Testing entanglement and Bell inequalities in $\mathrm{H} \rightarrow \mathrm{ZZ}$

Alexander Bernal

In collaboration with:

J. A. Aguilar-Saavedra, J. A. Casas, J. M. Moreno

$$
\begin{gathered}
\text { Phys. Rev. D 107, } 016012 \text { (2023) } \\
\text { arXiv: } 2209.13441
\end{gathered}
$$

Oxford, 22 March 2023

MERTON
COLLEGE
O X F O R D

Main goals

(1) Reconstruct the spin density matrix, $\rho_{Z Z}$, from angular observables in the decay $H \rightarrow Z Z^{*} \rightarrow \ell_{1}^{+} \ell_{1}^{-} \ell_{2}^{+} \ell_{2}^{-}$(Quantum Tomography).
(2) State a necessary and sufficient condition for entanglement in $\rho_{Z Z}$ by taking into account symmetries of the system.
(3) Give a novel optimization method for the violation of Bell inequalities for $\rho_{Z Z}$.

Main goals

(1) Reconstruct the spin density matrix, $\rho_{Z Z}$, from angular observables in the decay $H \rightarrow Z Z^{*} \rightarrow \ell_{1}^{+} \ell_{1}^{-} \ell_{2}^{+} \ell_{2}^{-}$(Quantum Tomography).
(2) State a necessary and sufficient condition for entanglement in $\rho_{Z Z}$ by taking into account symmetries of the system.
(3) Give a novel optimization method for the violation of Bell inequalities for $\rho_{Z Z}$.
P. Horodecki, 1997
P. Caban, J. Rembieliński and M. Wlodarczyk, 2008
A. J. Barr, P. Caban, J. Rembieliński, 2022
A. J. Barr, 2022
R. Ashby-Pickering, A. J. Barr, A. Wierzchucka, 2022
Y. Afik and J. R. M. de Nova, 2021
C. Severi, C. D. E. Boschi, F. Maltoni and M. Sioli, 2022

Preliminaries

- Bipartite quantum system:

$$
\begin{aligned}
& \rho=\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|, \quad p_{i} \geq 0, \quad \sum_{i} p_{i}=1 . \\
& \left|\psi_{i}\right\rangle \in \mathcal{H}_{A} \otimes \mathcal{H}_{B}, \text { with } \operatorname{dim} \mathcal{H}_{A(B)}=d_{A(B)}
\end{aligned}
$$

Preliminaries

- Bipartite quantum system:

$$
\begin{aligned}
& \rho=\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|, \quad p_{i} \geq 0, \quad \sum_{i} p_{i}=1 \\
& \left|\psi_{i}\right\rangle \in \mathcal{H}_{A} \otimes \mathcal{H}_{B}, \text { with } \operatorname{dim} \mathcal{H}_{A(B)}=d_{A(B)}
\end{aligned}
$$

- Expectation values of \mathcal{O} with respect to ρ :

$$
\langle\mathcal{O}\rangle_{\rho}=\operatorname{Tr}\{\rho \mathcal{O}\}
$$

Preliminaries

- Bipartite quantum system:

$$
\begin{aligned}
& \rho=\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|, \quad p_{i} \geq 0, \quad \sum_{i} p_{i}=1 \\
& \left|\psi_{i}\right\rangle \in \mathcal{H}_{A} \otimes \mathcal{H}_{B}, \text { with } \operatorname{dim} \mathcal{H}_{A(B)}=d_{A(B)}
\end{aligned}
$$

- Expectation values of \mathcal{O} with respect to ρ :

$$
\langle\mathcal{O}\rangle_{\rho}=\operatorname{Tr}\{\rho \mathcal{O}\}
$$

- CGLMP Bell inequality $\left(A_{1}, A_{2}\right.$ and B_{1}, B_{2} observables acting respectively on \mathcal{H}_{A} and $\left.\mathcal{H}_{B}\right)$:

$$
I_{3}\left(P\left(A_{i}=k, B_{j}=l\right)\right)=\left\langle\mathcal{O}_{\text {Bell }}\left(A_{i}, B_{j}\right)\right\rangle_{\rho} \leq 2
$$

Quantum Tomography

- Spin density matrix $\rho_{Z Z}$?

