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Introduction

I Violation of Bell inequalities by quantum-mechanical probabilities is
usually discussed within the framework of non-relativistic quantum
mechanics.

I The description of EPR experiments in a relativistic framework is
hindered by theoretical and interpretational difficulties, some of
them are:
I ambiguities in the definition of a spin operator for relativistic

particles;
I lack of a covariant localization (position operator).

I EPR experiment with relativistic particles for the first time was
considered by Marek Czachor in [M. Czachor, Phys. Rev. A, 55, 72
(1997)].

I Correlations and Bell-type inequalities violation in the relativistic
setting were considered in a large number of papers since 1997.

I Almost all of these papers used massive spin-1/2 particles.
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Introduction

We have considered EPR experiment with vector bosons in:

P.C., J.R., M.W lodarczyk., Phys. Rev. A 77, 012103 (2008);

P.C., Phys. Rev. A 77, 062101 (2008);

A.J.Barr., P.C., J.R., arXiv:2204.11063 (2022).
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Spin s = 1 representation of the Poincaré group

H – the carrier space of the irreducible massive representation of the
Poincaré group for s = 1.
H is spanned by the four-momentum operator eigenvectors |k , σ〉

P̂µ|k , σ〉 = kµ|k, σ〉,
k2 = m2, m – mass of the particle, σ = −1, 0, 1.
We use the Lorentz-covariant normalization

〈k, σ|k ′, σ′〉 = 2k0δ3(k− k′)δσσ′ .

The vectors |k, σ〉 can be generated from the standard vector |k̃, σ〉:
|k, σ〉 = U(Lk)|k̃, σ〉, k̃ = m(1, 0, 0, 0), k = Lk k̃, Lk̃ = I .
The standard Wigner procedure leads to (Λ – Lorentz transformation)

U(Λ)|k, σ〉 = Dλσ(R(Λ, k))|Λk, λ〉,
R(Λ, k) = L−1

Λk ΛLk is the Wigner rotation.
For s = 1 the representation D(R) is unitary equivalent to R by

D(R) = VRV †, V †V = I , V =
1√
2

−1 i 0

0 0
√

2
1 i 0

 .
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Spin operator for a relativistic particle

In the space H there exists a well-defined square of the spin operator

Ŝ
2

= s(s + 1)I = − 1
m2 W

µWµ,

s – spin of a particle,
Ŵ µ = 1

2ε
νγδµP̂ν Ĵγδ – the Pauli-Lubanski four-vector, (ε0123 = 1),

Ĵµν – the generators of the Lorentz group: U(Λ) = exp(iωµν Ĵµν).

It does not determine Ŝ.

Spin can be defined as a difference between total angular momentum Ĵ
and the orbital angular momentum L̂ = Q̂× P̂:

Ŝ = Ĵ− Q̂× P̂.

Ĵ i = εijk Ĵ jk , consequently Ĵ and P̂ are well defined within the unitary,
irreducible representation of the Poincaré group.

There does not exist a generally accepted position operator Q̂.

Different choices of Q̂ lead to different spin operators.
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Spin can be defined as a difference between total angular momentum Ĵ
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Ŝ = Ĵ− Q̂× P̂.
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Ŝ
2

= s(s + 1)I = − 1
m2 W

µWµ,

s – spin of a particle,
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Spin operator for a relativistic particle

The most popular choice of Q̂: the Newton–Wigner position operator
[Rev. Mod. Phys. 21, 400 (1949).]

Q̂NW = −1

2

[ 1

P̂0
K̂ + K̂

1

P̂0

]
− P̂× Ŵ

mP̂0(m + P̂0)
,

Ki = J0i – the boost generators.

Properties of the Newton-Wigner position operator:

I it is a vector;

I it has commuting components;

I it has self-adjoint components;

I it is defined for arbitrary spin;

I it does not transform in a manifestly covariant way under Lorentz
boosts.
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mP̂0(m + P̂0)
,

Ki = J0i – the boost generators.

Properties of the Newton-Wigner position operator:

I it is a vector;

I it has commuting components;

I it has self-adjoint components;

I it is defined for arbitrary spin;

I it does not transform in a manifestly covariant way under Lorentz
boosts.

Foundational tests of Quantum Mechanics at the LHC Oxford, March 21, 2023



Spin operator for a relativistic particle

The most popular choice of Q̂: the Newton–Wigner position operator
[Rev. Mod. Phys. 21, 400 (1949).]

