

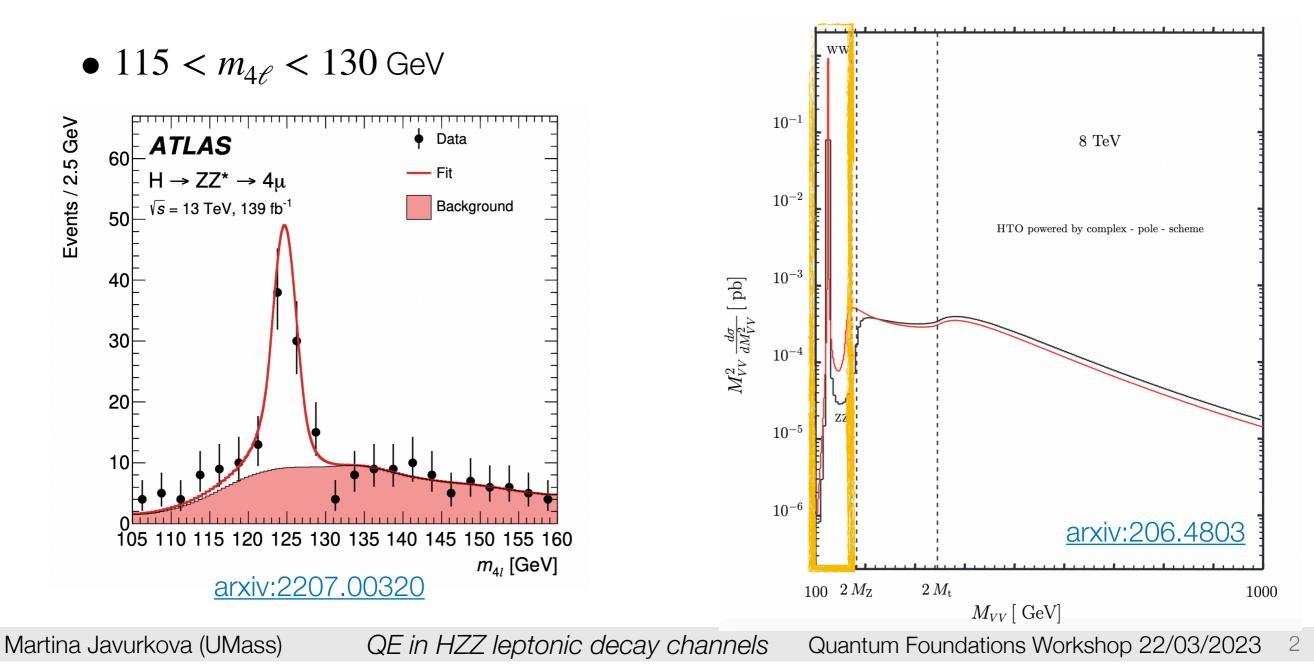
Quantum entanglement in $H \rightarrow ZZ$ leptonic decay channels

Martina Javurkova¹

Based on discussions with Rafael Coelho Lopes de Sa, Richard Ruiz,

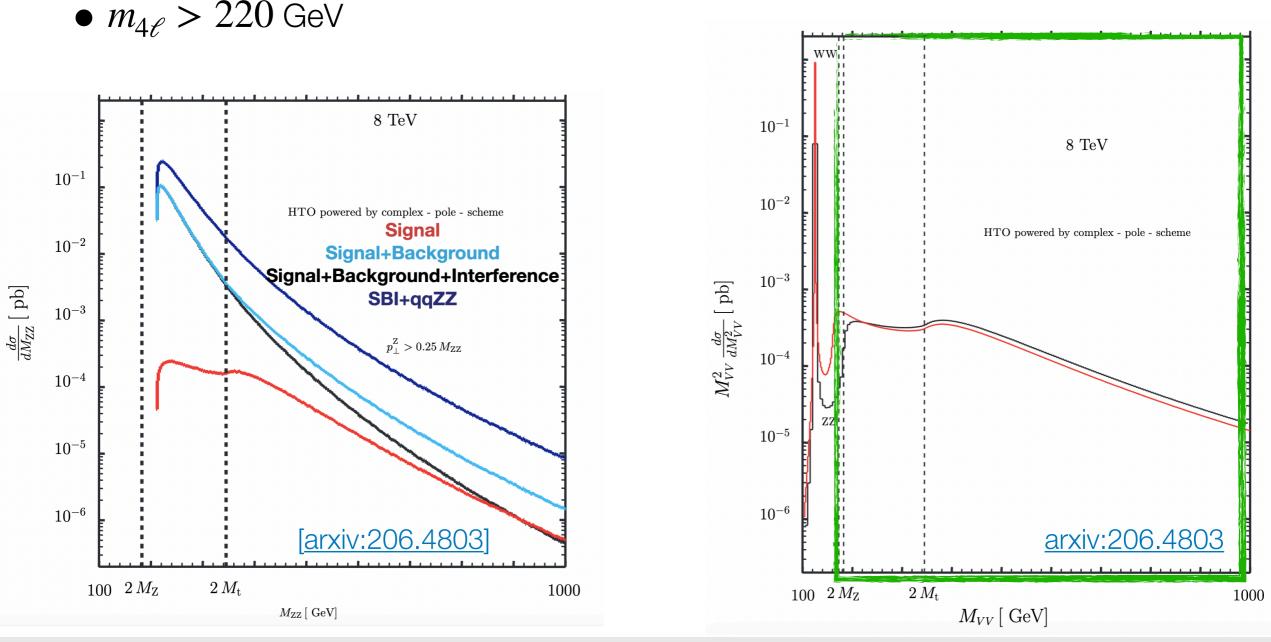
Theodota Lagouri and Keith Baker

¹University of Massachusetts-Amherst


Workshop on the foundational tests of Quantum Mechanics at the LHC

Oxford

22/03/2023


Overview of $H \rightarrow ZZ$ measurements at ATLAS

- On-shell $H \to ZZ^* \to 4\ell$
 - Higgs Boson mass measurement [arxiv:2207.00320]
 - Measurement of the Higgs boson production mode cross-sections [arxiv:2004.03447

Overview of $H \rightarrow ZZ$ measurements at ATLAS

- Off-shell $H^* \to ZZ \to 4\ell$
 - Higgs Boson decay width measurement [ATLAS-CONF-2022-068]

Martina Javurkova (UMass)

QE in HZZ leptonic decay channels Quantum Foundations Workshop 22/03/2023

3

How to probe quantum entanglement?

I) Measuring Z-boson polarisations

- i) [Laboratory-frame tests of QE in $H \rightarrow WW$]: J. A. Aguilar-Saavedra
- Entanglement condition can be reformulated as a binary test: SM versus longitudinal polarisations.

ii) [Vector boson polarizations in the decay of the Standard Model Higgs]: E. Maina

- VB polarizations can be reconstructed analyzing the kinematic distributions of the final state leptons.
- II) Determine experimentally the spin density matrix coefficients
- Requires measurement of spin correlation observables \rightarrow full reconstruction of the event kinematics.

a) [Testing entanglement and Bell inequalities in $H \rightarrow ZZ$]: J. A. Aguilar-Saavedra , A. Bernal , J. A. Casas and J. M. Moreno

b) [Quantum state tomography, entanglement detection and Bell violation prospects in weak decays of massive particles]: R. Ashby-Pickering, A. Barr, A. Wierzchucka

I) Z-boson polarizations

Z-boson polarizations

- Why is it interesting to measure **polarized gluon-induced processes**?
 - Polarized VBF process already measured [e.g. Production x-sections of polarized SS WWjj]
 - Polarization of ggZZ processes not yet explored
 - Polarized **ggH** processes open new opportunities to probe quantum entanglement
 - Higgs boson is a scalar, thus the ZZ pair is produced in a spin-singlet state, where the quantum entanglement is maximal.
 - The amplitude for the Higgs decay to four fermions can be **analytically** reformulated in terms of the polarizations of the intermediate vector bosons. The vector polarizations can be then **reconstructed** analyzing the kinematic distributions of the final state leptons.
 - QE condition can be reformulated in terms of decay polarisation amplitudes

How to generate the polarized ggZZ processes?