In our case, $\mathcal{H}_{A}=\mathcal{H}_{B}=\mathcal{H}_{\text {Spin }}\left(s_{A}=s_{B}=1 \Rightarrow d_{A}=d_{B}=3\right)$.
We use the irreducible tensor operators $\left\{T_{M_{1}}^{L_{1}} \otimes T_{M_{2}}^{L_{2}}\right\}$ (transforming under rotations as the spherical harmonics) as a basis:

$$
T_{M_{1}}^{L_{1}}, T_{M_{2}}^{L_{2}} \in\left\{\mathbb{I}_{3} ; T_{1}^{1}, T_{0}^{1}, T_{-1}^{1} ; T_{2}^{2}, T_{1}^{2}, T_{0}^{2}, T_{-1}^{2}, T_{-2}^{2}\right\}
$$

Quantum Tomography

- Spin density matrix $\rho_{Z Z}$?

In our case, $\mathcal{H}_{A}=\mathcal{H}_{B}=\mathcal{H}_{\text {Spin }}\left(s_{A}=s_{B}=1 \Rightarrow d_{A}=d_{B}=3\right)$.
We use the irreducible tensor operators $\left\{T_{M_{1}}^{L_{1}} \otimes T_{M_{2}}^{L_{2}}\right\}$ (transforming under rotations as the spherical harmonics) as a basis:

$$
T_{M_{1}}^{L_{1}}, T_{M_{2}}^{L_{2}} \in\left\{\mathbb{I}_{3} ; T_{1}^{1}, T_{0}^{1}, T_{-1}^{1} ; T_{2}^{2}, T_{1}^{2}, T_{0}^{2}, T_{-1}^{2}, T_{-2}^{2}\right\}
$$

Hence:

$$
\begin{aligned}
\rho_{Z Z} & =\frac{1}{9} \sum C_{L_{1}, M_{1}, L_{2}, M_{2}} T_{M_{1}}^{L_{1}} \otimes T_{M_{2}}^{L_{2}} \\
\operatorname{Tr}\left\{T_{M}^{L}\left(T_{M}^{L}\right)^{\dagger}\right\} & =3 \Longrightarrow C_{L_{1}, M_{1}, L_{2}, M_{2}}=\left\langle\left(T_{M_{1}}^{L_{1}} \otimes T_{M_{2}}^{L_{2}}\right)^{\dagger}\right\rangle_{\rho_{Z Z}}
\end{aligned}
$$

To extract the coefficients, we use the cross section of $Z Z^{*} \rightarrow \ell_{1}^{+} \ell_{1}^{-} \ell_{2}^{+} \ell_{2}^{-}$:

$$
\frac{1}{\sigma} \frac{d \sigma}{d \Omega_{1} d \Omega_{2}}=\left(\frac{3}{4 \pi}\right)^{2}\left\langle\Gamma_{1}^{T}\left(\Omega_{1}\right) \otimes \Gamma_{2}^{T}\left(\Omega_{2}\right)\right\rangle_{\rho_{Z Z}}
$$

where $\Gamma_{j}\left(\Omega_{j}\right)=\Gamma_{j}\left(\theta_{j}, \varphi_{j}\right)$ are the decay density matrices of each Z boson.

To extract the coefficients, we use the cross section of $Z Z^{*} \rightarrow \ell_{1}^{+} \ell_{1}^{-} \ell_{2}^{+} \ell_{2}^{-}$:

$$
\frac{1}{\sigma} \frac{d \sigma}{d \Omega_{1} d \Omega_{2}}=\left(\frac{3}{4 \pi}\right)^{2}\left\langle\Gamma_{1}^{T}\left(\Omega_{1}\right) \otimes \Gamma_{2}^{T}\left(\Omega_{2}\right)\right\rangle_{\rho_{Z Z}}
$$

where $\Gamma_{j}\left(\Omega_{j}\right)=\Gamma_{j}\left(\theta_{j}, \varphi_{j}\right)$ are the decay density matrices of each Z boson.
Noticing that $\operatorname{Tr}\left\{T_{M}^{L} \Gamma^{T}\right\}=B_{L} Y_{L}^{M}(\theta, \varphi)$, with B_{L} a constant:

$$
\frac{1}{\sigma} \frac{d \sigma}{d \Omega_{1} d \Omega_{2}}=\frac{1}{(4 \pi)^{2}} \sum C_{L_{1}, M_{1}, L_{2}, M_{2}} B_{L_{1}} B_{L_{2}} Y_{L_{1}}^{M_{1}}\left(\Omega_{1}\right) Y_{L_{2}}^{M_{2}}\left(\Omega_{2}\right)
$$