Q̂NW = −1

2

[ 1

P̂0
K̂ + K̂

1

P̂0

]
− P̂× Ŵ
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Q̂NW = −1
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[ 1
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K̂ + K̂
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Spin operator for a relativistic particle

The spin operator related to the Newton-Wigner position operator:

ŜNW =
1

m

(
Ŵ + Ŵ 0 P̂

P̂0 + m

)
,

Properties of the spin operator ŜNW :

I its components satisfy the standard su(2) Lie algebra commutation
relations;

I its square is equal to s(s + 1)I in a unitary irreducible representation
of the Poincaré group;

I it is the only axial vector which is a linear function of the
Pauli-Lubanski four-vector components;

I under Lorentz group action it transforms according to

Ŝ
′
NW = R(Λ, P̂)ŜNW , where R(Λ, P̂) is the corresponding Wigner

rotation.
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ŜNW =
1

m

(
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I it is the only axial vector which is a linear function of the
Pauli-Lubanski four-vector components;

I under Lorentz group action it transforms according to

Ŝ
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Spin operator for a relativistic particle

The spin operator ŜNW acts on one-particle states according to

ŜNW |k, σ〉 = Sλσ|k, λ〉,

where S i are standard spin-1 matrices:

S1 = 1√
2

0 1 0
1 0 1
0 1 0

 , S2 = i√
2

0 −1 0
1 0 −1
0 1 0

 , S3 =

1 0 0
0 0 0
0 0 −1

 .
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Spin operator for a relativistic particle

Other spin operators have been also used in the description of relativistic
EPR experiments, the most popular one is the operator used by Czachor.

This operator is related with the so-called center of mass position
operator which has non-commuting components.

Observable corresponding to the normalized projection of this operator on
the direction a has the following form:

ŜC (a) =
a · Ŵ√

m2 + (a · P̂)2

.

Projections of both these spin operators on momentum direction are
equal:

ŜC (P̂) = P̂ · ŜNW .
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ŜC (a) =
a · Ŵ√
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Boson field

To describe two types of vector bosons, particle and antiparticle, we
consider the free field operator φ̂µ(x):

φ̂µ(x) = 1
(2π)(3/2)

∫
d3k
2ωk

[
e ikxeµσ (k)a†σ(k) + e−ikxe∗µσ (k)bσ(k)

]
,

ωk =
√
k2 + m2, m – mass of a particle (and antiparticle).

a†σ(k), aσ(k), b†σ(k), bσ(k) – creation and annihilation operators
of a particle and antiparticle.

They fulfill the standard canonical commutation relations

[aσ(k), a†σ′(k
′)] = [bσ(k), b†σ′(k

′)] = 2k0δ(k− k′)δσσ′ ,

all the other commutators vanish.

The Klein-Gordon equation and Lorentz transversality condition imply

k2 = m2, kµe
µ
σ (k) = 0.
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Boson field

The one-particle and one-antiparticle states are given by

|k, λ〉a = a†λ(k)|0〉, |p, σ〉b = b†σ(p)|0〉,

|0〉 – Lorentz-invariant vacuum, 〈0|0〉 = 1.

These states should transform like a basis states of a carrier space of the
irreducible, massive representation of the Poincaré group for s = 1.

This condition leads to the explicit form of eµσ (k):

e(k) = [eµσ (k)] =

(
kT

m

I + k⊗kT
m(m+k0)

)
V T ,
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Covariant states

We can construct covariant particle/anti-particle states

|(µ, k)〉a/b = eµσ (k)|k, σ〉a/b.

These states transform in a manifestly covariant way under Lorentz
transformations

U(Λ)|(µ, k)〉a/b = (Λ−1)µν |(ν,Λk)〉a/b.

Two-particle state (boson with four-momentum k, spin projection λ) +
(antiboson with four-momentum p, spin projection σ):

|(k, λ)a; (p, σ)b〉 = a†σ(k)b†σ(p)|0〉.

Finally, a two-particle boson–antiboson covariant state:

eµλ (k)eνσ(p)|(k, λ)a; (p, σ)b〉.
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Two-particle scalar states

A general scalar state has the following form

|α(k, p)〉 = gµν(k, p)eµλ (k)eνσ(p)|(k, λ); (p, σ)〉,

where
gµν(k, p) = ηµν + c

(kp)

(
kµpν + pµkν

)
, c ∈ R.