- MadGraph model provided by *Richard Ruiz*¹: **SM_Loop_ZPolar_NLO**
 - The automation of *loop-level* production + polarization + decay is not yet supported officially. This model keeps spin correlation at every step of the simulation.
 - •Z is redefined to be: **Z -> ZX + Z0 + ZT + ZA**
 - •ZX is just a field redefinition, its mass and width are MZ and WZ (like in other SM UFO)
 - •Z0 has a propagator built solely from **longitudinal polarization vectors**
 - •ZT has a propagator built from summing over the **2 transverse polarization vectors**
 - •ZA has a propagator built solely from an **auxiliary polarization vector**
 - Describes the behavior not captured by the transverse and longitudinal polarization vector
 - Auxiliary propagator vanishes in the on-shell limit

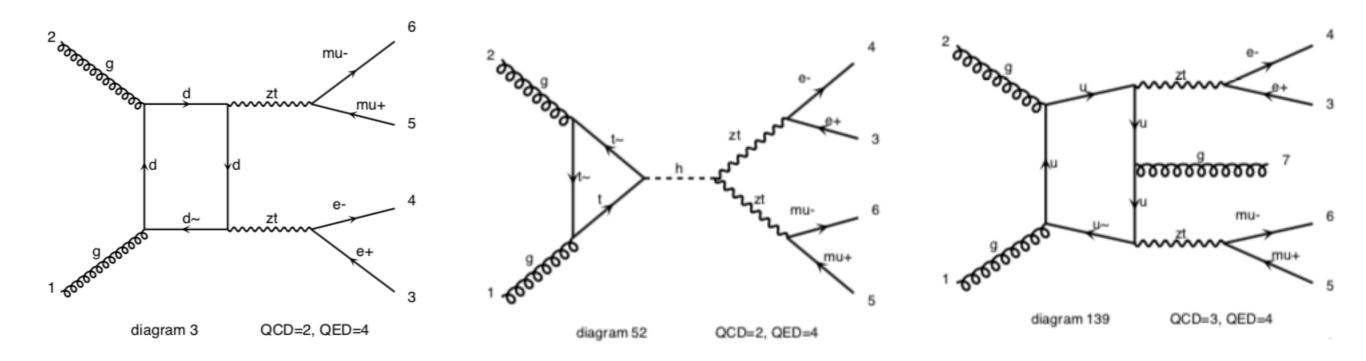
 $arepsilon^\mu(q,\lambda=A) = rac{q^\mu}{M_V} \sqrt{rac{q^2-M_V^2}{q^2}}\,.$

¹ [Automated Predictions from Polarized Matrix Elements]: VB polarisations studied in VBS (not ggF)

Polarizations in the Higgs boson off-shell regime?

- Evidence of off-shell production in the HZZ decay channel
 - Published by CMS [Nature Phys. 18 (2022) 1329] and ATLAS [ATLAS-CONF-2022-068]
- Study polarisation in the off-shell regime is interesting
 - Novel method [Higgs Couplings without the Higgs] enables to test the Higgs couplings, offshell, via their contributions to the physics of *longitudinally* polarised gauge bosons
 - Grows with energy \rightarrow promising now and increasingly important in the future
 - Independent and complementary to the well-established on-shell measurements
 - Both Z bosons are on-shell → polarizations are well-defined
 - Anomalous modifications of the SM necessarily induce E-growth
 - Novel approach to explore **EFT** interpretations, break degeneracies
 - **QE condition** can be formulated in terms of <u>decay polarisation amplitudes</u>

Event generation of polarised samples


•MEs calculated up to one additional parton in the final state for $ee\mu\mu$ final state¹

import model SM_Loop_ZPolar_NL0

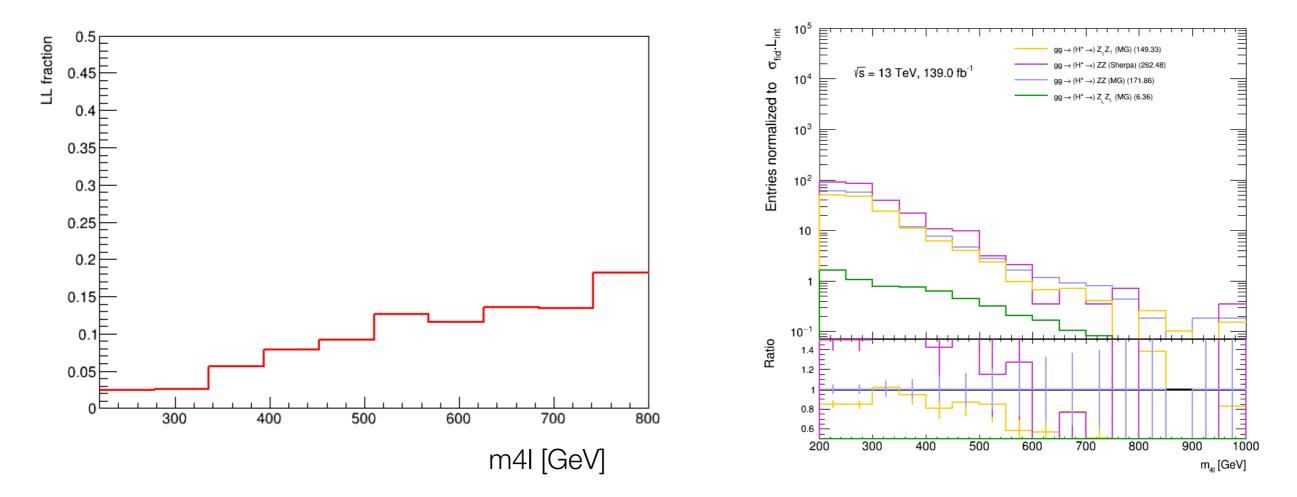
generate p p > e+ e- mu+ mu- QED=4 QCD=2 [noborn = QCD] / a z zt za @0 add process p p > e+ e- mu+ mu- j QED=4 QCD=3 [noborn = QCD] / a z zt za @1

• gg -> ZTZT generate p p > e+ e- mu+ mu- QED=4 QCD=2 [noborn = QCD] / a z z0 za @0 add process p p > e+ e- mu+ mu- j QED=4 QCD=3 [noborn = QCD] / a z z0 za @1

• gg -> ZZ generate p p > e+ e- mu+ mu- QED=4 QCD=2 [noborn = QCD] / a z0 zt za @0 add process p p > e+ e- mu+ mu- j QED=4 QCD=3 [noborn = QCD] / a z0 zt za @1

¹ loop diagram filter applied in order to remove NNLO corrections to qqZZ

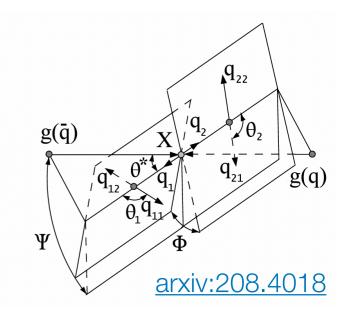
 2 no need to generate AA (only for a sanity check)

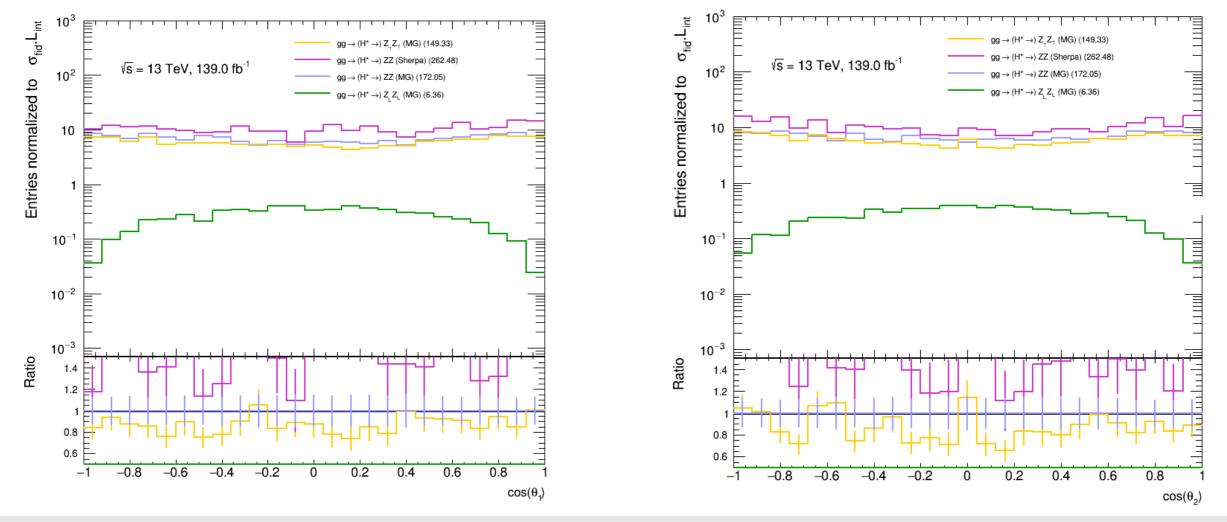

• gg -> ZLZL

Validation of polarised samples: cross-sections

Fiducial cross-sections

1.172 fb
0.9483 fb
0.0577 fb


• f^{LL} same order of magnitude as the signal Higgs in [ATLAS-CONF-2022-068] ($f^{LL} = \sigma^{LL}/\sigma^{all} \sim 5\%$)