To extract the coefficients, we use the cross section of $Z Z^{*} \rightarrow \ell_{1}^{+} \ell_{1}^{-} \ell_{2}^{+} \ell_{2}^{-}$:

$$
\frac{1}{\sigma} \frac{d \sigma}{d \Omega_{1} d \Omega_{2}}=\left(\frac{3}{4 \pi}\right)^{2}\left\langle\Gamma_{1}^{T}\left(\Omega_{1}\right) \otimes \Gamma_{2}^{T}\left(\Omega_{2}\right)\right\rangle_{\rho_{Z Z}}
$$

where $\Gamma_{j}\left(\Omega_{j}\right)=\Gamma_{j}\left(\theta_{j}, \varphi_{j}\right)$ are the decay density matrices of each Z boson.
Noticing that $\operatorname{Tr}\left\{T_{M}^{L} \Gamma^{T}\right\}=B_{L} Y_{L}^{M}(\theta, \varphi)$, with B_{L} a constant:

$$
\frac{1}{\sigma} \frac{d \sigma}{d \Omega_{1} d \Omega_{2}}=\frac{1}{(4 \pi)^{2}} \sum C_{L_{1}, M_{1}, L_{2}, M_{2}} B_{L_{1}} B_{L_{2}} Y_{L_{1}}^{M_{1}}\left(\Omega_{1}\right) Y_{L_{2}}^{M_{2}}\left(\Omega_{2}\right)
$$

Finally,

Quantum Tomography of $\rho_{Z Z}$

$$
\int \frac{1}{\sigma} \frac{d \sigma}{d \Omega_{1} d \Omega_{2}} Y_{L_{1}}^{M_{1}}\left(\Omega_{1}\right)^{*} Y_{L_{2}}^{M_{2}}\left(\Omega_{2}\right)^{*} d \Omega_{1} d \Omega_{2}=\frac{B_{L_{1}} B_{L_{2}}}{(4 \pi)^{2}} C_{L_{1} M_{1} L_{2} M_{2}}
$$

Symmetries of the system

- Momentum J_{z} conserved. In particular $J_{z}=0$.
- CP conservation.

Symmetries of the system

- Momentum J_{z} conserved. In particular $J_{z}=0$.
- CP conservation.

For a single event, using the symmetries:

$$
\rho_{\beta}=\left|\psi_{\beta}\right\rangle\left\langle\psi_{\beta}\right|, \quad\left|\psi_{\beta}\right\rangle=\frac{1}{\sqrt{2+\beta^{2}}}(|+-\rangle-\beta|00\rangle+|-+\rangle)
$$

Symmetries of the system

- Momentum J_{z} conserved. In particular $J_{z}=0$.
- CP conservation.

For a single event, using the symmetries:

$$
\rho_{\beta}=\left|\psi_{\beta}\right\rangle\left\langle\psi_{\beta}\right|, \quad\left|\psi_{\beta}\right\rangle=\frac{1}{\sqrt{2+\beta^{2}}}(|+-\rangle-\beta|00\rangle+|-+\rangle)
$$

In particular,

$$
\left|\psi_{\beta=1}\right\rangle=\left|\psi_{s}\right\rangle=\frac{1}{\sqrt{3}}(|+-\rangle-|00\rangle+|-+\rangle) \text { and } \rho_{\beta=1}=\rho_{s}
$$

Singlet State (Maximally Entangled)

