

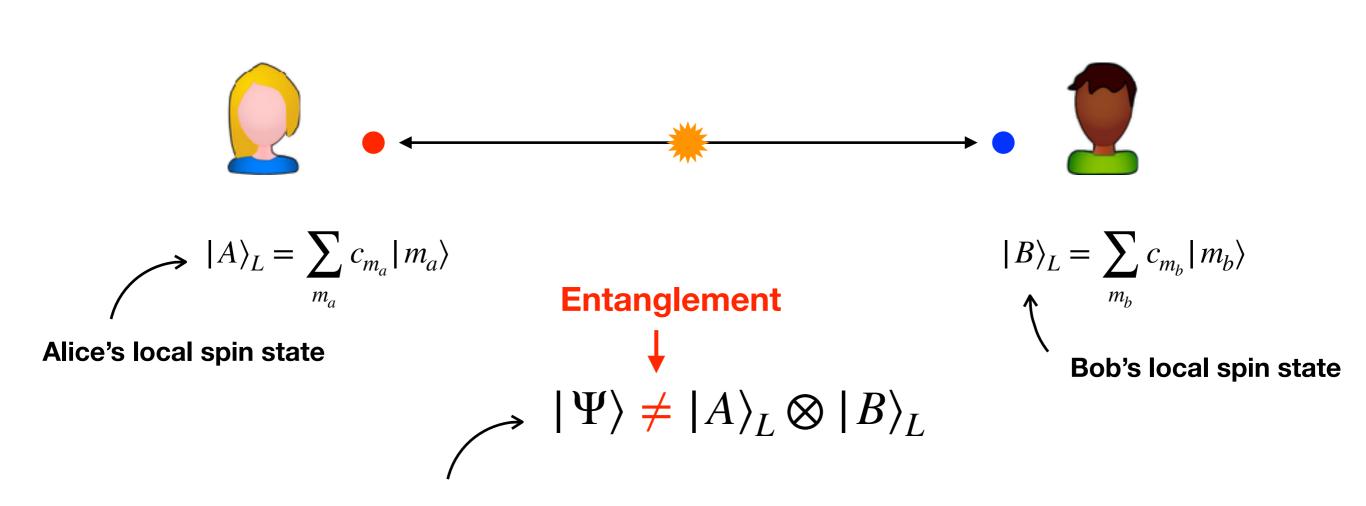
Quantum information and CP measurement in $H \to \tau^+ \tau^-$ at future lepton colliders

Kazuki Sakurai

(University of Warsaw)

In collaboration with:

Mohammad Altakach, Fabio Maltoni, Kentarou Mawatari, Priyanka Lamba



Total quantum state

Spin measurement

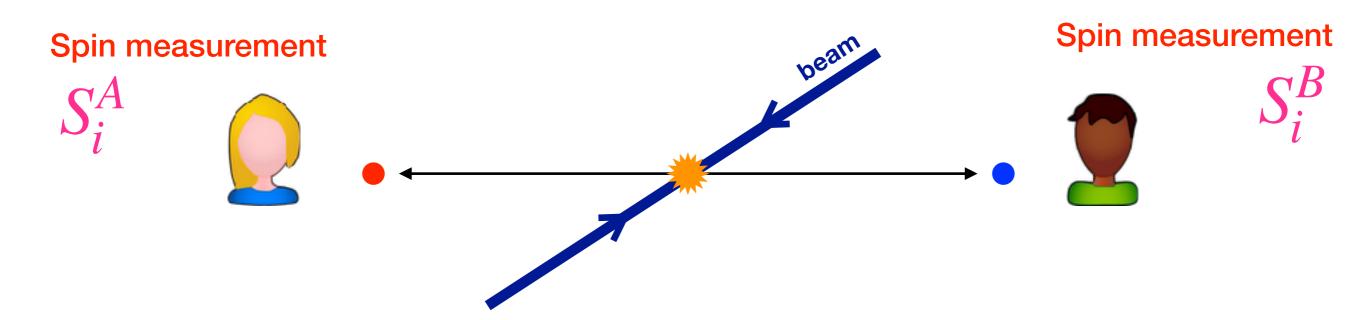
$$S_i^B$$

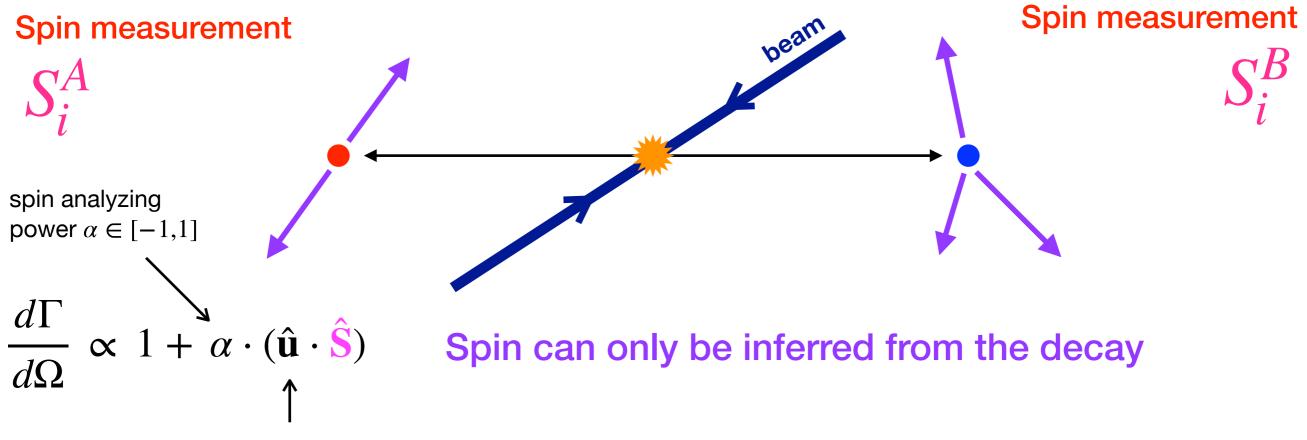
$$|A\rangle_L = \sum_{m_a} c_{m_a} |m_a\rangle$$

