Testing entanglement and Bell inequalities in ${\rm H} \rightarrow {\rm ZZ}$

Alexander Bernal

In collaboration with: J. A. Aguilar-Saavedra, J. A. Casas, J. M. Moreno

> Phys. Rev. D 107, 016012 (2023) arXiv: 2209.13441

> > Oxford, 22 March 2023

Ent. and Bell Ineq. in $H \rightarrow ZZ$

Main goals

- Reconstruct the spin density matrix, ρ_{ZZ} , from angular observables in the decay $H \to ZZ^* \to \ell_1^+ \ell_1^- \ell_2^+ \ell_2^-$ (Quantum Tomography).
- **②** State a necessary and sufficient condition for entanglement in ρ_{ZZ} by taking into account symmetries of the system.
- Give a novel optimization method for the violation of Bell inequalities for ρ_{ZZ} .

Main goals

- Reconstruct the spin density matrix, ρ_{ZZ} , from angular observables in the decay $H \to ZZ^* \to \ell_1^+ \ell_1^- \ell_2^+ \ell_2^-$ (Quantum Tomography).
- **②** State a necessary and sufficient condition for entanglement in ρ_{ZZ} by taking into account symmetries of the system.
- Give a novel optimization method for the violation of Bell inequalities for ρ_{ZZ} .

P. Horodecki, 1997

- P. Caban, J. Rembieliński and M. Wlodarczyk, 2008
- A. J. Barr, P. Caban, J. Rembieliński, 2022
- A. J. Barr, 2022
- R. Ashby-Pickering, A. J. Barr, A. Wierzchucka, 2022
- Y. Afik and J. R. M. de Nova, 2021
- C. Severi, C. D. E. Boschi, F. Maltoni and M. Sioli, 2022

Preliminaries

• Bipartite quantum system:

$$\rho = \sum_{i} p_{i} |\psi_{i}\rangle \langle\psi_{i}|, \quad p_{i} \ge 0, \quad \sum_{i} p_{i} = 1.$$
$$|\psi_{i}\rangle \in \mathcal{H}_{A} \otimes \mathcal{H}_{B}, \text{ with } \dim \mathcal{H}_{A(B)} = d_{A(B)}.$$

< A[™]

Preliminaries

• Bipartite quantum system:

$$\rho = \sum_{i} p_{i} |\psi_{i}\rangle \langle\psi_{i}|, \quad p_{i} \ge 0, \quad \sum_{i} p_{i} = 1.$$
$$|\psi_{i}\rangle \in \mathcal{H}_{A} \otimes \mathcal{H}_{B}, \text{ with } \dim \mathcal{H}_{A(B)} = d_{A(B)}.$$

• Expectation values of \mathcal{O} with respect to ρ :

$$\langle \mathcal{O} \rangle_{\rho} = \operatorname{Tr} \{ \rho \ \mathcal{O} \}.$$

Alexander Bernal

Ent. and Bell Ineq. in $H{\rightarrow}ZZ$

Oxford, 22 March 2023 3 / 14

Preliminaries

• Bipartite quantum system:

$$\rho = \sum_{i} p_{i} |\psi_{i}\rangle \langle\psi_{i}|, \quad p_{i} \ge 0, \quad \sum_{i} p_{i} = 1.$$
$$|\psi_{i}\rangle \in \mathcal{H}_{A} \otimes \mathcal{H}_{B}, \text{ with } \dim \mathcal{H}_{A(B)} = d_{A(B)}.$$

• Expectation values of \mathcal{O} with respect to ρ :

$$\langle \mathcal{O} \rangle_{\rho} = \operatorname{Tr} \{ \rho \ \mathcal{O} \}.$$

• CGLMP Bell inequality $(A_1, A_2 \text{ and } B_1, B_2 \text{ observables acting respectively on } \mathcal{H}_A \text{ and } \mathcal{H}_B)$:

$$I_3(P(A_i = k, B_j = l)) = \langle \mathcal{O}_{Bell}(A_i, B_j) \rangle_{\rho} \le 2.$$

< □ > < 同 >

• Spin density matrix ρ_{ZZ} ?

In our case,
$$\mathcal{H}_A = \mathcal{H}_B = \mathcal{H}_{Spin}$$
 $(s_A = s_B = 1 \Rightarrow d_A = d_B = 3).$

We use the irreducible tensor operators $\{T_{M_1}^{L_1} \otimes T_{M_2}^{L_2}\}$ (transforming under rotations as the spherical harmonics) as a basis:

 $T_{M_1}^{L_1}, T_{M_2}^{L_2} \in \left\{ \mathbb{I}_3; T_1^1, T_0^1, T_{-1}^1; T_2^2, T_1^2, T_0^2, T_{-1}^2, T_{-2}^2 \right\} \ .$

• Spin density matrix ρ_{ZZ} ?