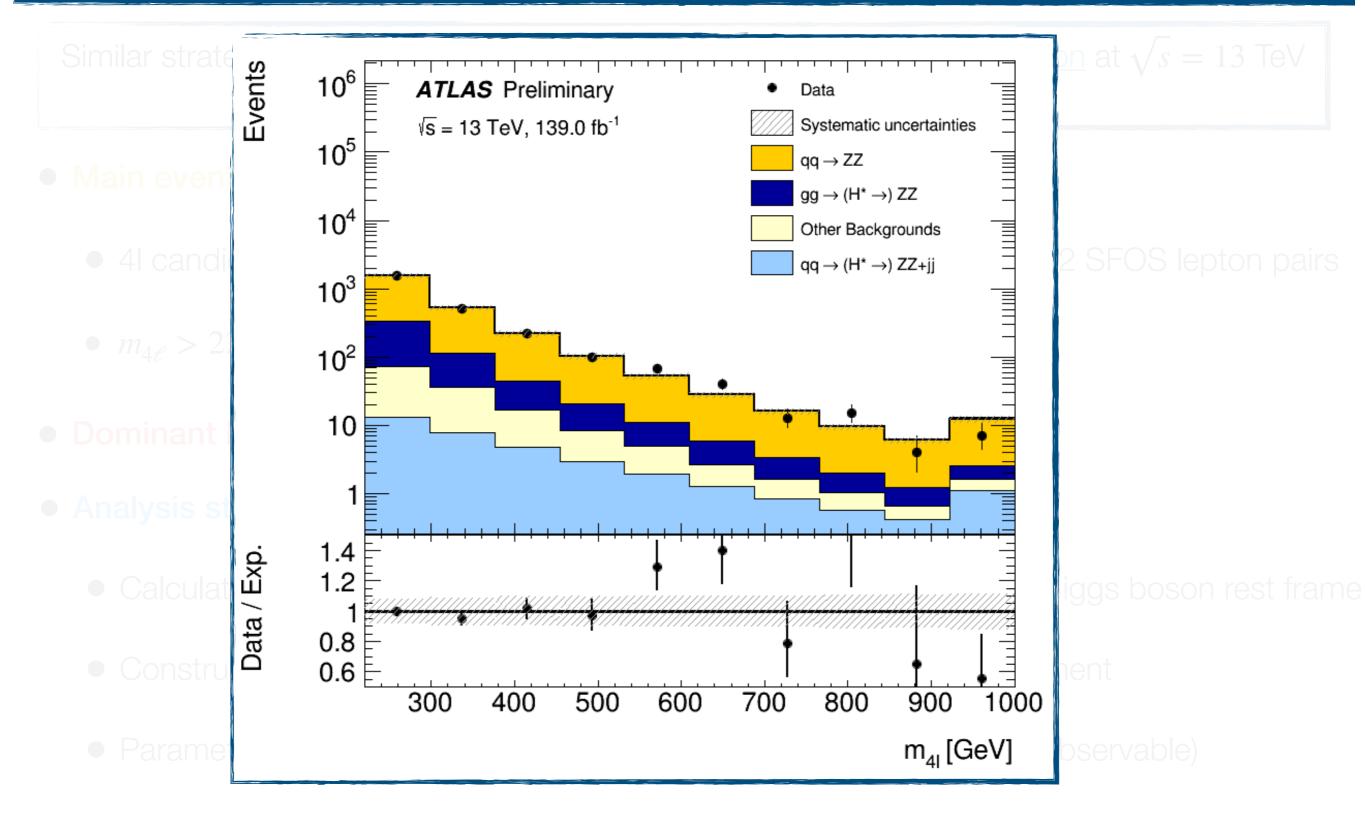
Validation of polarised samples: helicity angles

Helicity angles

- Spin correlation check
- $\cdot \cos \theta_1$ and $\cos \theta_2$ provide good separation power (LL vs TT)

Martina Javurkova (UMass)

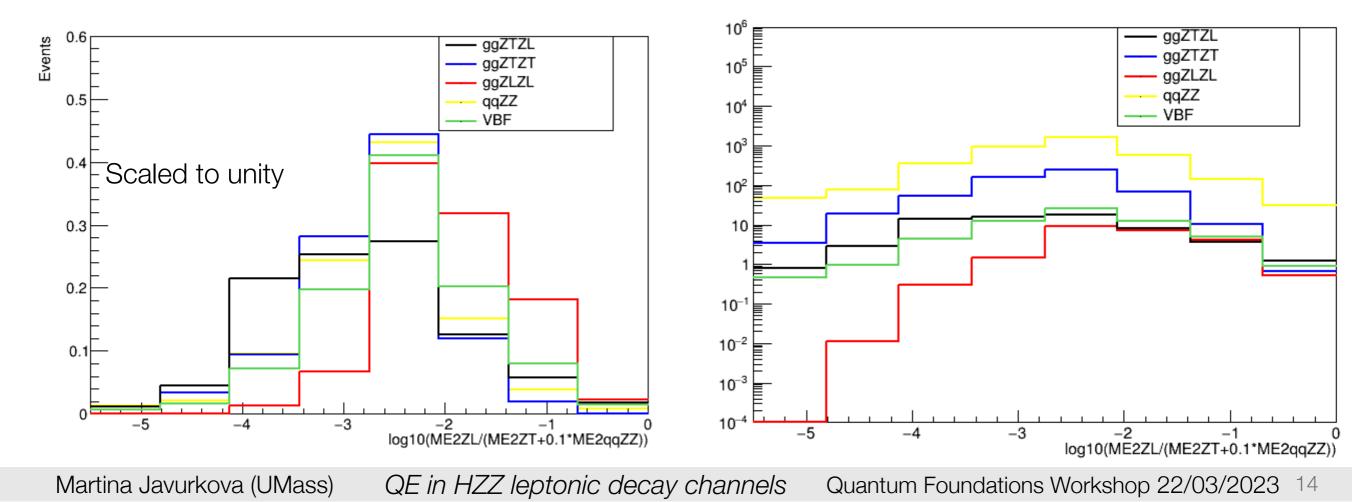
QE in HZZ leptonic decay channels Quantum Foun


Quantum Foundations Workshop 22/03/2023 11

Analysis setup

Similar strategy as in the measurement of off-shell Higgs boson production at $\sqrt{s} = 13$ TeV with the data of 139 fb⁻¹

- Main event selections (same as in the off-shell analysis)
 - 4I candidates formed by selecting a lepton-quadruplet made out of 2 SFOS lepton pairs
 - $m_{4\ell} > 220 \text{ GeV}, m_{Z1} \in [50, 106] \text{ GeV}, m_{Z2} \in [50, 115] \text{ GeV}$
- **Dominant background**: QCD $q\bar{q} \rightarrow ZZ$ process
- Analysis strategy
 - Calculate LO MEs for ggZLZL, ggZTZT and qqZZ processes in the Higgs boson rest frame
 - Construct ME ratio to enhance separation of the longitudinal component
 - Parametrise gg -> ZTZL contribution via: ZZ-ZTZT-ZLZL (in a given observable)
 - Use optimal observable (eventually binned in jets) in a maximum-likelihood fit