Alice's local spin state

$$|B\rangle_L = \sum_{m_b} c_{m_b} |m_b\rangle$$

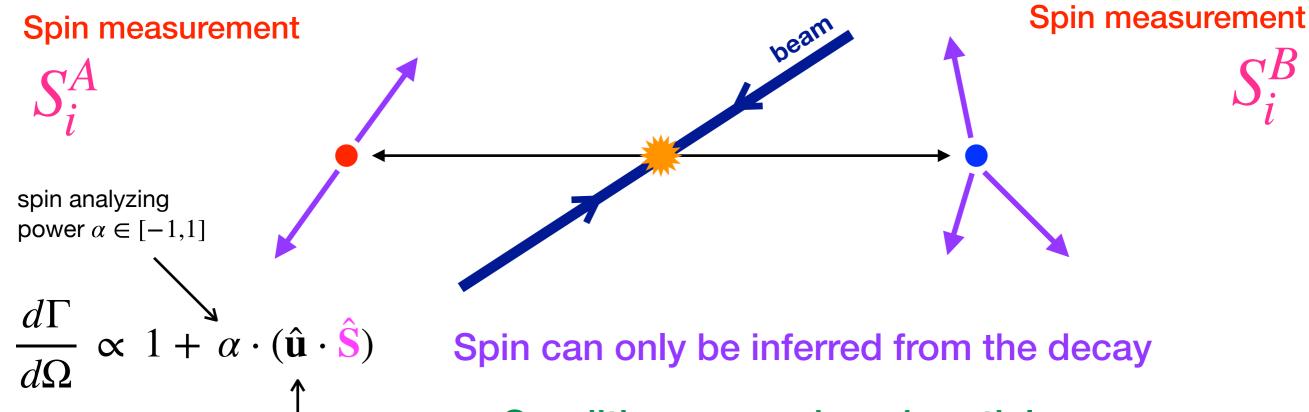
Bob's local spin state





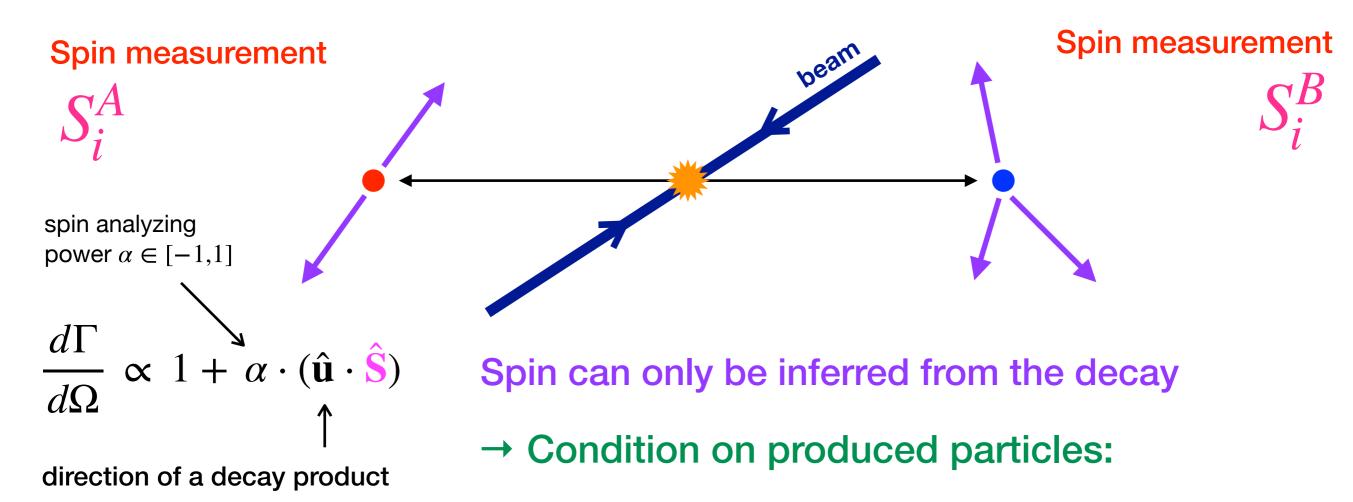
direction of a decay product

Spin correlation $C_{ij} = \langle S_i^A S_j^B \rangle$ contains the information of entanglement



- direction of a decay product
- → Condition on produced particles:
 - have non zero spin
 - their decay must be analyzable

$$W^{\pm}$$
, Z^{0} , t , τ



- have non zero spin
- their decay must be analyzable

$$W^{\pm}$$
, Z^{0} , t , τ

tau is special

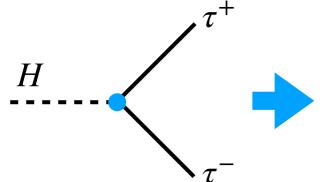
$$m_{ au} \ll M_{
m weak}$$
 — experimental challenge

$$H \rightarrow \tau^+ \tau^-$$

SM: $(\kappa, \delta) = (1,0)$

$$\mathcal{L}_{\text{int}} = -\frac{m_{\tau}}{v_{\text{SM}}} \kappa H \bar{\psi}_{\tau}(\cos \delta + i\gamma_{5} \sin \delta) \psi_{\tau}$$

$$\mathcal{M}^{m\bar{m}} = c \bar{u}^{m}(p)(\cos \delta + i\gamma_{5} \sin \delta) v^{\bar{m}}(\bar{p})$$



$$\mathcal{M}^{m\bar{m}} = c \,\bar{u}^m(p)(\cos\delta + i\gamma_5 \sin\delta)v^{\bar{m}}(\bar{p})$$

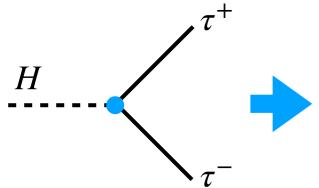
density matrix:

$$\rho_{mn,\bar{m}\bar{n}} = \frac{\mathcal{M}^{*n\bar{n}}\mathcal{M}^{m\bar{m}}}{\sum_{m\bar{m}} |\mathcal{M}^{m\bar{m}}|^2} = \frac{1}{2} \begin{pmatrix} 0 & 0 & 0 & 0\\ 0 & 1 & e^{-i2\delta} & 0\\ 0 & e^{i2\delta} & 1 & 0\\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$H \rightarrow \tau^+ \tau^-$$

SM: $(\kappa, \delta) = (1,0)$

$$\mathcal{L}_{\text{int}} = -\frac{m_{\tau}}{v_{\text{SM}}} \kappa H \bar{\psi}_{\tau} (\cos \delta + i \gamma_5 \sin \delta) \psi_{\tau}$$



$$\mathcal{M}^{m\bar{m}} = c \,\bar{u}^m(p)(\cos\delta + i\gamma_5 \sin\delta)v^{\bar{m}}(\bar{p})$$

density matrix:

$$\rho_{mn,\bar{m}\bar{n}} = \frac{\mathcal{M}^{*n\bar{n}}\mathcal{M}^{m\bar{m}}}{\sum_{m\bar{m}} |\mathcal{M}^{m\bar{m}}|^2} = \frac{1}{2} \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & e^{-i2\delta} & 0 \\ 0 & e^{i2\delta} & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$|\Psi_{H \to \tau \tau}(\delta)\rangle \propto |+-\rangle + e^{i2\delta}|-+\rangle$$

$$\delta = 0$$
 (CP even)

$$|+-\rangle+|-+\rangle$$

$$\delta = \pi/2$$
 (CP odd)