In our case,
$$\mathcal{H}_A = \mathcal{H}_B = \mathcal{H}_{Spin}$$
 $(s_A = s_B = 1 \Rightarrow d_A = d_B = 3).$

We use the irreducible tensor operators $\{T^{L_1}_{M_1}\otimes T^{L_2}_{M_2}\}$ (transforming under rotations as the spherical harmonics) as a basis:

$$T_{M_1}^{L_1}, T_{M_2}^{L_2} \in \left\{ \mathbb{I}_3; T_1^1, T_0^1, T_{-1}^1; T_2^2, T_1^2, T_0^2, T_{-1}^2, T_{-2}^2 \right\} \;.$$

Hence:

$$\rho_{ZZ} = \frac{1}{9} \sum C_{L_1, M_1, L_2, M_2} T_{M_1}^{L_1} \otimes T_{M_2}^{L_2}.$$

Tr $\left\{ T_M^L \left(T_M^L \right)^{\dagger} \right\} = 3 \Longrightarrow C_{L_1, M_1, L_2, M_2} = \left\langle \left(T_{M_1}^{L_1} \otimes T_{M_2}^{L_2} \right)^{\dagger} \right\rangle_{\rho_{ZZ}}$

To extract the coefficients, we use the cross section of $ZZ^* \rightarrow \ell_1^+ \ell_1^- \ell_2^+ \ell_2^-$:

$$\frac{1}{\sigma}\frac{d\sigma}{d\Omega_1 d\Omega_2} = \left(\frac{3}{4\pi}\right)^2 \left\langle \Gamma_1^T\left(\Omega_1\right) \otimes \Gamma_2^T\left(\Omega_2\right) \right\rangle_{\rho_{ZZ}}$$

where $\Gamma_j(\Omega_j) = \Gamma_j(\theta_j, \varphi_j)$ are the decay density matrices of each Z boson.

To extract the coefficients, we use the cross section of $ZZ^* \rightarrow \ell_1^+ \ell_1^- \ell_2^+ \ell_2^-$:

$$\frac{1}{\sigma}\frac{d\sigma}{d\Omega_1 d\Omega_2} = \left(\frac{3}{4\pi}\right)^2 \left\langle \Gamma_1^T\left(\Omega_1\right) \otimes \Gamma_2^T\left(\Omega_2\right) \right\rangle_{\rho_{ZZ}}$$

where $\Gamma_j(\Omega_j) = \Gamma_j(\theta_j, \varphi_j)$ are the decay density matrices of each Z boson.

Noticing that $\operatorname{Tr} \left\{ T_M^L \ \Gamma^T \right\} = B_L \ Y_L^M(\theta, \varphi)$, with B_L a constant:

$$\frac{1}{\sigma} \frac{d\sigma}{d\Omega_1 d\Omega_2} = \frac{1}{(4\pi)^2} \sum C_{L_1, M_1, L_2, M_2} B_{L_1} B_{L_2} Y_{L_1}^{M_1}(\Omega_1) Y_{L_2}^{M_2}(\Omega_2).$$

To extract the coefficients, we use the cross section of $ZZ^* \rightarrow \ell_1^+ \ell_1^- \ell_2^+ \ell_2^-$:

$$\frac{1}{\sigma}\frac{d\sigma}{d\Omega_1 d\Omega_2} = \left(\frac{3}{4\pi}\right)^2 \left\langle \Gamma_1^T\left(\Omega_1\right) \otimes \Gamma_2^T\left(\Omega_2\right) \right\rangle_{\rho_{ZZ}}$$

where $\Gamma_j(\Omega_j) = \Gamma_j(\theta_j, \varphi_j)$ are the decay density matrices of each Z boson.

Noticing that $\operatorname{Tr} \left\{ T_M^L \ \Gamma^T \right\} = B_L \ Y_L^M(\theta, \varphi)$, with B_L a constant:

$$\frac{1}{\sigma} \frac{d\sigma}{d\Omega_1 d\Omega_2} = \frac{1}{(4\pi)^2} \sum C_{L_1, M_1, L_2, M_2} B_{L_1} B_{L_2} Y_{L_1}^{M_1}(\Omega_1) Y_{L_2}^{M_2}(\Omega_2).$$

Finally,

Quantum Tomography of ρ_{ZZ} $\int \frac{1}{\sigma} \frac{d\sigma}{d\Omega_1 d\Omega_2} Y_{L_1}^{M_1}(\Omega_1)^* Y_{L_2}^{M_2}(\Omega_2)^* d\Omega_1 d\Omega_2 = \frac{B_{L_1} B_{L_2}}{(4\pi)^2} C_{L_1 M_1 L_2 M_2}.$

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Symmetries of the system

- Momentum J_z conserved. In particular $J_z = 0$.
- CP conservation.