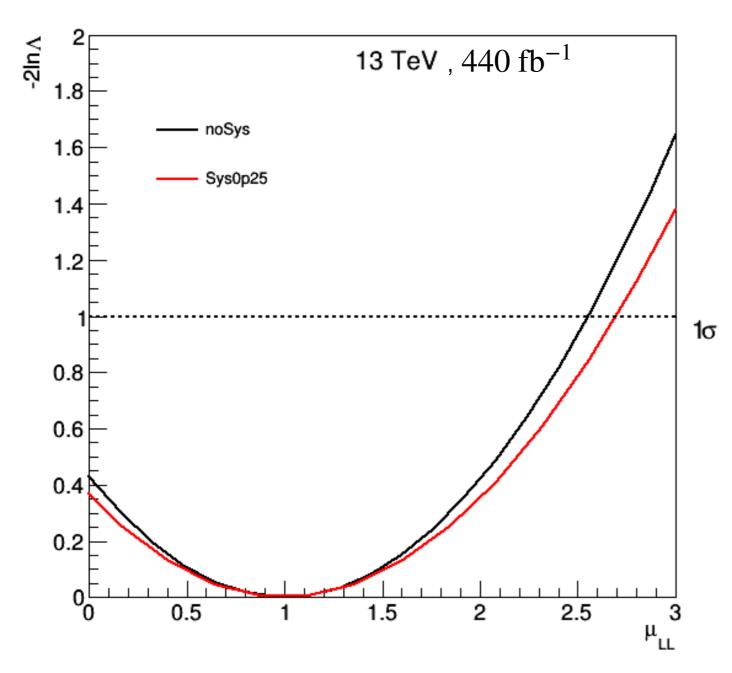

Analysis setup

Use optimal observable (ev ATLAS-CONF-2022-068] aximum-likelihood fit

Looking for the optimal observable

- Calculated LO MEs for
 - long. (ME2ZL) and trans. (ME2ZT) polarisations in the ggZZ process and qqZZ (ME2qqZZ)
- Defined a ME ratio as follows: log10(ME2ZL/(ME2ZT+0.1*ME2qqZZ))
 - For preliminary studies, the same "traditional" ME ratio was used as in the off-shell analysis
 - <u>Per-Event Likelihood Ratios</u> can be applied

Statistical interpretation


- Integrated luminosity of 440 ifb assumed (proxy for Run 2 + Run 3 luminosity)
- Systematic uncertainty of 25% estimated
 - [Measurement of off-shell Higgs production]: dominated by parton shower syst. on ggZZ
- <u>Several options</u>
 - 1. Measuring solely the *LL ggZZ component* (everything else treated as background)

$$N_i^{exp}(\mu) = n_i^{qqZZ} + n_i^{ggZTZL + ggZTZT} + n_i^{VBFZZ} + \mu_{LL} \cdot n_i^{ggZLZL}$$

2. Binning in # jets enables to measure the <u>LL ggZZ and VBF components separately</u> $N_i^{exp}(\mu) = n_i^{qqZZ} + n_i^{ggZTZL+ggZTZT} + n_i^{VBFZTZL+VBFZTZT} + \mu_{LL}^{ggF} \cdot n_i^{ggZLZL} + \mu_{LL}^{VBF} \cdot n_i^{VBFZLZL}$

3. Also considering floating the overall ggZZ normalisation and measuring fractions

Expected sensitivity for Run 2+3 data

- Several improvements on the way!
 - •Optimize binning
 - •Test 2D optimal observable
 - Build Per-Event Likelihood Ratios
 - •Aim to increase discovery significance above 1 σ

Expected discovery significance is around 0.6σ

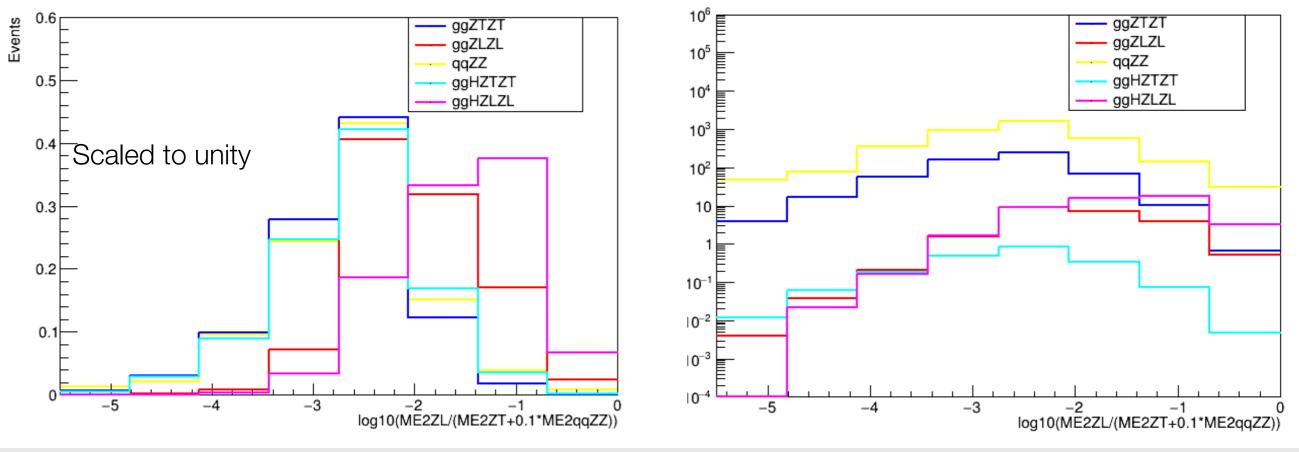
Can this be interpreted as a test of QE?

[Laboratory-frame tests of QE in H → WW]

- "We can reformulate the entanglement condition as a binary test: **SM versus longitudinal polarisation**. And this binary test can be performed using laboratory-frame observables."
- We need to go one step further and separate the <u>LL signal component</u>

1) Event generation of signal polarised samples

```
import model SM_Loop_ZPolar_NLO
generate p p > h > e+ e- mu+ mu- QED=4 QCD=2 [noborn = QCD] / a z zt za @0
add process p p > h > e+ e- mu+ mu- j QED=4 QCD=3 [noborn = QCD] / a z zt za @1
```


- 2) Looking at the same optimal observable: log10(ME2ZL/(ME2ZT+0.1*ME2qqZZ))
 - •NB: contributions from NLO corrections are not considered in this observable
 - •ML methods (e.g. used in <u>Measurement of off-shell Higgs production</u>]) can be employed to better explore these differences

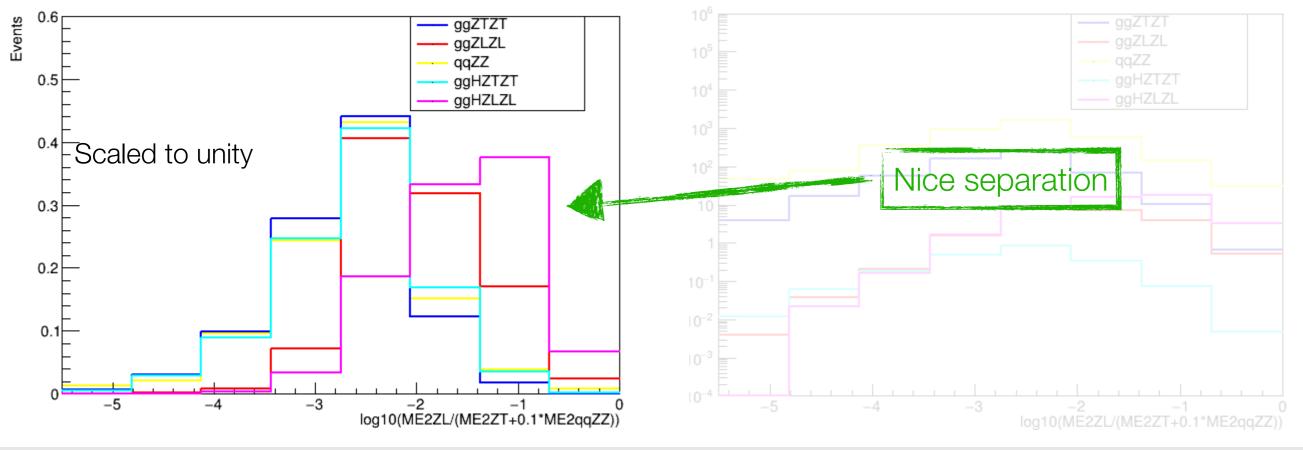
Test of quantum entanglement

• Fiducial cross-sections

- ▶gg -> H* -> ZZ: 0.08375 fb
- ▶gg -> H* -> ZTZT: 0.005435 fb
- ▶gg -> H* -> ZLZL: 0.06884 fb