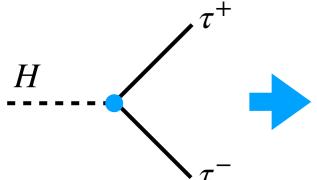
$$|+-\rangle - |-+\rangle$$

$$H \rightarrow \tau^+ \tau^-$$

SM: $(\kappa, \delta) = (1,0)$

$$\mathcal{L}_{\text{int}} = -\frac{m_{\tau}}{v_{\text{SM}}} \kappa H \bar{\psi}_{\tau}(\cos \delta + i\gamma_{5} \sin \delta) \psi_{\tau}$$

$$\mathcal{M}^{m\bar{m}} = c \bar{u}^{m}(p)(\cos \delta + i\gamma_{5} \sin \delta) v^{\bar{m}}(\bar{p})$$



$$\mathcal{M}^{m\bar{m}} = c \,\bar{u}^m(p)(\cos\delta + i\gamma_5 \sin\delta)v^{\bar{m}}(\bar{p})$$

density matrix:

$$\rho_{mn,\bar{m}\bar{n}} = \frac{\mathcal{M}^{*n\bar{n}}\mathcal{M}^{m\bar{m}}}{\sum_{m\bar{m}} |\mathcal{M}^{m\bar{m}}|^2} = \frac{1}{2} \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & e^{-i2\delta} & 0 \\ 0 & e^{i2\delta} & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$|\Psi_{H\to\tau\tau}(\delta)\rangle \propto |+-\rangle + e^{i2\delta}|-+\rangle$$

$$\delta = 0$$

$$|\Psi^{(s=1,m)}\rangle \propto \begin{pmatrix} |++\rangle & \text{(CP) even} \\ |+-\rangle + |-+\rangle & \\ |--\rangle & \end{pmatrix}$$

$$\delta = \pi/2 \text{ (CP odd)}$$

$$|\Psi^{(0,0)}\rangle \propto |+-\rangle - |-+\rangle$$

Parity: $P = (\eta_f \eta_{\bar{f}}) \cdot (-1)^l$ with $\eta_f \eta_{\bar{f}} = -1$:

$$J^{P} = \begin{cases} 0^{+} \Longrightarrow & l = s = 1 \\ 0^{-} \Longrightarrow & l = s = 0 \end{cases}$$

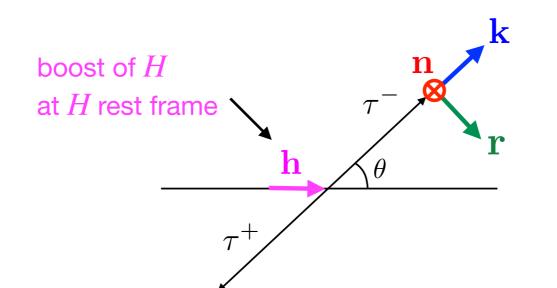
density matrix:

$$\rho_{mn,\bar{m}\bar{n}} = \frac{\mathcal{M}^{*n\bar{n}}\mathcal{M}^{m\bar{m}}}{\sum_{m\bar{m}} |\mathcal{M}^{m\bar{m}}|^2} = \frac{1}{2} \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & e^{-i2\delta} & 0 \\ 0 & e^{i2\delta} & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\rho = \frac{1}{4} \left[\mathbf{1}_4 + \mathbf{B}_i \cdot (\sigma_i \otimes \mathbf{1}) + \overline{\mathbf{B}}_i \cdot (\mathbf{1} \otimes \sigma_i) + C_{ij} \cdot (\sigma_i \otimes \sigma_j) \right]$$

$$\langle \hat{S}_i^{\tau^-} \rangle = \text{Tr}[(\sigma_i \otimes \mathbf{1})\rho] = \underline{B}_i = 0$$
 $\langle \hat{S}_i^{\tau^+} \rangle = \text{Tr}[(\mathbf{1} \otimes \sigma_i)\rho] = \overline{\underline{B}}_i = 0$

$$\langle \hat{S}_{i}^{\tau^{-}} \hat{S}_{j}^{\tau^{+}} \rangle = \text{Tr}[(\sigma_{i} \otimes \sigma_{j})\rho] = C_{ij} = \begin{pmatrix} \cos 2\delta & \sin 2\delta & 0 \\ -\sin 2\delta & \cos 2\delta & 0 \\ 0 & 0 & -1 \end{pmatrix}$$



helicity basis $(\hat{\mathbf{r}}, \hat{\mathbf{n}}, \hat{\mathbf{k}})$

Once $C_{ij} = \langle \hat{S}_i^{\tau^-} \hat{S}_j^{\tau^+} \rangle$ are measured/computed, it is straightforward to obtain:

Entanglement (Concurrence):

$$C[\rho] = \max \left[0, \frac{D_{+} + C_{kk} - 1}{2}, \frac{D_{-} - C_{kk} - 1}{2} \right] > 0$$

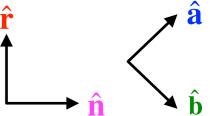
$$D_{\pm} \equiv \sqrt{(C_{rn} \pm C_{nr})^{2} + (C_{rr} \mp C_{nn})^{2}}$$

Bell non-locality

$$R_{\text{CHSH}} \equiv \frac{1}{2} \left| \langle \hat{S}_{r}^{\tau^{-}} \hat{S}_{a}^{\tau^{+}} \rangle - \langle \hat{S}_{r}^{\tau^{-}} \hat{S}_{b}^{\tau^{+}} \rangle + \langle \hat{S}_{n}^{\tau^{-}} \hat{S}_{a}^{\tau^{+}} \rangle + \langle \hat{S}_{n}^{\tau^{-}} \hat{S}_{b}^{\tau^{+}} \rangle \right| > 1$$

Steerability

$$\mathcal{S}[\rho] \equiv \frac{1}{2\pi} \int d\Omega_{\hat{\mathbf{n}}} \sqrt{\hat{\mathbf{n}}^T C^T C \hat{\mathbf{n}}} > 1$$



Once $C_{ii} = \langle \hat{S}_i^{\tau^-} \hat{S}_i^{\tau^+} \rangle$ are measured/computed, it is straightforward to obtain:

Entanglement (Concurrence):

$$C[\rho] = \max \left[0, \frac{D_{+} + C_{kk} - 1}{2}, \frac{D_{-} - C_{kk} - 1}{2} \right] = 1 > 0$$

$$\rho = \frac{1}{2} \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & e^{-i2\delta} & 0 \\ 0 & e^{i2\delta} & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$D_{\pm} \equiv \sqrt{(C_{rn} \pm C_{nr})^2 + (C_{rr} \mp C_{nn})^2}$$

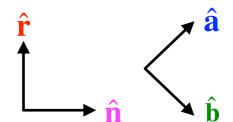
$$ho = rac{1}{2} egin{pmatrix} 0 & 0 & 0 & 0 \ 0 & 1 & e^{-i2\delta} & 0 \ 0 & e^{i2\delta} & 1 & 0 \ 0 & 0 & 0 & 0 \end{pmatrix}$$

Bell non-locality

$$R_{\text{CHSH}} \equiv \frac{1}{2} \left| \langle \hat{S}_r^{\tau^-} \hat{S}_a^{\tau^+} \rangle - \langle \hat{S}_r^{\tau^-} \hat{S}_b^{\tau^+} \rangle + \langle \hat{S}_n^{\tau^-} \hat{S}_a^{\tau^+} \rangle + \langle \hat{S}_n^{\tau^-} \hat{S}_b^{\tau^+} \rangle \right| = \sqrt{2} > 1$$

Steerability

$$\mathcal{S}[\rho] \equiv \frac{1}{2\pi} \left[d\Omega_{\hat{\mathbf{n}}} \sqrt{\hat{\mathbf{n}}^T C^T C \hat{\mathbf{n}}} \right] = 2 > 1$$



independent of CP phase δ

prediction

How can we measure spin correlation?

$$\frac{d\Gamma}{d\Omega} \propto 1 + \alpha \cdot (\hat{\mathbf{u}}^{\pi^{\pm}} \cdot \hat{\mathbf{S}}^{\tau^{\pm}})$$