Symmetries of the system

- Momentum J_z conserved. In particular $J_z = 0$.
- CP conservation.

For a single event, using the symmetries:

$$\rho_{\beta} = \left|\psi_{\beta}\right\rangle \left\langle\psi_{\beta}\right|, \quad \left|\psi_{\beta}\right\rangle = \frac{1}{\sqrt{2+\beta^{2}}}\left(\left|+-\right\rangle - \beta\left|00\right\rangle + \left|-+\right\rangle\right).$$

Symmetries of the system

- Momentum J_z conserved. In particular $J_z = 0$.
- CP conservation.

For a single event, using the symmetries:

$$\rho_{\beta} = |\psi_{\beta}\rangle \langle \psi_{\beta}|, \quad |\psi_{\beta}\rangle = \frac{1}{\sqrt{2+\beta^2}} \left(|+-\rangle - \beta |00\rangle + |-+\rangle\right).$$

In particular,

$$|\psi_{\beta=1}\rangle = |\psi_s\rangle = \frac{1}{\sqrt{3}} (|+-\rangle - |00\rangle + |-+\rangle)$$
 and $\rho_{\beta=1} = \rho_s$.
Singlet State (Maximally Entangled)

On the other hand, from the Lorentz structure of the HZZ SM vertex, $\propto \eta_{\mu\nu} H Z^\mu Z^\nu$,

$$|\psi_{\beta}\rangle = \eta_{\mu\nu} \ e^{\mu}_{\sigma}(m_{Z_1}, \vec{k}) \ e^{\nu}_{\lambda}(m_{Z_2}, -\vec{k}) \ |\vec{k}, \sigma\rangle_A |-\vec{k}, \lambda\rangle_B,$$

where σ,λ represent spin states and

$$e^{\mu}_{\sigma}(m,\vec{k}) = \begin{pmatrix} 0 & \frac{|\vec{k}|}{m} & 0\\ -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}}\\ \frac{i}{\sqrt{2}} & 0 & \frac{i}{\sqrt{2}}\\ 0 & -\frac{\sqrt{|\vec{k}|^2 + m^2}}{m} & 0 \end{pmatrix}$$

Alexander Bernal

Ent. and Bell Ineq. in $H{\rightarrow}ZZ$

Oxford, 22 March 2023 7 / 14

٠

On the other hand, from the Lorentz structure of the HZZ SM vertex, $\propto \eta_{\mu\nu} H Z^\mu Z^\nu$,

$$|\psi_{\beta}\rangle = \eta_{\mu\nu} \ e^{\mu}_{\sigma}(m_{Z_1}, \vec{k}) \ e^{\nu}_{\lambda}(m_{Z_2}, -\vec{k}) \ |\vec{k}, \sigma\rangle_A | -\vec{k}, \lambda\rangle_B,$$

where σ,λ represent spin states and

$$e^{\mu}_{\sigma}(m,\vec{k}) = \begin{pmatrix} 0 & \frac{|\vec{k}|}{m} & 0\\ -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}}\\ \frac{i}{\sqrt{2}} & 0 & \frac{i}{\sqrt{2}}\\ 0 & -\frac{\sqrt{|\vec{k}|^2 + m^2}}{m} & 0 \end{pmatrix}$$

Comparing both results for $|\psi_{\beta}\rangle$, an analytical expression for β is obtained:

$$\beta = 1 + \frac{m_H^2 - (m_{Z_1} + m_{Z_2})^2}{2m_{Z_1}m_{Z_2}}, \quad \beta \ge 1.$$

In practice, we have a probability distribution $\mathcal{P}(\beta)$ for the parameter β :

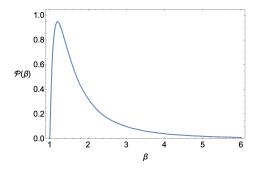


Figure 1: Probability distribution of β .

In practice, we have a probability distribution $\mathcal{P}(\beta)$ for the parameter β :

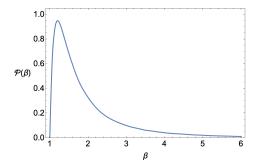


Figure 1: Probability distribution of β .