On the other hand, from the Lorentz structure of the HZZ SM vertex, $\propto \eta_{\mu \nu} H Z^{\mu} Z^{\nu}$,

$$
\left|\psi_{\beta}\right\rangle=\eta_{\mu \nu} e_{\sigma}^{\mu}\left(m_{Z_{1}}, \vec{k}\right) e_{\lambda}^{\nu}\left(m_{Z_{2}},-\vec{k}\right)|\vec{k}, \sigma\rangle_{A}|-\vec{k}, \lambda\rangle_{B}
$$

where σ, λ represent spin states and

$$
e_{\sigma}^{\mu}(m, \vec{k})=\left(\begin{array}{ccc}
0 & \frac{|\vec{k}|}{m} & 0 \\
-\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\
\frac{i}{\sqrt{2}} & 0 & \frac{i}{\sqrt{2}} \\
0 & -\frac{\sqrt{|\vec{k}|^{2}+m^{2}}}{m} & 0
\end{array}\right)
$$

On the other hand, from the Lorentz structure of the HZZ SM vertex, $\propto \eta_{\mu \nu} H Z^{\mu} Z^{\nu}$,

$$
\left|\psi_{\beta}\right\rangle=\eta_{\mu \nu} e_{\sigma}^{\mu}\left(m_{Z_{1}}, \vec{k}\right) e_{\lambda}^{\nu}\left(m_{Z_{2}},-\vec{k}\right)|\vec{k}, \sigma\rangle_{A}|-\vec{k}, \lambda\rangle_{B}
$$

where σ, λ represent spin states and

$$
e_{\sigma}^{\mu}(m, \vec{k})=\left(\begin{array}{ccc}
0 & \frac{|\vec{k}|}{m} & 0 \\
-\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\
\frac{i}{\sqrt{2}} & 0 & \frac{i}{\sqrt{2}} \\
0 & -\frac{\sqrt{|\vec{k}|^{2}+m^{2}}}{m} & 0
\end{array}\right)
$$

Comparing both results for $\left|\psi_{\beta}\right\rangle$, an analytical expression for β is obtained:

$$
\beta=1+\frac{m_{H}^{2}-\left(m_{Z_{1}}+m_{Z_{2}}\right)^{2}}{2 m_{Z_{1}} m_{Z_{2}}}, \quad \beta \geq 1
$$

In practice, we have a probability distribution $\mathcal{P}(\beta)$ for the parameter β :

Figure 1: Probability distribution of β.

In practice, we have a probability distribution $\mathcal{P}(\beta)$ for the parameter β :

Figure 1: Probability distribution of β.

Thus, the final density matrix is

$$
\begin{aligned}
& \rho_{Z Z}=\int d \beta \mathcal{P}(\beta) \rho_{\beta}=\rho_{Z Z}\left(C_{2,0,0,0}, C_{2,1,2,-1}, C_{2,2,2,-2}\right) . \\
& \mathcal{P}(\beta) \text { peaked in } \beta \approx 1 \Longrightarrow \rho_{Z Z} \backsim \rho_{\beta} \backsim \rho_{s} \rightarrow \text { Max. Ent. }
\end{aligned}
$$

Testing Entanglement

- Peres-Horodecki criterion

Given a density matrix ρ describing a bipartite system, if the matrix $\rho^{\prime}=\left(\mathbb{I} \otimes T_{B}\right) \rho$ has at least one negative eigenvalue, then ρ is entangled.

Testing Entanglement

- Peres-Horodecki criterion

Given a density matrix ρ describing a bipartite system, if the matrix $\rho^{\prime}=\left(\mathbb{I} \otimes T_{B}\right) \rho$ has at least one negative eigenvalue, then ρ is entangled.

This criterion is only a sufficient condition for:

$$
\operatorname{dim}_{\mathcal{H}_{A}}=\operatorname{dim} \mathcal{H}_{B}=d \geq 3 \text { (our case) }
$$

However, due to the symmetries mentioned and the structure of $\rho_{Z Z}$:

$$
\rho_{Z Z} \text { entangled } \Longleftrightarrow C_{2,1,2,-1} \neq 0 \text { or } C_{2,2,2,-2} \neq 0
$$

Testing Bell inequalities

We recall that $\rho_{s}=\left|\psi_{s}\right\rangle\left\langle\psi_{s}\right|$, with $\left|\psi_{s}\right\rangle=\frac{1}{\sqrt{3}}(|+-\rangle-|00\rangle+|-+\rangle)$.
This state has a $\mathrm{U}(3)$ symmetry in the sense:

$$
\left\langle\left(U \otimes U^{*}\right)^{\dagger} \mathcal{O}_{\text {Bell }}\left(U \otimes U^{*}\right)\right\rangle_{\rho_{s}}=\left\langle\mathcal{O}_{\text {Bell }}\right\rangle_{\rho_{s}} \quad \text { for } U \in U(3)
$$