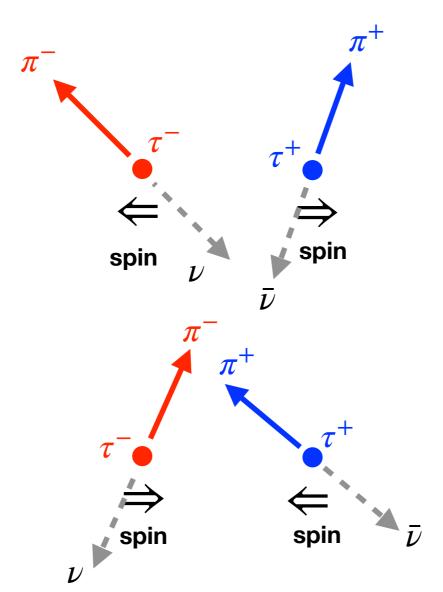
$$\uparrow$$

$$\alpha = 1 \text{ for } \tau^{-} \to \pi^{-}\nu$$

- At the rest frame of τ^{\pm} , the spin can be inferred from the π^{\pm} direction

$$\langle \hat{S}_i^{\tau^-} \hat{S}_j^{\tau^+} \rangle = C_{ij} = -9 \cdot \langle (\hat{\mathbf{u}}^{\pi^-} \cdot \hat{\mathbf{e}}_i) (\hat{\mathbf{u}}^{\pi^+} \cdot \hat{\mathbf{e}}_j) \rangle$$

→ Reconstruction of the tau rest frames (i.e. neutrino reconstruction) is necessary



How can we measure spin correlation?

$$\frac{d\Gamma}{d\Omega} \propto 1 + \alpha \cdot (\hat{\mathbf{u}}^{\pi^{\pm}} \cdot \hat{\mathbf{S}}^{\tau^{\pm}})$$

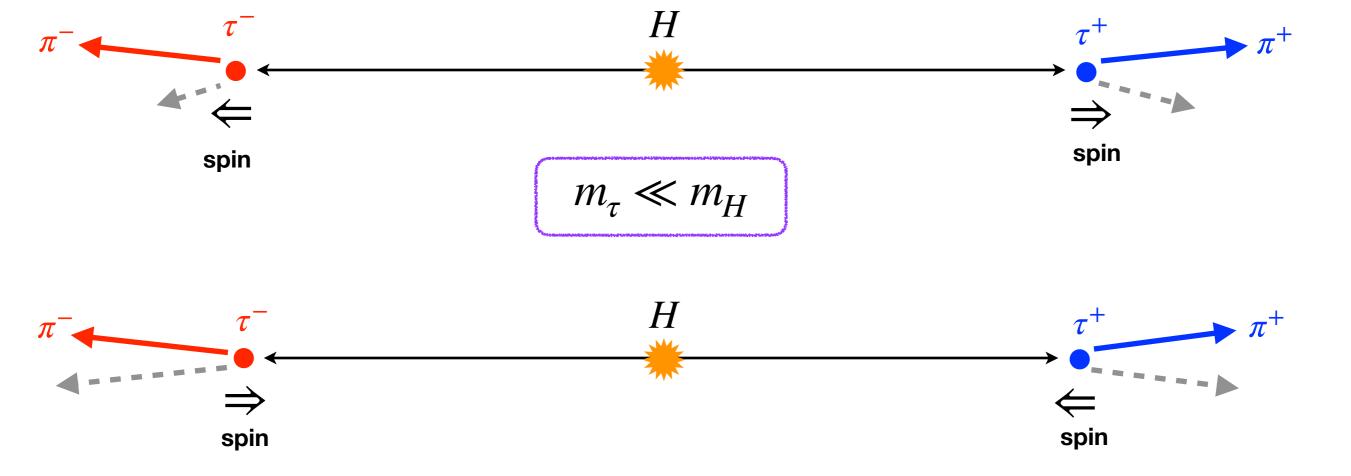
$$\alpha = 1 \text{ for } \tau^{-} \to \pi^{-}\nu$$

- At the rest frame of τ^{\pm} , the spin can be inferred from the π^{\pm} direction

$$\langle \hat{S}_i^{\tau^-} \hat{S}_j^{\tau^+} \rangle = C_{ij} = -9 \cdot \langle (\hat{\mathbf{u}}^{\pi^-} \cdot \hat{\mathbf{e}}_i) (\hat{\mathbf{u}}^{\pi^+} \cdot \hat{\mathbf{e}}_j) \rangle$$

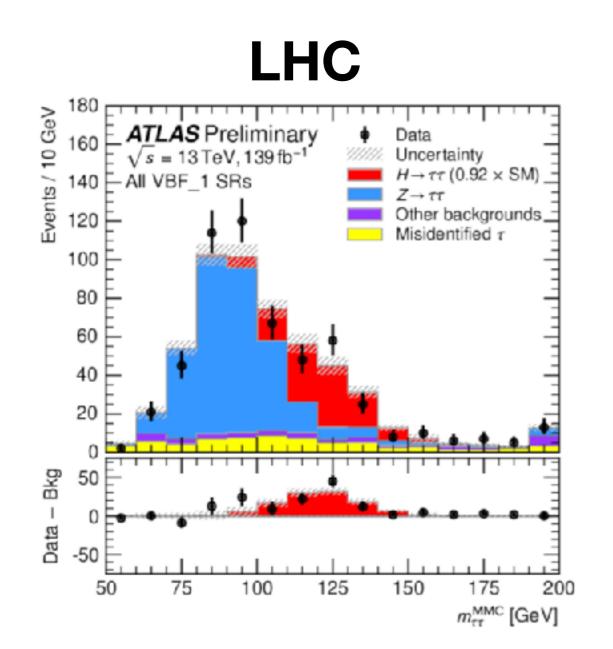
→ Reconstruction of the tau rest frames (i.e. neutrino reconstruction) is necessary

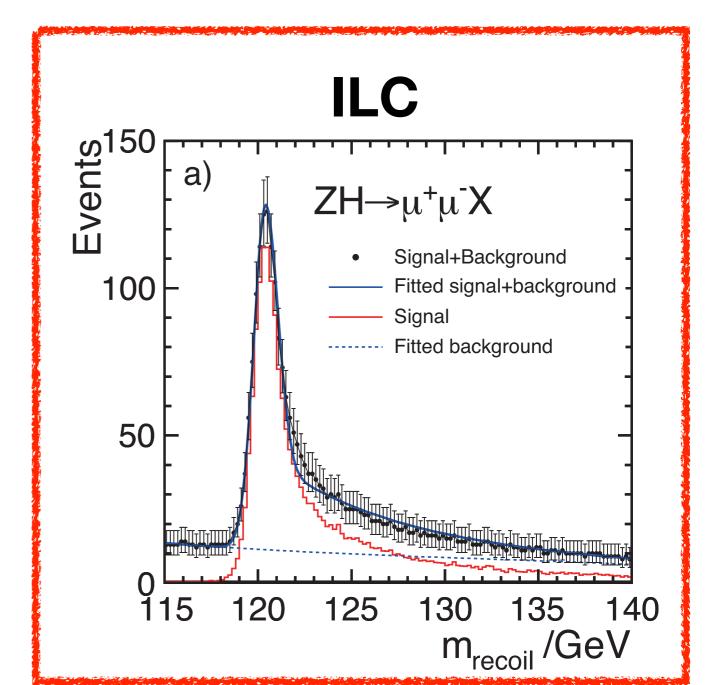
taus are highly boosted → Very accurate event reconstruction is required

