or photon's polarization.
(2) Scatter it on a nucleonic target.
(3) Perform projective measurements on the outgoing projectiles.
(9) Reconstruct the output state $\rho_{\text {out }}$.
 Challenges:

- Need to prepare the quantum state of GeV particles \rightsquigarrow polarized beams
- Abundance of projectiles in high-energy collisions \rightsquigarrow elastic scattering
- Need to measure spin/polarization of individual projectiles

Towards experimental quantum process tomography

Main idea:

(1) Prepare a 'quantum-programmed' particle carrying $\psi_{\text {in }}$, e.g. electron's spin or photon's polarization.
(2) Scatter it on a nucleonic target.
(3) Perform projective measurements on the outgoing projectiles.
(9) Reconstruct the output state $\rho_{\text {out }}$.

Challenges:

- Need to prepare the quantum state of GeV particles \rightsquigarrow polarized beams
- Abundance of projectiles in high-energy collisions \rightsquigarrow elastic scattering
- Need to measure spin/polarization of individual projectiles \rightsquigarrow ???

Summary

> Proc. R. Soc. A. 478:20210806 (2022), arXiv:2103.12000

Take-home messages:

- Quantum mechanics can be probed from an 'outside' perspective.
- Whenever we are doing a Bell-type test, we are testing QM against both local hidden variables and beyond-quantum correlations.
- Need for quantum process tomography

Thank you for your attention!

Summary

Proc. R. Soc. A. 478:20210806 (2022), arXiv:2103.12000

Take-home messages:

- Quantum mechanics can be probed from an 'outside’ perspective.
- Whenever we are doing a Bell-type test, we are testing QM against both local hidden variables and beyond-quantum correlations.
- Noed for quantum process tomography

Thank you for your attention!

Summary

Proc. R. Soc. A. 478:20210806 (2022), arXiv:2103.12000

Take-home messages:

- Quantum mechanics can be probed from an 'outside' perspective.
- Whenever we are doing a Bell-type test, we are testing QM against both local hidden variables and beyond-quantum correlations.
- Need for quantum process tomography

Thank you for your attention!

Summary

Proc. R. Soc. A. 478:20210806 (2022), arXiv:2103.12000

Take-home messages:

- Quantum mechanics can be probed from an 'outside' perspective.
- Whenever we are doing a Bell-type test, we are testing QM against both local hidden variables and beyond-quantum correlations.
- Need for quantum process tomography:
- Understanding quantum dynamics at subnuclear scales.
- Seeking deviations from unitarity and linearity.

Thank you for your attention!

Summary

Proc. R. Soc. A. 478:20210806 (2022), arXiv:2103.12000

Take-home messages:

- Quantum mechanics can be probed from an 'outside' perspective.
- Whenever we are doing a Bell-type test, we are testing QM against both local hidden variables and beyond-quantum correlations.
- Need for quantum process tomography:
- Understanding quantum dynamics at subnuclear scales.
- Seeking deviations from unitarity and linearity.

Thank you for your attention!

Summary

Proc. R. Soc. A. 478:20210806 (2022), arXiv:2103.12000

Take-home messages:

- Quantum mechanics can be probed from an 'outside' perspective.
- Whenever we are doing a Bell-type test, we are testing QM against both local hidden variables and beyond-quantum correlations.
- Need for quantum process tomography:
- Understanding quantum dynamics at subnuclear scales.
- Seeking deviations from unitarity and linearity.

Thank you for your attention!