 \bullet LL component dominates in the off-shell regime: $f_{H}^{LL}=\sigma_{H}^{LL}/\sigma_{H}^{all}\sim 80~\%$

Martina Javurkova (UMass)


QE in HZZ leptonic decay channels Quantum Foundations Workshop 22/03/2023 18

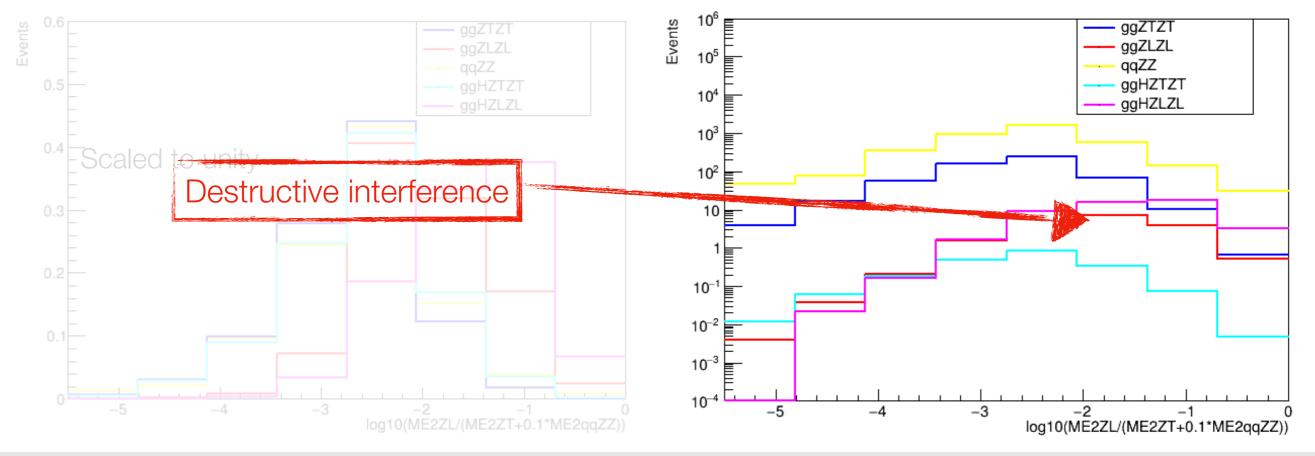
Test of quantum entanglement

• Fiducial cross-sections

- ▶gg -> H* -> ZZ: 0.08375 fb
- ▶gg -> H* -> ZTZT: 0.005435 fb
- ▶gg -> H* -> ZLZL: 0.06884 fb

• LL component dominates in the off-shell regime: $f_{H}^{LL} = \sigma_{H}^{LL}/\sigma_{H}^{all} \sim 80~\%$

Martina Javurkova (UMass)

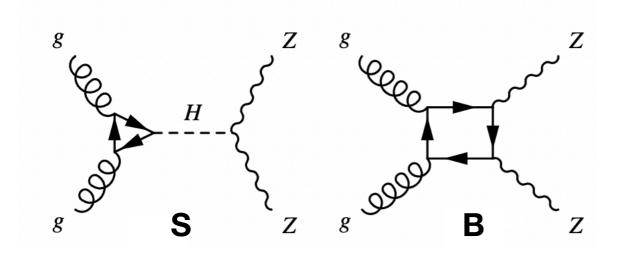

QE in HZZ leptonic decay channels Quantum Foundations Workshop 22/03/2023 19

Test of quantum entanglement

• Fiducial cross-sections

- ▶gg -> H* -> ZZ: 0.08375 fb
- ▶gg -> H* -> ZTZT: 0.005435 fb
- ▶gg -> H* -> ZLZL: 0.06884 fb

 \bullet LL component dominates in the off-shell regime: $f_{H}^{LL}=\sigma_{H}^{LL}/\sigma_{H}^{all}\sim 80~\%$



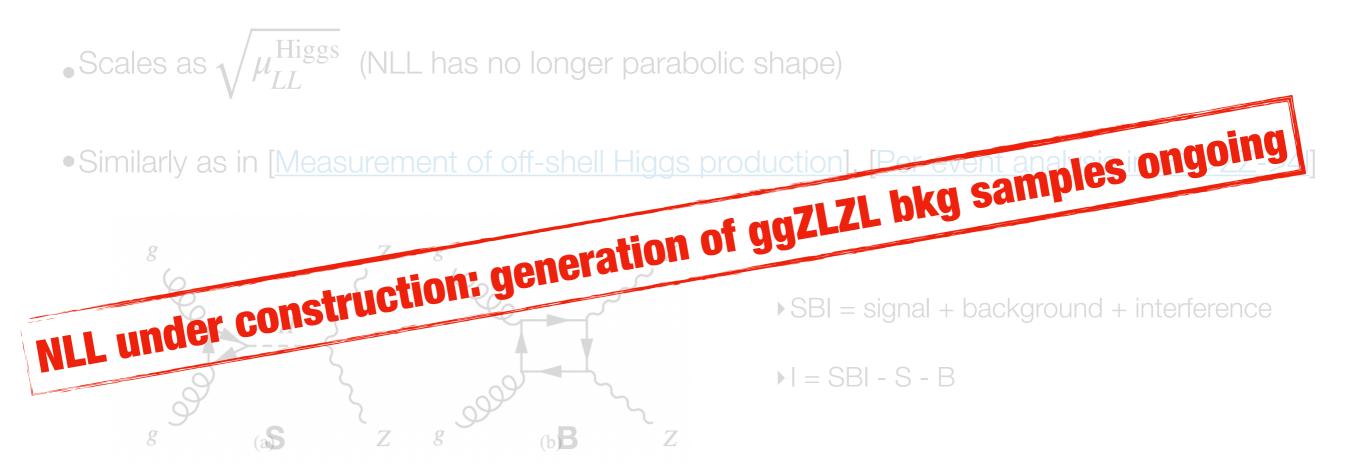
Martina Javurkova (UMass)

QE in HZZ leptonic decay channels Quantum Foundations Workshop 22/03/2023 20

Statistical interpretation

- Need to deal with sizeable destructive interference between the continuum background and the off-shell Higgs boson process
 - •Scales as $\sqrt{\mu_{LL}^{\rm Higgs}}$ (NLL has no longer parabolic shape)
 - Similarly as in [Measurement of off-shell Higgs production]

SBI = signal + background + interference


▶I = SBI - S - B

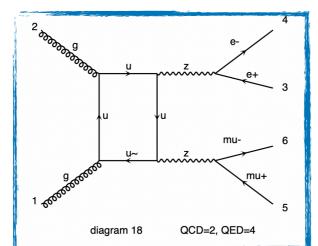
•Measuring solely the *LL ggH component*

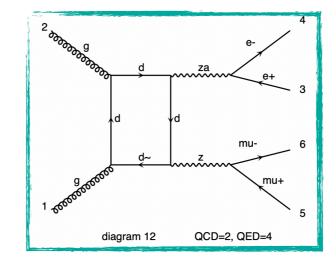
 $N^{exp}(\mu_{LL}^{\text{Higgs}}) = n^{qqZZ} + n^{VBFZZ} + n_{SBI}^{ggZTZL + ggZTZT} + \mu_{LL}^{\text{Higgs}} \cdot n_{S}^{ggZLZL} + \sqrt{\mu_{LL}^{\text{Higgs}}} \cdot (n_{SBI}^{ggZLZL} - n_{S}^{ggZLZL} - n_{B}^{ggZLZL}) + n_{B}^{ggZLZL}$

Statistical interpretation

 Need to deal with sizeable destructive interference between the continuum background and the off-shell Higgs boson process