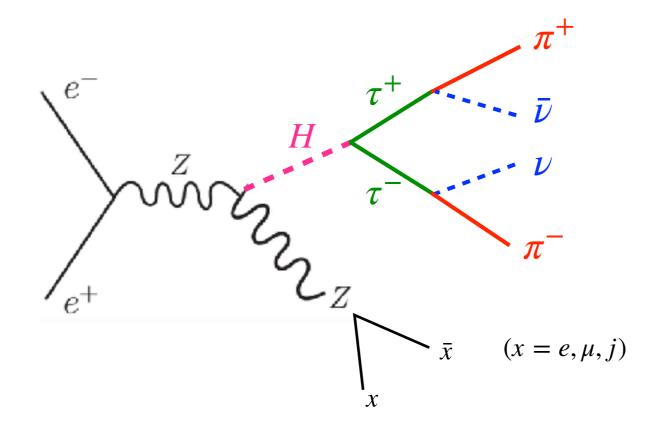


$H \rightarrow \tau^+ \tau^-$ @ lepton colliders

• For precise event reconstruction and for much smaller background, we consider lepton colliders.





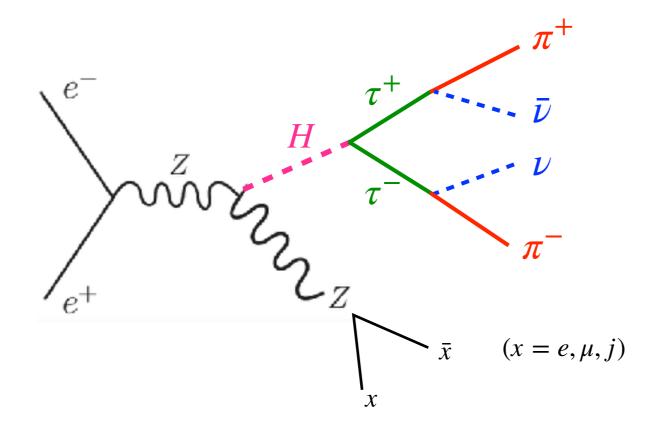


$$(P_H^{\rm reco})^{\mu} \equiv P_{e^+e^-}^{\mu} - P_{Z \to x\bar{x}}^{\mu} \qquad M_{\rm recoil}^2 \equiv (P_H^{\rm reco})^2$$

Event selection: $|M_{\text{recoil}} - 125 \,\text{GeV}| < 5 \,\text{GeV}$

		ILC	FCC-ee
	energy (GeV)	250	240
	$ \text{luminosity } (ab^{-1}) $	3	5
	beam resolution e^+ (%)	0.18	0.83×10^{-4}
$e^{+}e^{-} \to Z + (Z^{*}/\gamma^{*}) \to f\bar{f} + \tau^{+}\tau^{-}$	beam resolution e^- (%)	0.27	0.83×10^{-4}
	$\sigma(e^+e^- \to HZ)$ (fb)	240.1	240.3
	# of signal $(\sigma \cdot \text{BR} \cdot L \cdot \epsilon)$	385	663
→ # o	f background $(\sigma \cdot \text{BR} \cdot L \cdot \epsilon)$	20	36

- Generate the SM events $(\kappa, \delta) = (1,0)$ with **MadGraph5**.
- 100 pseudo-experiments to estimate the statistical uncertainties



$$(P_H^{\rm reco})^{\mu} \equiv P_{e^+e^-}^{\mu} - P_{Z \to x\bar{x}}^{\mu} \qquad M_{\rm recoil}^2 \equiv (P_H^{\rm reco})^2$$

Event selection: $|M_{\text{recoil}} - 125 \,\text{GeV}| < 5 \,\text{GeV}$

		ILC	FCC-ee
	energy (GeV)	250	240
	$ luminosity (ab^{-1}) $	3	5
	beam resolution e^+ (%)	0.18	0.83×10^{-4}
$e^{+}e^{-} \to Z + (Z^{*}/\gamma^{*}) \to f\bar{f} + \tau^{+}\tau^{-}$	beam resolution e^- (%)	0.27	0.83×10^{-4}
	$\sigma(e^+e^- \to HZ)$ (fb)	240.1	240.3
	$\# \text{ of signal } (\sigma \cdot \text{BR} \cdot L \cdot \epsilon)$	385	663
# of	f background $(\sigma \cdot \text{BR} \cdot L \cdot \epsilon)$	20	36

- Generate the SM events $(\kappa, \delta) = (1,0)$ with **MadGraph5**.
- 100 pseudo-experiments to estimate the statistical uncertainties

- To determine the tau momenta, we have to reconstruct the unobserved neutrino momenta $(p_x^{\nu}, p_y^{\nu}, p_z^{\nu}), (p_x^{\bar{\nu}}, p_y^{\bar{\nu}}, p_z^{\bar{\nu}}).$
- 6 unknowns can be constrained by 2 mass-shell conditions and 4 energy-momentum conservation.

$$\begin{split} m_{\tau}^2 &= (p_{\tau^+})^2 = (p_{\pi^+} + p_{\bar{\nu}})^2 \\ m_{\tau}^2 &= (p_{\tau^-})^2 = (p_{\pi^-} + p_{\nu})^2 \\ (p_{ee} - p_Z)^{\mu} &= p_H^{\mu} = \left[(p_{\pi^-} + p_{\nu}) + (p_{\pi^+} + p_{\bar{\nu}}) \right]^{\mu} \end{split}$$

=> 2-fold solutions.

$$C_{ij}^{\text{SM}} = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$$

$$\mathcal{C}_{\text{SM}}[\rho] = 1$$

$$\mathcal{S}_{\text{SM}}[\rho] = 2$$

$$R_{\text{CHSH}}^{\text{SM}} = \sqrt{2}$$

reproduced very accurately in the simulation

→ false solutions somehow enjoy the correct correlations(?)

Effect of momentum mismeasurement

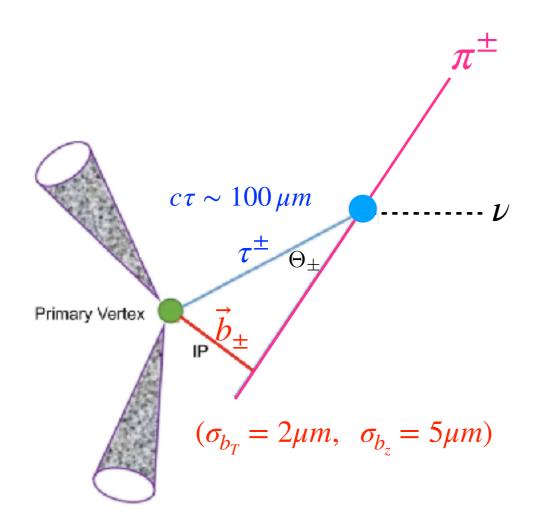
$$E_i^{\rm true} \to E_i^{\rm obs} = (1 + \sigma_E \cdot \omega) \cdot E_i^{\rm true} \qquad \sigma_E = 0.03 \qquad (i = \pi^\pm, e^\pm, \mu^\pm, j)$$
 random number drawn from the normal distribution

	ILC	FCC-ee	
$oxed{C_{ij}}$			
E_k	-1.057 ± 0.385	-0.977 ± 0.264	
$\mathcal{C}[ho]$	0.030 ± 0.071	0.005 ± 0.023	
$\mathcal{S}[ho]$	1.148 ± 0.210	1.046 ± 0.163	
R^*_{CHSH}	0.769 ± 0.189	0.703 ± 0.134	

$$C_{ij}^{\mathrm{SM}} = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$$
 $\mathscr{C}_{\mathrm{SM}}[\rho] = 1$ $\mathscr{S}_{\mathrm{SM}}[\rho] = 2$ $R_{\mathrm{CHSH}}^{\mathrm{SM}} = \sqrt{2}$

Momentum smearing spoils the previous good result...