Thus, the final density matrix is

$$\begin{split} \rho_{ZZ} &= \int d\beta \ \mathcal{P}(\beta) \rho_{\beta} = \rho_{ZZ} \left(C_{2,0,0,0}, C_{2,1,2,-1}, C_{2,2,2,-2} \right). \\ \mathcal{P}(\beta) \text{ peaked in } \beta \approx 1 \Longrightarrow \rho_{ZZ} \backsim \rho_{\beta} \backsim \rho_{s} \to \text{Max. Ent.} \end{split}$$

• Peres-Horodecki criterion

Given a density matrix ρ describing a bipartite system, if the matrix $\rho' = (\mathbb{I} \otimes T_B) \rho$ has at least one negative eigenvalue, then ρ is entangled.

• Peres-Horodecki criterion

Given a density matrix ρ describing a bipartite system, if the matrix $\rho' = (\mathbb{I} \otimes T_B) \rho$ has at least one negative eigenvalue, then ρ is entangled.

This criterion is only a sufficient condition for:

$$\dim \mathcal{H}_A = \dim \mathcal{H}_B = d \geq 3$$
 (our case).

However, due to the symmetries mentioned and the structure of ρ_{ZZ} :

$$\rho_{ZZ}$$
 entangled $\iff C_{2,1,2,-1} \neq 0$ or $C_{2,2,2,-2} \neq 0$.

Testing Bell inequalities

We recall that $\rho_s = |\psi_s\rangle \langle \psi_s|$, with $|\psi_s\rangle = \frac{1}{\sqrt{3}} (|+-\rangle - |00\rangle + |-+\rangle)$. This state has a U(3) symmetry in the sense:

$$\left\langle (U \otimes U^*)^{\dagger} \mathcal{O}_{Bell}(U \otimes U^*) \right\rangle_{\rho_s} = \left\langle \mathcal{O}_{Bell} \right\rangle_{\rho_s} \text{ for } U \in U(3).$$

Testing Bell inequalities

We recall that $\rho_s = |\psi_s\rangle \langle \psi_s|$, with $|\psi_s\rangle = \frac{1}{\sqrt{3}} (|+-\rangle - |00\rangle + |-+\rangle)$. This state has a U(3) symmetry in the sense:

$$\left\langle (U \otimes U^*)^{\dagger} \mathcal{O}_{Bell}(U \otimes U^*) \right\rangle_{\rho_s} = \left\langle \mathcal{O}_{Bell} \right\rangle_{\rho_s} \text{ for } U \in U(3).$$

We denote the **known** optimal Bell operator for the singlet state as \mathcal{O}_{Bell}^s , and in the $\{T_{M_1}^{L_1} \otimes T_{M_2}^{L_2}\}$ basis is given by:

Optimal Bell operator for ρ_s

$$\mathcal{O}^{s}_{Bell} = \frac{4}{3\sqrt{3}} \left(T^{1}_{1} \otimes T^{1}_{-1} \right) + \frac{2}{3} \left(T^{2}_{2} \otimes T^{2}_{-2} \right) + h.c.$$

For $\rho_{\beta} = |\psi_{\beta}\rangle \langle \psi_{\beta}|$, where $|\psi_{\beta}\rangle = \frac{1}{\sqrt{2+\beta^2}} (|+-\rangle - \beta |00\rangle + |-+\rangle)$, the U(3) symmetry is broken to $U(2) \otimes U(1)$:

$$\left\langle (U \otimes U^*)^{\dagger} \mathcal{O}_{Bell}(U \otimes U^*) \right\rangle_{\rho_{\beta}} = \left\langle \mathcal{O}_{Bell} \right\rangle_{\rho_{\beta}} \text{ for } U \in U(2) \otimes U(1).$$

We denote the **unknown** optimal Bell operator for this state as $\mathcal{O}_{Bell}^{\beta}$, which is obtained maximizing the violation of I_3 .

For $\rho_{\beta} = |\psi_{\beta}\rangle \langle \psi_{\beta}|$, where $|\psi_{\beta}\rangle = \frac{1}{\sqrt{2+\beta^2}} (|+-\rangle - \beta |00\rangle + |-+\rangle)$, the U(3) symmetry is broken to $U(2) \otimes U(1)$:

$$\left\langle (U \otimes U^*)^{\dagger} \mathcal{O}_{Bell}(U \otimes U^*) \right\rangle_{\rho_{\beta}} = \left\langle \mathcal{O}_{Bell} \right\rangle_{\rho_{\beta}} \text{ for } U \in U(2) \otimes U(1).$$

We denote the **unknown** optimal Bell operator for this state as $\mathcal{O}_{Bell}^{\beta}$, which is obtained maximizing the violation of I_3 .