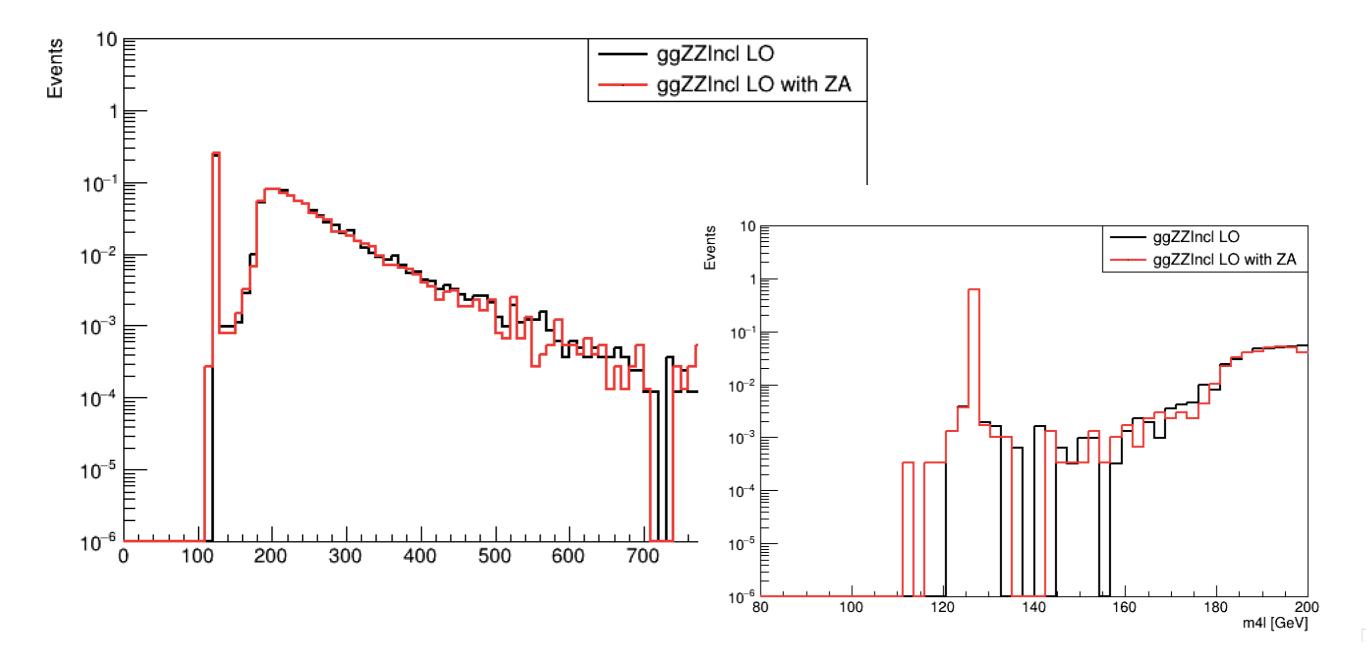
• Measuring solely the *LL ggH component*


 $N^{exp}(\mu_{LL}^{\text{Higgs}}) = n^{qqZZ} + n^{VBFZZ} + n^{ggZTZL + ggZTZT}_{\text{SBI}} + \mu_{LL}^{\text{Higgs}} \cdot n^{ggZLZL}_{\text{S}} + \sqrt{\mu_{LL}^{\text{Higgs}}} \cdot (n^{ggZLZL}_{\text{SBI}} - n^{ggZLZL}_{\text{S}} - n^{ggZLZL}_{\text{B}}) + n^{ggZLZL}_{\text{B}}$


Polarizations in the Higgs boson on-shell regime?

- The helicity polarization of an off-shell Z boson is **not well-defined** because helicity a label of an eigenstate in the mass basis and off-shell states are not eigenstates in this basis.
- However, for massless leptons, the decay amplitude for the **auxiliary polarization is zero** because is proportional to the four–momentum of the virtual boson.
- Work ongoing to understand if it is still a good approximation:

i) LO process generated with MG including all polarizations:


- •generate g g > e+ e- mu+ mu- QED=4 QCD=2 [noborn = QCD] / a zt z0 za (<u>x-section = 2.311 fb</u>)
- ii) LO process generated with MG including all polarizations and ZA (ZA is double counted):

• generate g g > e+ e- mu+ mu- QED=4 QCD=2 [noborn = QCD] / a zt z0 (<u>x-section = 2.323 fb</u>)

Polarizations at the Higgs boson on-shell regime?

• This can change with NLO corrections \rightarrow work ongoing

II) Spin Density Matrix

Test of entanglement and Bell inequalities in $H \rightarrow ZZ$

- **a)** [Testing entanglement and Bell inequalities in $H \rightarrow ZZ$]
 - Parameterisation based on the *irreducible tensor operators*.
 - Measurement of the density matrix coefficients can be done by **integration with spherical** harmonics, which in turn requires knowledge of the angles θ_i and ϕ_i in the respective Z_i rest frames.
 - **b)** [Quantum state tomography, entanglement detection and Bell violation prospects in weak decays of massive particles]
 - Parameterisation based on the generalised d-dimensional Gell-Mann operators.
 - Density matrix parameters can be found experimentally from averages of products of Wigner P functions.

a) Test of entanglement and Bell inequalities in $H \rightarrow ZZ$

- [Testing entanglement and Bell inequalities in $H \rightarrow ZZ$]: J. A. Aguilar-Saavedra , A. Bernal , J. A. Casas and J. M. Moreno
 - Due to the symmetric form of the possible final states, (ZZ pair in a singlet spin state), the theoretical form of the spin density matrix has a very defined structure

•The coefficients can be experimentally determined by measuring angular coefficients of $H \rightarrow ZZ$ decay and integrating with spherical harmonics.

a) Test of entanglement and Bell inequalities in $H \rightarrow ZZ$

- [Testing entanglement and Bell inequalities in $H \rightarrow ZZ$]: J. A. Aguilar-Saavedra , A. Bernal, J. A. Casas and J. M. Moreno
 - Due to the symmetric form of the possible final states, (ZZ pair in a singlet spin state), the theoretical form of the spin density matrix has a very defined structure
 - •The coefficients can be experimentally determined by measuring angular coefficients of $H \rightarrow ZZ$ decay and integrating with spherical harmonics.
 - Conditions for entanglement $C_{2,1,2,-1} \neq 0$ or $C_{2,2,2,-2} \neq 0$.
 - **Bell inequality** $I_3 = \frac{1}{36} \left(18 + 16\sqrt{3} \sqrt{2} \left(9 8\sqrt{3} \right) A_{2,0}^1 8 \left(3 + 2\sqrt{3} \right) C_{2,1,2,-1} + 6 C_{2,2,2,-2} \right) \le 2$

$\min m_{Z_2}$					
L = 300 ifb	0	$10 { m GeV}$	$20~{\rm GeV}$	$30 { m ~GeV}$	
N	450	418	312	129	
$C_{2,1,2,-1}$ (-0.98 ± 0.31	-0.97 ± 0.33	-1.05 ± 0.38	-1.06 ± 0.61	$\sim 3\sigma$
$C_{2,2,2,-2}$	0.60 ± 0.37	0.64 ± 0.38	0.74 ± 0.43	0.82 ± 0.63	$< 2\sigma$
I_3	2.66 ± 0.46	2.67 ± 0.49	2.82 ± 0.57	2.88 ± 0.89	$< 2\sigma$

b) Test of entanglement and Bell inequalities in $H \rightarrow ZZ$

- [Quantum state tomography, entanglement detection and Bell violation prospects in weak decays of massive particles]: R. Ashby-Pickering, A. Barr, A. Wierzchucka
 - Experimental measurement of the density matrix parameter can be obtained by a simple angular average (expectation values) of the Wigner P functions
 - Entanglement may be demonstrated by evaluating a lower bound on the square of the concurrence: $(c(\rho))^2 \ge 2 \operatorname{tr}(\rho^2) - \operatorname{tr}(\rho_A^2) - \operatorname{tr}(\rho_B^2) \equiv c_{\mathrm{MB}}^2.$

Process	$c_{ m MB}^2$
$pp \rightarrow W^+W^- \rightarrow \ell^+ \nu \ell^- \bar{\nu}$	-0.165
$H(125) \to WW^{(*)} \to \ell^+ \nu_\ell \ell^- \bar{\nu}_\ell$	0.947
$H(200) \rightarrow WW \rightarrow \ell^+ \nu_\ell \tau^-(30) \bar{\nu}_\tau$	1.08
$pp \to ZZ \to e^+e^-\mu^+\mu^-$	-0.197
$H(125)\rightarrow ZZ^{(*)}\rightarrow e^+e^-\mu^+\mu^-$	0.604
$pp \rightarrow W^+ Z \rightarrow e^+ \nu_e \mu^+ \mu^-$	0.09

- Quantum mechanical maximum for an entangled pair of qutrits is 4/3
- System is entangled is $c_{MB}^2 > 0$

• Bell inequality $\mathcal{B}_{CGLMP}^{xy} = -\frac{2}{\sqrt{3}} \left(S_x \otimes S_x + S_y \otimes S_y \right) + \lambda_4 \otimes \lambda_4 + \lambda_5 \otimes \lambda_5$

More info in <u>Alan's talk given on Monday</u>

b) Test of entanglement and Bell inequalities in $H \rightarrow ZZ$

- [Quantum state tomography, entanglement detection and Bell violation prospects in weak decays of massive particles]: R. Ashby-Pickering, A. Barr, A. Wierzchucka
 - Experimental measurement of the density matrix parameter can be obtained by a simple angular average (expectation values) of the Wigner P functions
 - Entanglement may be demonstrated by evaluating a lower bound on the square of the concurrence: $(c(\rho))^2 \ge 2 \operatorname{tr}(\rho^2) - \operatorname{tr}(\rho_A^2) - \operatorname{tr}(\rho_B^2) \equiv c_{\mathrm{MB}}^2.$
 - How does it look in the previously mentioned **off-shell samples**?