Use impact parameter information



Goal:

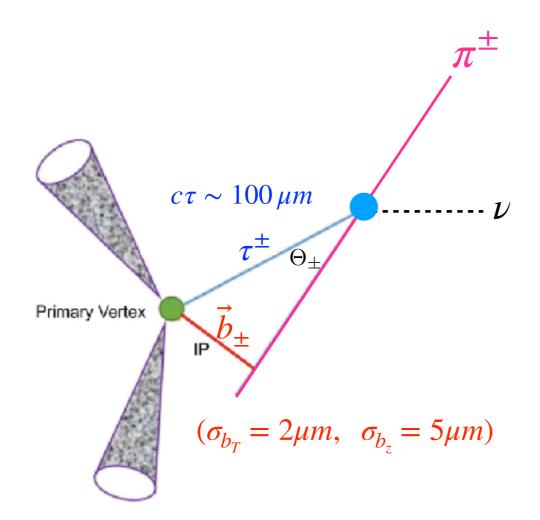
$$E_i^{\text{true}} \to E_i^{\text{obs}} \to E_i^{\text{true}} \quad (i = \pi^{\pm}, e^{\pm}, \mu^{\pm}, j)$$

What we do:

- modify E_i^{obs} for some amount by δ

$$E_i^{\text{obs}} \to E_i(\delta_i) = (1 + \delta_i \sigma_E) \cdot E_i^{\text{obs}}$$

Use impact parameter information



Goal:

$$E_i^{\text{true}} \to E_i^{\text{obs}} \to E_i^{\text{true}} \quad (i = \pi^{\pm}, e^{\pm}, \mu^{\pm}, j)$$

What we do:

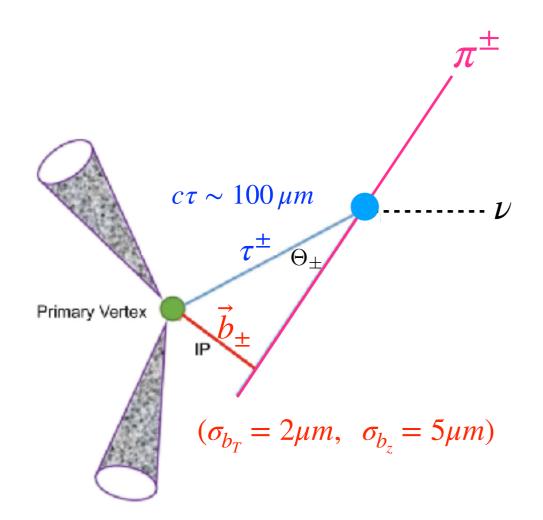
- modify $E_i^{
m obs}$ for some amount by δ

$$E_i^{\text{obs}} \to E_i(\delta_i) = (1 + \delta_i \sigma_E) \cdot E_i^{\text{obs}}$$

- solve tau direction $\mathbf{e}_{\tau^\pm}\!(\pmb{\delta})$
 - ightarrow lets us calculate \vec{b}_{\pm} as functions of δ

$$\vec{b}_{\pm}^{\text{reco}}\left(\mathbf{e}_{\tau^{\pm}}\right) = |\vec{b}_{\pm}| \cdot \left[\mathbf{e}_{\tau^{\pm}} \cdot \sin^{-1}\Theta_{\pm} - \mathbf{e}_{\pi^{\pm}} \cdot \tan^{-1}\Theta_{\pm}\right]$$

Use impact parameter information



Goal:

$$E_i^{\text{true}} \rightarrow E_i^{\text{obs}} \rightarrow E_i^{\text{true}} \quad (i = \pi^{\pm}, e^{\pm}, \mu^{\pm}, j)$$

What we do:

- modify $E_i^{
m obs}$ for some amount by δ

$$E_i^{\text{obs}} \to E_i(\delta_i) = (1 + \delta_i \sigma_E) \cdot E_i^{\text{obs}}$$

- solve tau direction $\mathbf{e}_{ au^\pm}(oldsymbol{\delta})$
 - ightarrow lets us calculate \vec{b}_{\pm} as functions of δ

$$\vec{b}_{\pm}^{\text{reco}}\left(\mathbf{e}_{\tau^{\pm}}\right) = |\vec{b}_{\pm}| \cdot \left[\mathbf{e}_{\tau^{\pm}} \cdot \sin^{-1}\Theta_{\pm} - \mathbf{e}_{\pi^{\pm}} \cdot \tan^{-1}\Theta_{\pm}\right]$$

- compare the calculated $\vec{b}_{\pm}^{
m reco}(\pmb{\delta})$ and measured $\vec{b}_{\pm}^{
m obs}$ and construct the likelihood function

2 fold solutions:
$$i_s$$
 = 1,2 \\ $\vec{\Delta}_{b_{\pm}}^{i_s}(\pmb{\delta}) \equiv \vec{b}_{\pm} - \vec{b}_{\pm}^{\mathrm{reco}} \left(\mathbf{e}_{\tau^{+}}^{i_s}(\pmb{\delta})\right)$

$$L_{\pm}^{i_s}(\boldsymbol{\delta}) = \frac{[\Delta_{b_{\pm}}^{i_s}(\boldsymbol{\delta})]_x^2 + [\Delta_{b_{\pm}}^{i_s}(\boldsymbol{\delta})]_y^2}{\sigma_{b_T}^2} + \frac{[\Delta_{b_{\pm}}^{i_s}(\boldsymbol{\delta})]_z^2}{\sigma_{b_z}^2} + \delta_{\pi^+}^2 + \delta_{\pi^-}^2 + \delta_x^2 + \delta_{\bar{x}}^2.$$

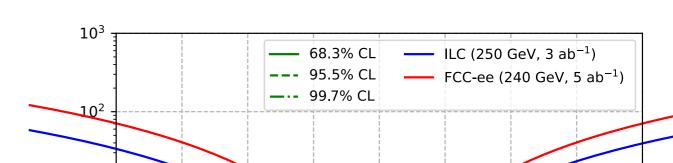
minimizing $L^{i_{s}}\!(\pmb{\delta})$ would give us the correct set of $\pmb{\delta}s$ and solution i_{s}