Transversality condition for amplitudes e(k) reduces the second term in
the bracket to the pµkν only. The above parametrization excludes the
separable state pµkνe

µ
λ (k)eνσ(p)|(k, λ); (p, σ)〉.

Normalization

〈α(k, p)|α(k, p)〉 = 4k0p0(δ3(0))2A(k, p),

with

A(k, p) = 2 +
[
c m2

(kp) −
(kp)
m2 (1 + c)

]2

.
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Two-particle scalar states

Two of these states are distinguished:

|ψ(k, p)〉, corresponding to the choice cψ = 0:

|ψ(k, p)〉 = ηµνe
µ
λ (k)eνσ(p)|(k, λ); (p, σ)〉.

It is the simplest and the most natural scalar state.
The normalization factor A(k, p) of the state |ψ(k, p)〉:

Aψ(k, p) = 2 + (kp)2

m4 .

|ξ(k, p)〉, corresponding to the choice cξ = −1:

|ξ(k, p)〉 =
(
ηµν − 1

(kp)pµkν
)
eµλ (k)eνσ(p)|(k, λ); (p, σ)〉.

The state |ξ(k, p)〉 in the massless limit converges to a scalar two-photon
state [P.C., Phys. Rev. A 77, 062101 (2008)].
The normalization factor A(k, p) of the state |ξ(k, p)〉:

Aξ(k, p) = 2 + m4

(kp)2 .
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Action of the spin operator on two-particle states

Operators which act like a spin on particles a (antiparticles b) whose
momenta belong to region Ω in momentum space and gives 0 otherwise:

Ŝ
a

Ω =

∫
Ω

d3k
2k0 a

†(k)Sa(k), Ŝ
b

Ω =

∫
Ω

d3k
2k0 b

†(k)Sb(k),

where a(k) =
(
a+1(k), a0(k), a−1(k)

)T
.

For two-particle states:

Ŝ
a

Ω|(k, λ)a; (p, σ)b〉 = χΩ(k)Sλ′λ|(k, λ′)a; (p, σ)b〉,

Ŝ
b

Ω|(k, λ)a; (p, σ)b〉 = χΩ(p)Sσ′σ|(k, λ)a; (p, σ′)b〉,

where χΩ(k) = 1 for k ∈ Ω and χΩ(k) = 0 for k 6∈ Ω.

The spectral decomposition of the operator ω · Ŝ
a

Ω:

ω · Ŝ
a

Ω = 1 · Πa+
Ωω + (−1) · Πa−

Ωω + 0 · Πa0
Ωω,

and analogously for ω · Ŝ
b

Ω.
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Ŝ
a

Ω =

∫
Ω

d3k
2k0 a

†(k)Sa(k), Ŝ
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Ŝ
a

Ω|(k, λ)a; (p, σ)b〉 = χΩ(k)Sλ′λ|(k, λ′)a; (p, σ)b〉,

Ŝ
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Ŝ
a

Ω|(k, λ)a; (p, σ)b〉 = χΩ(k)Sλ′λ|(k , λ′)a; (p, σ)b〉,

Ŝ
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EPR-type experiment with vector bosons

Alice and Bob are at rest with respect to a given inertial frame and share
a pair of bosons in the scalar state |α(k , p)〉.
The probability that Alice obtains σ and Bob λ (λ, σ ∈ {−1, 0, 1}), when
measuring spin projections on the directions a and b, respectively, are
given by the formula

Pσλ(a,b) =
〈α(k, p)|Π̂σAaΠ̂λBb|α(k, p)〉
〈α(k, p)|α(k, p)〉

.

We assume that Alice (Bob) can register only particles (antiparticles)
whose momenta belong to the region A (B) in the momentum space and
that they use the spin operator ŜNW .

These probabilities can be explicitly calculated [P.C., J.R., M.W., Phys.
Rev. A 77, 012103 (2008); A.J.B., P.C., J.R., arXiv:2204.11063].

The correlation function is defined as

C (a, k;b, p) =
∑

λ,σ=−1,0,1

λσ P(a,b)λσ.
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Bell-type inequalities for vector bosons

The CHSH inequality can be written in the form

|C (a,b)− C (a,d)|+ |C (c,b) + C (c,d)| ≤ 2.

The CHSH inequality is optimal for detecting quantum nonlocality in a
system of two qubits.

In a system of two spin 1 particles in nonrelativistic quantum mechanics
the CHSH inequality cannot be violated.