Process	c_{MB}^2	I_3
$gg \to ZZ \to 4\ell$	0.30	0.32
$gg \to H^* \to ZZ \to 4\ell$	0.53	1.1

- Final state kinematics fed into scripts provided by Alan Barr and George Barker.
 Thank you!
- Both productions yield a positive c_{MB}^2

Conclusion/Discussion

- •Two approaches of probing quantum entanglement in $H \rightarrow ZZ(*)$ processes presented:
 - •Off-shell Higgs boson regime: measuring the LL polarisations
 - Crucial is to have reliable MC model
 - Crucial is to separate the LL component from other polarisations and the background
 - •On-shell Higgs boson regime: measuring the spin density matrix coefficients from the full reconstruction of the relevant event kinematics
 - Crucial is to understand how the measurement is affected by the presence of detector effects, event selections, HO corrections, PS, UE, PDF, FSR, etc
 - Apply unfolding?
 - Build templates?
 - •Use unbinned data?

Backup

Event selections in on-shell Higgs regime

	Trigger
Combination of sing	le-lepton, dilepton and trilepton triggers
	Leptons and Jets
Electrons	$E_{\rm T} > 7 \text{ GeV} \text{ and } \eta < 2.47$
Muons	$p_{\rm T}$ > 5 GeV and $ \eta $ < 2.7, calorimeter-tagged: $p_{\rm T}$ > 15 GeV
Jets	$p_{\rm T} > 30 \text{ GeV} \text{ and } \eta < 4.5$
	QUADRUPLETS
All combinations of	two same-flavour and opposite-charge lepton pairs
- Leading lepton pair	r: lepton pair with invariant mass m_{12} closest to the Z boson mass m_Z
- Subleading lepton j	pair: lepton pair with invariant mass m_{34} second closest to the Z boson mass m_Z
Classification accord	ling to the decay final state: 4μ , $2e2\mu$, $2\mu 2e$, $4e$
	REQUIREMENTS ON EACH QUADRUPLET
Lepton	- Three highest- $p_{\rm T}$ leptons must have $p_{\rm T}$ greater than 20, 15 and 10 GeV
RECONSTRUCTION	- At most one calorimeter-tagged or stand-alone muon
Lepton pairs	- Leading lepton pair: $50 < m_{12} < 106 \text{ GeV}$
	- Subleading lepton pair: $m_{\min} < m_{34} < 115$ GeV
	- Alternative same-flavour opposite-charge lepton pair: $m_{\ell\ell} > 5$ GeV
	- $\Delta R(\ell, \ell') > 0.10$ for all lepton pairs
Lepton isolation	- The amount of isolation $E_{\rm T}$ after summing the track-based and 40% of the
	calorimeter-based contribution must be smaller than 16% of the lepton $p_{\rm T}$
Impact parameter	- Electrons: $ d_0 /\sigma(d_0) < 5$
SIGNIFICANCE	- Muons: $ d_0 /\sigma(d_0) < 3$
Common vertex	- χ^2 -requirement on the fit of the four lepton tracks to their common vertex
	Selection of the best quadruplet
- Select quadruplet w	with m_{12} closest to m_Z from one decay final state
in decreasing order	of priority: 4μ , $2e2\mu$, $2\mu 2e$ and $4e$
- If at least one addit	ional (fifth) lepton with $p_{\rm T} > 12$ GeV meets the isolation, impact parameter
and angular separat	ion criteria, select the quadruplet with the highest matrix-element value
	Higgs boson mass window
- Correction of the fo	our-lepton invariant mass due to the FSR photons in Z boson decays
- Four-lepton invaria	nt mass window in the signal region: $115 < m_{4\ell} < 130$ GeV
- Four-lepton invaria	nt mass window in the sideband region:
$105 < m_{4\ell} < 115$ C	GeV or $130 < m_{4\ell} < 160$ (350) GeV

[arxiv:2004.03447]

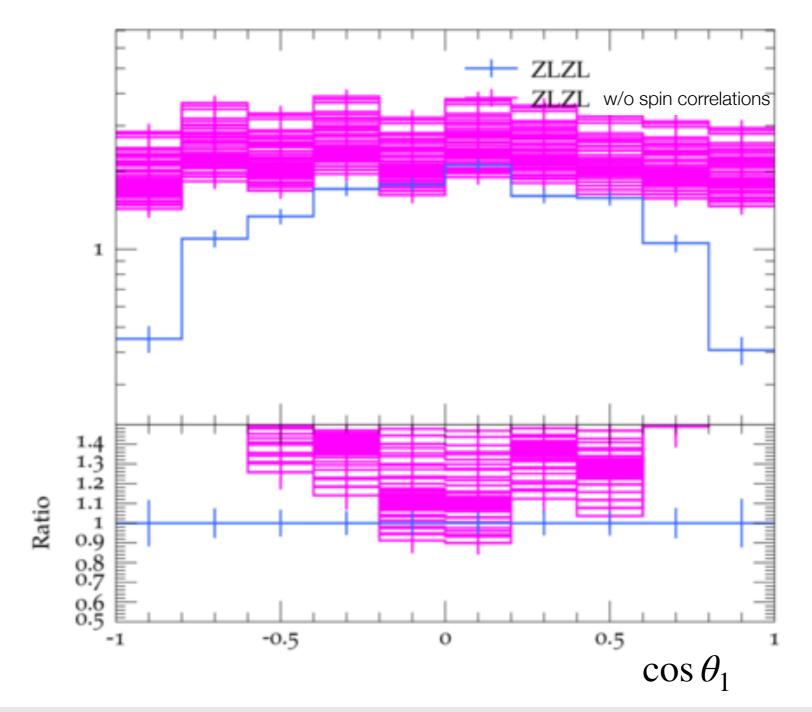
Event selections in off-shell Higgs regime

<u>4l channel</u>

- •ZZ->4I selection
 - •2 same-flavor, opposite-charge lepton pairs
 - •Leading $p_{\rm T}^{\rm lepton}$ > 20,15,10 GeV
 - $\bullet\,220 < m_{4\ell} < 2000$ GeV / $180 < m_{4\ell} < 220$ GeV (for CRs)

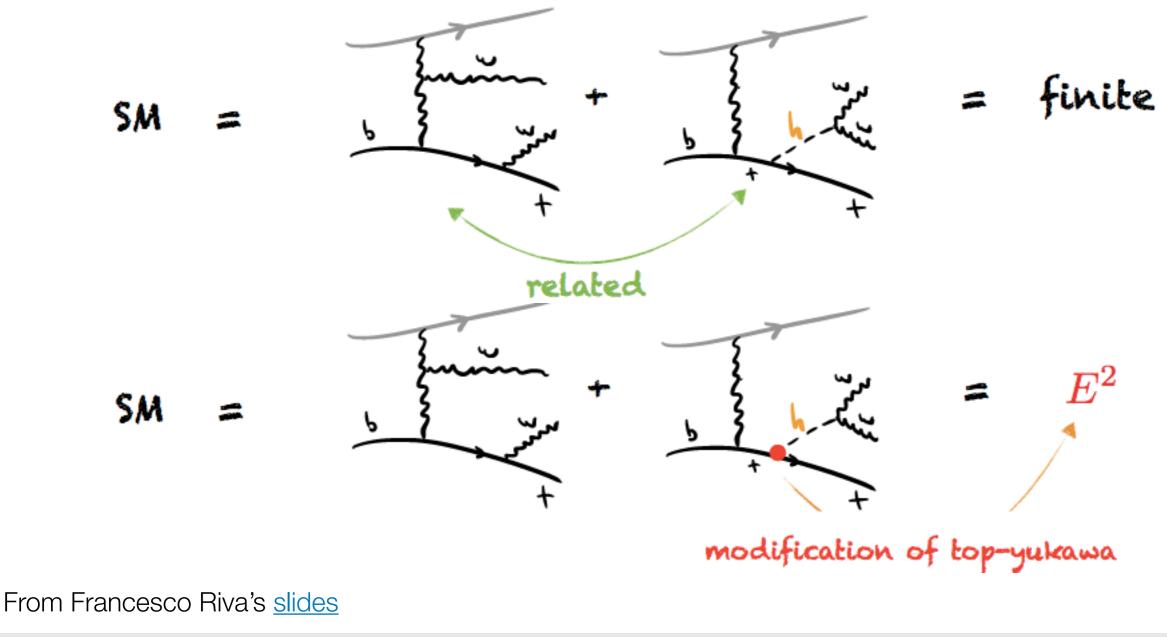
• 50 < m_{12} < 106 GeV and 50 - max(0,(190 - $m_{4\ell})/2$) < m_{34} < 115 (pair 12 defined as the pair closest to m_Z)