2211.10513

Result

	ILC	FCC-ee		
C_{ij}		$ \begin{pmatrix} 0.925 \pm 0.109 & -0.011 \pm 0.110 & 0.038 \pm 0.095 \\ -0.009 \pm 0.110 & 0.929 \pm 0.113 & 0.001 \pm 0.115 \\ -0.026 \pm 0.122 & -0.019 \pm 0.110 & -0.879 \pm 0.098 \end{pmatrix} $		
E_k	2.567 ± 0.279	2.696 ± 0.215		
$\mathcal{C}[ho]$	0.778 ± 0.126	0.871 ± 0.084		
$\mathcal{S}[ho]$	1.760 ± 0.161	1.851 ± 0.111		
R^*_{CHSH}	1.103 ± 0.163	1.276 ± 0.094		

$$C_{ij}^{\mathrm{SM}} = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$$
 $\mathscr{C}_{\mathrm{SM}}[\rho] = 1$ $\mathscr{S}_{\mathrm{SM}}[\rho] = 2$ $R_{\mathrm{CHSH}}^{\mathrm{SM}} = \sqrt{2}$

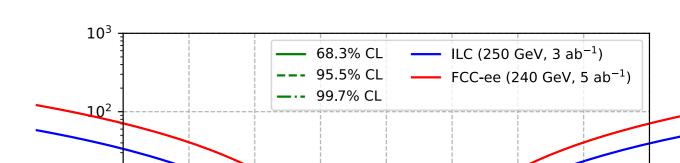


2211.10513

Result

	ILC	FCC-ee	
$oxed{C_{ij}}$	$ \begin{pmatrix} 0.830 \pm 0.176 & 0.020 \pm 0.146 & -0.019 \pm 0.159 \\ -0.034 \pm 0.160 & 0.981 \pm 0.1527 & -0.029 \pm 0.156 \\ -0.001 \pm 0.158 & -0.021 \pm 0.155 & -0.729 \pm 0.140 \end{pmatrix} $		
E_k	2.567 ± 0.279 ~ 5σ	$2.696 \pm 0.215 \gg 5\sigma$	
C[ho]	0.778 ± 0.126 $\sim 5\sigma$	$0.871 \pm 0.084 \gg 5\sigma$	
$\mathcal{S}[ho]$	1.760 ± 0.161 ~ 3σ	1.851 ± 0.111 ~ 5σ	
R^*_{CHSH}	1.103 ± 0.163	$1.276 \pm 0.094 \sim 3\sigma$	

$$C_{ij}^{\mathrm{SM}} = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$$
 $\mathscr{C}_{\mathrm{SM}}[\rho] = 1$ $\mathscr{S}_{\mathrm{SM}}[\rho] = 2$ $R_{\mathrm{CHSH}}^{\mathrm{SM}} = \sqrt{2}$



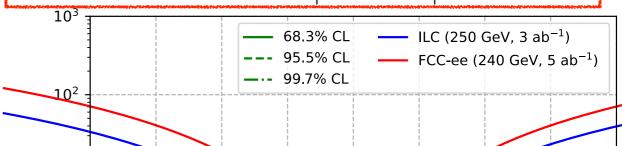
Result

	ILC	FCC-ee	
$oxed{C_{ij}}$	$ \begin{pmatrix} 0.830 \pm 0.176 & 0.020 \pm 0.146 & -0.019 \pm 0.159 \\ -0.034 \pm 0.160 & 0.981 \pm 0.1527 & -0.029 \pm 0.156 \\ -0.001 \pm 0.158 & -0.021 \pm 0.155 & -0.729 \pm 0.140 \end{pmatrix} $	$ \begin{bmatrix} 0.925 \pm 0.109 & -0.011 \pm 0.110 & 0.038 \pm 0.095 \\ -0.009 \pm 0.110 & 0.929 \pm 0.113 & 0.001 \pm 0.115 \\ -0.026 \pm 0.122 & -0.019 \pm 0.110 & -0.879 \pm 0.098 \end{bmatrix} $	
E_k	2.567 ± 0.279 ~ 5σ	$2.696 \pm 0.215 \gg 5\sigma$	
C[ho]	0.778 ± 0.126 $\sim 5\sigma$	$0.871 \pm 0.084 \gg 5\sigma$	
$\mathcal{S}[ho]$	1.760 ± 0.161 ~ 3σ	1.851 ± 0.111 ~ 5σ	
R^*_{CHSH}	1.103 ± 0.163	$1.276 \pm 0.094 \sim 3\sigma$	

$$C_{ij}^{\mathrm{SM}} = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$$
 $\mathscr{C}_{\mathrm{SM}}[\rho] = 1$ $\mathscr{S}_{\mathrm{SM}}[\rho] = 2$ $R_{\mathrm{CHSH}}^{\mathrm{SM}} = \sqrt{2}$

Superiority of FCC-ee over ILC is due to a better beam resolution

	ILC	FCC-ee
energy (GeV)	250	240
luminosity (ab^{-1})	3	5
beam resolution e^+ (%)	0.18	$0.83 \cdot 10^{-4}$
beam resolution e^- (%)	0.27	$0.83 \cdot 10^{-4}$



CP measurement

- Under CP, the spin correlation matrix transforms: $C \stackrel{CP}{\rightarrow} C^T$
- This can be used for a model-independent test of CP violation. We define:

$$A \equiv (C_{rn} - C_{nr})^2 + (C_{nk} - C_{kn})^2 + (C_{kr} - C_{rk})^2 \ge 0$$

- Observation of $A \neq 0$ immediately confirms CP violation.
- From our simulation, we observe

$$A = \begin{cases} 0.204 \pm 0.173 & \text{(ILC)} \\ 0.112 \pm 0.085 & \text{(FCC-ee)} \end{cases} \leftarrow \text{absence of CPV}$$

• This model independent bounds can be translated to the constraint on the CP-phase δ

$$\mathcal{L}_{\text{int}} \propto H \bar{\psi}_{\tau}(\cos \delta + i\gamma_5 \sin \delta) \psi_{\tau} \qquad C_{ij} = \begin{pmatrix} \cos 2\delta & \sin 2\delta & 0 \\ -\sin 2\delta & \cos 2\delta & 0 \\ 0 & 0 & -1 \end{pmatrix} \qquad A(\delta) = 4 \sin^2 2\delta$$

CP measurement

• Focusing on the region near $|\delta| = 0$, we find the 1- σ bounds:

$$|\delta| < \begin{cases} 8.9^o & (ILC) \\ 6.4^o & (FCC-ee) \end{cases}$$

Other studies:

$$\Delta \delta \sim 11.5^o$$
 (HL-LHC) [Hagiwara, Ma, Mori 2016]

$$\Delta \delta \sim 4.3^{\circ}$$
 (ILC)

 $\Delta\delta \sim 4.3^o$ (ILC) [Jeans and G. W. Wilson 2018]

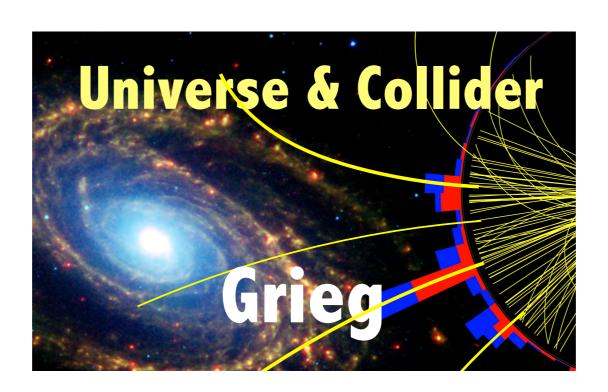
Summary

- The quantum state of $H \to \tau^+ \tau^-$ is simple but measuring quantum properties is challenging even at lepton colliders since taus are highly boosted.
- Very accurate event reconstruction is required, which can be achieved by using the impact parameters.
- ILC and FCC-ee are able to see entanglement, steering and violation of BI.
- Spin correlation is sensitive to CP-phase and we can measure the CP-phase as byproduct of the quantum property measurement.