Testing Bell inequalities

We recall that $\rho_{s}=\left|\psi_{s}\right\rangle\left\langle\psi_{s}\right|$, with $\left|\psi_{s}\right\rangle=\frac{1}{\sqrt{3}}(|+-\rangle-|00\rangle+|-+\rangle)$.
This state has a $\mathrm{U}(3)$ symmetry in the sense:

$$
\left\langle\left(U \otimes U^{*}\right)^{\dagger} \mathcal{O}_{\text {Bell }}\left(U \otimes U^{*}\right)\right\rangle_{\rho_{s}}=\left\langle\mathcal{O}_{\text {Bell }}\right\rangle_{\rho_{s}} \text { for } U \in U(3) .
$$

We denote the known optimal Bell operator for the singlet state as $\mathcal{O}_{\text {Bell }}^{s}$, and in the $\left\{T_{M_{1}}^{L_{1}} \otimes T_{M_{2}}^{L_{2}}\right\}$ basis is given by:

Optimal Bell operator for ρ_{s}

$$
\mathcal{O}_{\text {Bell }}^{s}=\frac{4}{3 \sqrt{3}}\left(T_{1}^{1} \otimes T_{-1}^{1}\right)+\frac{2}{3}\left(T_{2}^{2} \otimes T_{-2}^{2}\right)+h . c .
$$

For $\rho_{\beta}=\left|\psi_{\beta}\right\rangle\left\langle\psi_{\beta}\right|$, where $\left|\psi_{\beta}\right\rangle=\frac{1}{\sqrt{2+\beta^{2}}}(|+-\rangle-\beta|00\rangle+|-+\rangle)$, the $U(3)$ symmetry is broken to $U(2) \otimes U(1)$:

$$
\left\langle\left(U \otimes U^{*}\right)^{\dagger} \mathcal{O}_{\text {Bell }}\left(U \otimes U^{*}\right)\right\rangle_{\rho_{\beta}}=\left\langle\mathcal{O}_{\text {Bell }}\right\rangle_{\rho_{\beta}} \text { for } U \in U(2) \otimes U(1) .
$$

We denote the unknown optimal Bell operator for this state as $\mathcal{O}_{\text {Bell }}^{\beta}$, which is obtained maximizing the violation of I_{3}.

For $\rho_{\beta}=\left|\psi_{\beta}\right\rangle\left\langle\psi_{\beta}\right|$, where $\left|\psi_{\beta}\right\rangle=\frac{1}{\sqrt{2+\beta^{2}}}(|+-\rangle-\beta|00\rangle+|-+\rangle)$, the $U(3)$ symmetry is broken to $U(2) \otimes U(1)$:

$$
\left\langle\left(U \otimes U^{*}\right)^{\dagger} \mathcal{O}_{\text {Bell }}\left(U \otimes U^{*}\right)\right\rangle_{\rho_{\beta}}=\left\langle\mathcal{O}_{\text {Bell }}\right\rangle_{\rho_{\beta}} \text { for } U \in U(2) \otimes U(1) .
$$

We denote the unknown optimal Bell operator for this state as $\mathcal{O}_{\text {Bell }}^{\beta}$, which is obtained maximizing the violation of I_{3}.

When $\beta \approx 1$, a good analytical approximation is given by deforming $\mathcal{O}_{\text {Bell }}^{s}$ in the broken part of the initial symmetry group:

$$
\left\langle\mathcal{O}_{\text {Bell }}^{\beta}\right\rangle_{\rho_{\beta}} \approx \max _{U \in U(3) /(U(2) \otimes U(1))}\left\langle\left(U \otimes U^{*}\right)^{\dagger} \mathcal{O}_{\text {Bell }}^{s}\left(U \otimes U^{*}\right)\right\rangle_{\rho_{\beta}} .
$$

The final optimal matrix is $U_{0}=\left(\begin{array}{ccc}\frac{1}{2} & -\frac{1}{\sqrt{2}} & \frac{1}{2} \\ -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ \frac{1}{2} & \frac{1}{\sqrt{2}} & \frac{1}{2}\end{array}\right)$.