• <u>2l2v channel</u>

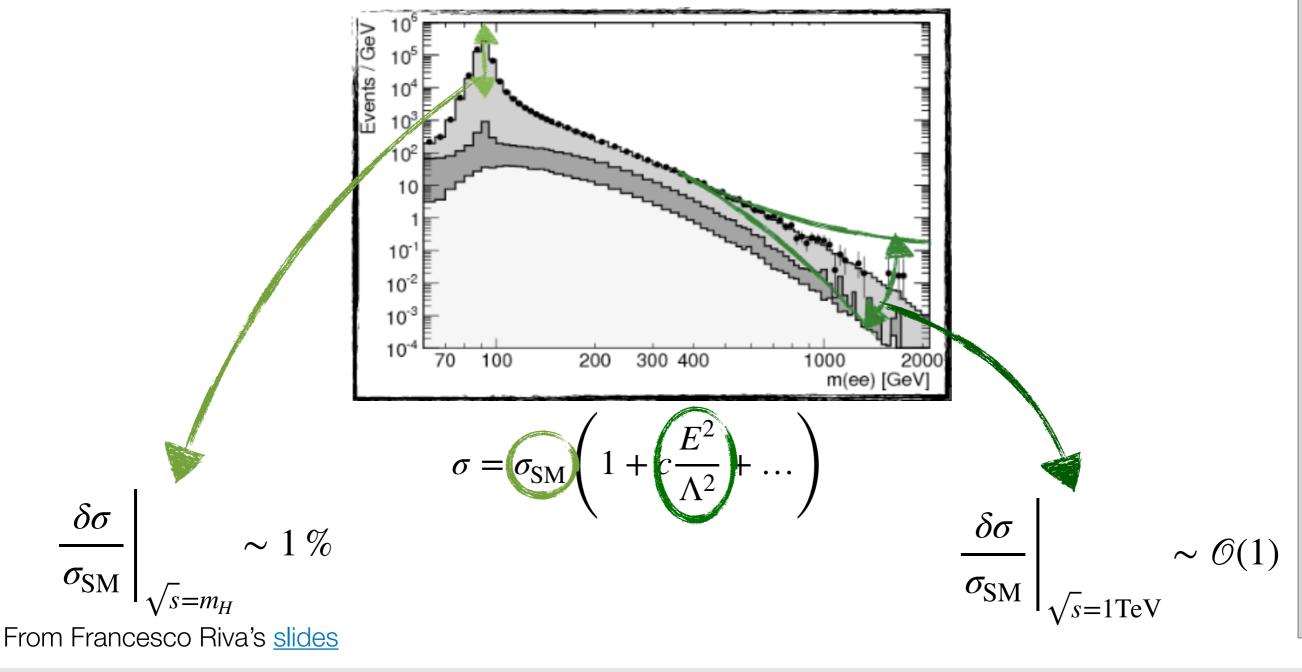

•ZZ->4l selection•Bkg rejection cuts•1 same-flavor, opposite-charge lepton pair•3th lepton veto•Leading $p_T^{\text{lepton}} > 30, 20 \text{ GeV}$ • $\Delta R_{\ell\ell} < 1.8$ •76 < $m_{\ell\ell} < 106 \text{ GeV}$ • $\Delta \phi(Z, E_T^{\text{miss}}) > 2.5 \text{ and } \Delta \phi(\text{jetp}_T > 100 \text{GeV}, E_T^{\text{miss}}) > 0.4$ • $E_T^{\text{miss}} > 120 \text{ GeV}$ • $E_T^{\text{miss}} \text{ significance } >10$ •B-jet veto[ATLAS-CONF-2022-068]

ggZZ sample used in the off-shell analysis

- Generated with Sherpa v2.2.2 + OpenLoops
 - MEs calculated for 0 jets and 1 jet at LO and merged with Sherpa parton shower
- Higher order theory corrections
 - NLO QCD corrections [Caola et al., 2015] [Caola et al., 2016]
 - Available for the full process $gg \rightarrow (H^* \rightarrow)ZZ$
 - m_{ZZ} differential NLO/LO k-factors
 - No such k-factors for the polarisation states available: in contact with the authors
 - NNLO QCD corrections [Passarino], [Handbook of LHC Higgs x-sections]
 - Available only for the signal process $gg \rightarrow H^* \rightarrow ZZ$ as a function of m_{ZZ}
 - Additional flat NNLO/NLO K-factor of 1.2


Spin correlations

• The shape of $\cos \theta_1$ distribution is sensitive to spin correlations


Longitudinally polarised vector bosons

Test the Higgs couplings in the off-shell region via their contributions to the physics of **longitudinally** polarised gauge bosons [<u>Higgs Couplings without the Higgs</u>]

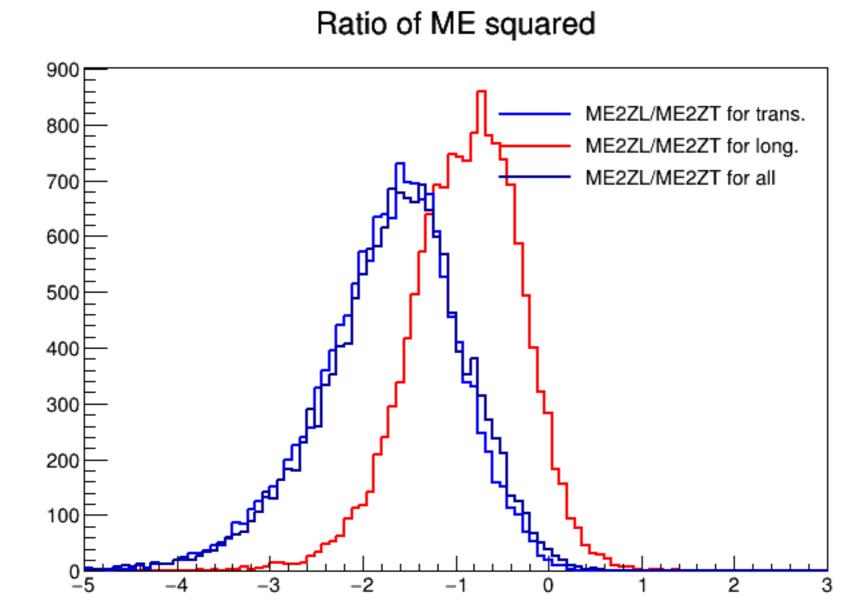
Longitudinally polarised vector bosons

Test the Higgs couplings in the off-shell region via their contributions to the physics of **longitudinally** polarised gauge bosons [Higgs Couplings without the Higgs]

Martina Javurkova (UMass) QE in HZZ leptonic decay channels Quantum Foundations Workshop 22/03/2023 39

ongitudinally polarised

vector


bosons

Which coupling constants we can probe?

Interpretation		Energy	growth
κ – framework	EFT approach	$\sim const$	$\sim E^2$
κ_G	$\left H ight ^{2}G^{a}_{\mu u}G^{a,\mu u}$	99999	2020
κ_V	$ H ^2 \partial_\mu H^\dagger \partial^\mu H$		
ĸ	$ H ^2 Q \tilde{H} t_R$	ese for	

ME ratio at LHE level

• ME ratio: $D_{ME} = \log 10(ME2_{ZL}/ME2_{ZT})$