In [P.C., J.R., M.W., Phys. Rev. A 77, 012103 (2008)] we have shown
that the CHSH inequality in the state |ψ(k, kπ)〉, is not violated in
|ψ(k, kπ)〉. Our further numerical simulations show that the CHSH
inequality cannot be violated in the state |ξ(k, kπ)〉, either.
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Bell-type inequalities for vector bosons

The Mermin inequality for spin 1 particles reads

C (a,b) + C (b, c) + C (c, a) ≤ 1,

this inequality should be satisfied in any local, realistic theory.

This inequality cannot be violated in nonrelativistic quantum mechanics.

In [P.C., J.R., M.W., Phys. Rev. A 77, 012103 (2008)] we have shown
that relativistic vector bosons in the state |ψ(k, kπ)〉 can violate the
Mermin inequality.

In [A.J.B., P.C., J.R., arXiv:2204.11063] we have shown that bosons in
the state |ξ(k, kπ)〉 also can violate the Mermin inequality.

Let

x =
k2

m2
.
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Bell-type inequalities for vector bosons
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Bell-type inequalities for vector bosons

An optimal inequality for detecting quantum nonlocality in a system of
two qudits is the CGLMP inequality.

For two qubits it reduces to the CHSH inequality.

For two qutrits we assume that Alice (Bob) can perform two possible
measurements A1 or A2 (B1 or B2) with three outcomes: 0,1,2.

Denoting P(Ai = Bj + k) =
∑l=2

l=0 P(Ai = l ,Bj = l + k mod 3) and

I3 =
[
P(A1 = B1) + P(B1 = A2 + 1) + P(A2 = B2) + P(B2 = A1)

]
−
[
P(A1 = B1−1)+P(B1 = A2)+P(A2 = B2−1)+P(B2 = A1−1)

]
,

the CGLMP inequality can be written in the form

I3 ≤ 2.
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Bell-type inequalities for vector bosons

We identify spin projections −1, 0, 1 with outcomes 0, 1, 2:

−1↔ 0, 0↔ 1, 1↔ 2,

and measurements A1, B1, A2, B2 with spin projections on a, b, c, d,
respectively.

The I3 takes the form

I3 = C (a,b) + C (c,d) + C (a,d)− C (c,b)

+ P+−(a,b) + P+−(c,d) + P−+(a,d)− P+−(c,b)

+ P00(a,b) + P00(c,d) + P00(a,d)− P00(c,b)

−
[
P0−(a,b) + P0−(c,d) + P−0(a,d)− P0−(c,b)

+ P+0(a,b) + P+0(c,d) + P0+(a,d)− P+0(c,b)
]
.

In [A.J.B., P.C., J.R., arXiv:2204.11063] we have shown that the CGLMP
inequality can be violated either in the state |ψ(k, kπ)〉 or in the state
|ξ(k, kπ)〉 .
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Comparison of the violation of the CGLMP inequality in the state |ξ(k, kπ)〉
(blue, dashed line) and in the state |ψ(k, kπ)〉 (green, dotted line). The

configuration of particles momenta and measurements directions is the

following: n = (0, 0, 1), w = (cosφw sin θw , sinφw sin θw , cos θw ),

w ∈ {a, b, c, d} and θa = 2.667, φa = 4.109, θb = 0.924, φb = 0.974,

θc = 2.699, φc = 1.005, θd = 0, φd = 0.
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Conclusions

I We have derived formulas for probabilities in the EPR-type
experiment with two relativistic vector bosons in a scalar state
assuming that Alice and Bob measure spin projections on given
directions.
These probabilities depend on bosons momenta.

I In the center of mass frame we have explicitly calculated
probabilities in two states of particular interest:
I the simplest nonseparable state |ψ(k, kπ)〉
I and the state which in the massless limit converges to the scalar

two-photon state |ξ(k, kπ)〉.
I We have shown that both the Mermin and CGLMP inequalities can

be violated in both states |ψ(k, kπ)〉 and |ξ(k, kπ)〉 and that the
degree of violation depends on bosons momenta.
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Conclusions

I We have performed our analysis in the spin basis, this basis is more
natural when we discuss Bell-like inequalities.

I We have considered two vector bosons with the same mass.

In the case of a Higgs boson decays: H →W+W− (H → ZZ ) one
W (Z ) must be of-mass-shell.

We can easily perform sumilar analysis for bosons with different
masses.

I In [P.C., J.R., M.W., Phys. Rev. A 79, 014102 (2009)] we compared
correlation functions calculated with the help of two different spin
operators: ŜNW and ŜC .
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