Figure 2: Functions $\left(I_{3}\left(\beta, \mathbb{I}_{3}\right), I_{3}\left(\beta, U_{0}\right)\right)$, local-realistic upper bound (gray line) and mean value of β with respect to $\mathcal{P}(\beta)$ (red line).

The final optimal matrix is $U_{0}=\left(\begin{array}{ccc}\frac{1}{2} & -\frac{1}{\sqrt{2}} & \frac{1}{2} \\ -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ \frac{1}{2} & \frac{1}{\sqrt{2}} & \frac{1}{2}\end{array}\right)$.

Figure 2: Functions $\left(I_{3}\left(\beta, \mathbb{I}_{3}\right), I_{3}\left(\beta, U_{0}\right)\right)$, local-realistic upper bound (gray line) and mean value of β with respect to $\mathcal{P}(\beta)$ (red line).

Taking this value of U_{0} we evaluate the violation of the Bell Ineq. for $\rho_{Z Z}$:

$$
I_{3}=I_{3}\left(C_{2,0,0,0}, C_{2,1,2,-1}, C_{2,2,2,-2}\right)
$$

Numerical Resuts

- LHC Run 2+3

	$\min m_{Z_{2}}$			
	0	10 GeV	20 GeV	30 GeV
N	450	418	312	129
$C_{2,1,2,-1}$	-0.98 ± 0.31	-0.97 ± 0.33	-1.05 ± 0.38	-1.06 ± 0.61
$C_{2,2,2,-2}$	0.60 ± 0.37	0.64 ± 0.38	0.74 ± 0.43	0.82 ± 0.63
I_{3}	2.66 ± 0.46	2.67 ± 0.49	2.82 ± 0.57	2.88 ± 0.89

Table 1: Values $C_{2,1,2,-1}, C_{2,2,2,-2}$ and I_{3} obtained from 1000 pseudo experiments with $L=300 \mathrm{fb}^{-1}$.

- HL-LHC

	$\min m_{Z_{2}}$			
	0	10 GeV	20 GeV	30 GeV
N	4500	4180	3120	1290
$C_{2,1,2,-1}$	-0.95 ± 0.10	-1.00 ± 0.10	-1.04 ± 0.12	-1.04 ± 0.19
$C_{2,2,2,-2}$	0.60 ± 0.12	0.64 ± 0.12	0.74 ± 0.14	0.83 ± 0.20
I_{3}	2.63 ± 0.15	2.71 ± 0.16	2.81 ± 0.18	2.84 ± 0.28

Table 2: Same as Table 1, for $L=3 \mathrm{ab}^{-1}$.

Conclusions

- The decay channel $H \rightarrow Z Z^{*} \rightarrow \ell_{1}^{+} \ell_{1}^{-} \ell_{2}^{+} \ell_{2}^{-}$is an excellent way to probe the quantum nature of high energy physics:
- Run 2+3: $\rho_{Z Z}$ entangled in more than 2σ and $I_{3}>2$ in more than 1σ.
- HL-LHC: $\rho_{Z Z}$ entangled in more than 5σ and $I_{3}>2$ in more than 3σ.
- The quantum tomography formalism developed is practical and generalizable for other kinds of processes.
- Entanglement criteria as well as optimal violations of Bell inequalities can be extracted and implemented taking into account the symmetries of the system.

Conclusions

- The decay channel $H \rightarrow Z Z^{*} \rightarrow \ell_{1}^{+} \ell_{1}^{-} \ell_{2}^{+} \ell_{2}^{-}$is an excellent way to probe the quantum nature of high energy physics:
- Run 2+3: $\rho_{Z Z}$ entangled in more than 2σ and $I_{3}>2$ in more than 1σ.
- HL-LHC: $\rho_{Z Z}$ entangled in more than 5σ and $I_{3}>2$ in more than 3σ.
- The quantum tomography formalism developed is practical and generalizable for other kinds of processes.
- Entanglement criteria as well as optimal violations of Bell inequalities can be extracted and implemented taking into account the symmetries of the system.

Thank you for listening!