	Entanglement	Steering	Bell-inquality	CP-phase
ILC	$\sim 5\sigma$	$\sim 3\sigma$		8.9^{o}
FCC-ee	$\gg 5\sigma$	$\sim 5\sigma$	$\sim 3\sigma$	6.4^{o}

Norway grants

The research leading to the results presented in this talk has received funding from the Norwegian Financial Mechanism for years 2014-2021, grant nr 2019/34/H/ST2/00707



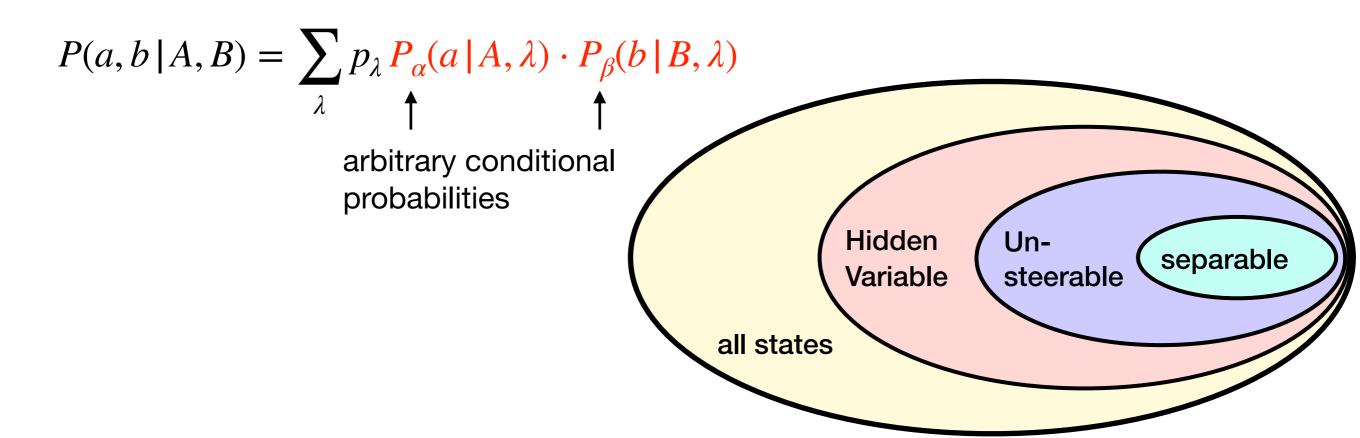
Understanding the Early Universe: interplay of theory and collider experiments

Joint research project between the University of Warsaw & University of Bergen

Separable state (compliment of entangled state):

$$P(a,b|A,B) = \sum_{\lambda} p_{\lambda} \langle a | \rho_{\lambda}^{\alpha} | a \rangle \cdot \langle b | \rho_{\lambda}^{\beta} | b \rangle \qquad \longleftarrow \qquad \rho = \sum_{\lambda} p_{\lambda} \rho_{k}^{\alpha} \otimes \rho_{\lambda}^{\beta}$$

Hidden Variable state (complement of Bell nonlocal state):



Separable state (compliment of entangled state):

$$P(a, b \mid A, B) = \sum_{\lambda} p_{\lambda} \langle a \mid \rho_{\lambda}^{\alpha} \mid a \rangle \cdot \langle b \mid \rho_{\lambda}^{\beta} \mid b \rangle \qquad \longleftarrow \qquad \rho = \sum_{\lambda} p_{\lambda} \rho_{k}^{\alpha} \otimes \rho_{\lambda}^{\beta}$$

Un-steerable state (not-steerable by Alice):

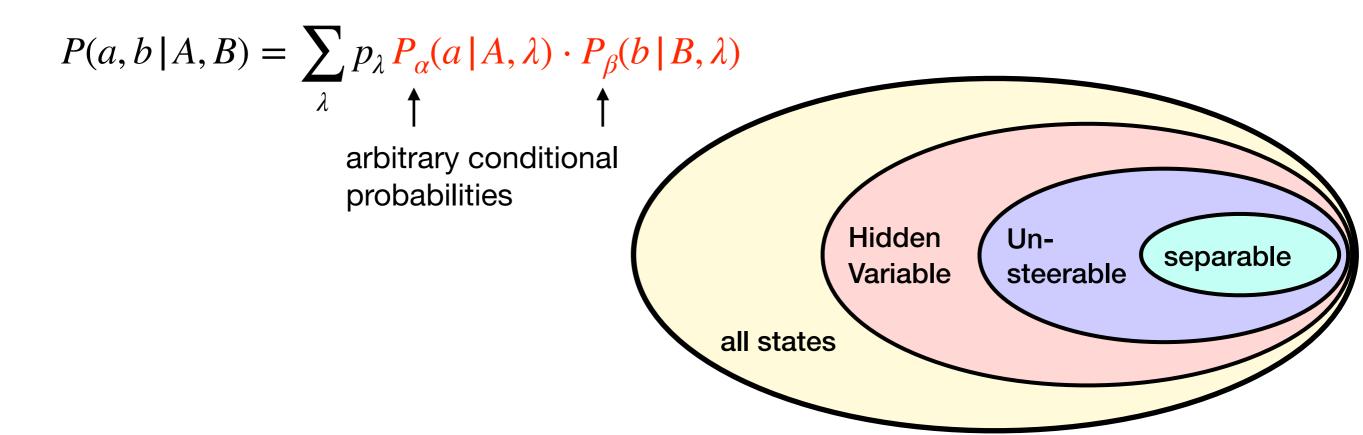
 $\mathbf{p}(\mathbf{a}, \mathbf{b}, \mathbf{b}) = \mathbf{p}(\mathbf{a}, \mathbf{b}, \mathbf{b}) + \mathbf{p}(\mathbf{a}, \mathbf{b}, \mathbf{b})$

 $P(a, b | A, B) = \sum p_{\lambda} P_{\alpha}(a | A, \lambda) \cdot \langle b | \rho_{\lambda}^{\beta} | b \rangle$

[Jones, Wiseman, Doherty 2007]

If this description is possible,
Alice cannot influence (`steer")
Bob's local state

Hidden Variable state (complement of Bell nonlocal state):



Separable state (compliment of entangled state):

$$P(a, b \mid A, B) = \sum_{\lambda} p_{\lambda} \langle a \mid \rho_{\lambda}^{\alpha} \mid a \rangle \cdot \langle b \mid \rho_{\lambda}^{\beta} \mid b \rangle \qquad \longleftarrow \qquad \rho = \sum_{\lambda} p_{\lambda} \rho_{k}^{\alpha} \otimes \rho_{\lambda}^{\beta}$$

Un-steerable state (not-steerable by Alice):

 $P(a, b | A, B) = \sum p_{\lambda} P_{\alpha}(a | A, \lambda) \cdot \langle b | \rho_{\lambda}^{\beta} | b \rangle$

If this description is possible, Alice cannot influence ("steer")

[Jones, Wiseman, Doherty 2007]

Bob's local state

Hidden Variable state (complement of Bell nonlocal state):