When $\beta \approx 1$, a good analytical approximation is given by deforming \mathcal{O}^s_{Bell} in the broken part of the initial symmetry group:

$$\left\langle \mathcal{O}_{Bell}^{\beta} \right\rangle_{\rho_{\beta}} \approx \max_{U \in U(3)/(U(2) \otimes U(1))} \left\langle (U \otimes U^{*})^{\dagger} \mathcal{O}_{Bell}^{s}(U \otimes U^{*}) \right\rangle_{\rho_{\beta}}.$$

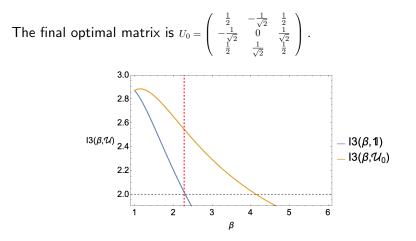


Figure 2: Functions $(I_3(\beta, \mathbb{I}_3), I_3(\beta, U_0))$, local-realistic upper bound (gray line) and mean value of β with respect to $\mathcal{P}(\beta)$ (red line).

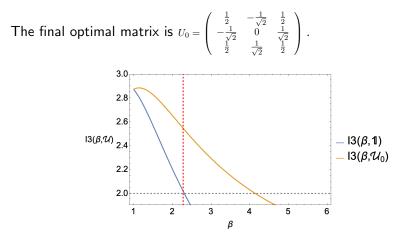


Figure 2: Functions $(I_3(\beta, \mathbb{I}_3), I_3(\beta, U_0))$, local-realistic upper bound (gray line) and mean value of β with respect to $\mathcal{P}(\beta)$ (red line).

Taking this value of U_0 we evaluate the violation of the Bell Ineq. for ρ_{ZZ} : $I_3 = I_3 (C_{2,0,0,0}, C_{2,1,2,-1}, C_{2,2,2,-2}).$

• LHC Run 2+3

	min m_{Z_2}				
	0	10 GeV	20 GeV	30 GeV	
N	450	418	312	129	
$C_{2,1,2,-1}$	-0.98 ± 0.31	-0.97 ± 0.33	-1.05 ± 0.38	-1.06 ± 0.61	
$C_{2,2,2,-2}$	0.60 ± 0.37	0.64 ± 0.38	0.74 ± 0.43	0.82 ± 0.63	
I_3	2.66 ± 0.46	2.67 ± 0.49	2.82 ± 0.57	2.88 ± 0.89	

Table 1: Values $C_{2,1,2,-1}$, $C_{2,2,2,-2}$ and I_3 obtained from 1000 pseudo experiments with L = 300 fb⁻¹.

• HL-LHC

	min m_{Z_2}				
	0	10 GeV	20 GeV	30 GeV	
N	4500	4180	3120	1290	
$C_{2,1,2,-1}$	-0.95 ± 0.10	-1.00 ± 0.10	-1.04 ± 0.12	-1.04 ± 0.19	
$C_{2,2,2,-2}$	0.60 ± 0.12	0.64 ± 0.12	0.74 ± 0.14	0.83 ± 0.20	
I_3	2.63 ± 0.15	2.71 ± 0.16	2.81 ± 0.18	2.84 ± 0.28	

Table 2: Same as Table 1, for $L = 3 \text{ ab}^{-1}$.

13/14

Conclusions

- The decay channel $H \to ZZ^* \to \ell_1^+ \ell_1^- \ell_2^+ \ell_2^-$ is an excellent way to probe the quantum nature of high energy physics:
 - Run 2+3: ρ_{ZZ} entangled in more than 2σ and $I_3 > 2$ in more than 1σ .
 - HL-LHC: ρ_{ZZ} entangled in more than 5σ and $I_3>2$ in more than 3σ .
- The quantum tomography formalism developed is practical and generalizable for other kinds of processes.
- Entanglement criteria as well as optimal violations of Bell inequalities can be extracted and implemented taking into account the symmetries of the system.

Conclusions

- The decay channel $H \to ZZ^* \to \ell_1^+ \ell_1^- \ell_2^+ \ell_2^-$ is an excellent way to probe the quantum nature of high energy physics:
 - Run 2+3: ρ_{ZZ} entangled in more than 2σ and $I_3 > 2$ in more than 1σ .
 - HL-LHC: ρ_{ZZ} entangled in more than 5σ and $I_3 > 2$ in more than 3σ .
- The quantum tomography formalism developed is practical and generalizable for other kinds of processes.
- Entanglement criteria as well as optimal violations of Bell inequalities can be extracted and implemented taking into account the symmetries of the system.

Thank you for listening!