Noble Liquid Calorimetry: Input proposals in Track 2

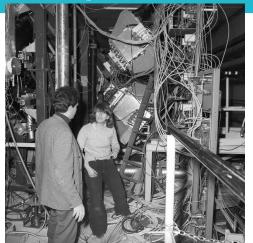
Martin Aleksa (CERN), Nicolas Morange (IJCLab), Marc-Andre Pleier (BNL)

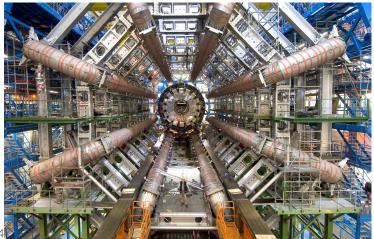
2nd DRD Calorimetry community meeting, 20/04/2023

In the end only 1(+1) proposals submitted in Track 2

ID	Title	State	Accepted type	Reviewed		
13	Common Readout AS	Awaiting Review	n/a	PD -		
34	Noble Liquid Calorim	Awaiting Review	n/a	۲D		

- *"Noble Liquid Calorimetry for Future Accelerator Experiments"*, by M. Aleksa, M.-A. Pleier and N. M.
- + transverse proposal on "Common Readout ASICs for DRD6 calorimeter prototypes" by C. de la Taille, M. Idzik and O. Gevin


Noble Liquid Calos for Future Accelerator Experiments


- Decades of success at particle physics experiments: from R806 to ATLAS
 - Mostly LAr, a bit of LKr
- An appealing option for precision measurements
 - Good energy resolution
 - High(-ish) granularity achievable
 - Radiation hardness for hadron colliders
 - Linearity, uniformity, long-term stability

Excellent solution for small systematics

Ambitious R&D plans

- High granularity noble liquid calo
- Optimization for PFlow reconstruction
- Designing for improved energy resolution
 Achieving very low noise
 Lightweight cryostats to minimize X₀
 Goal: build a small test module and do testbeam

2nd DRD Calorimetry meeting, 20/04

Participating institutes

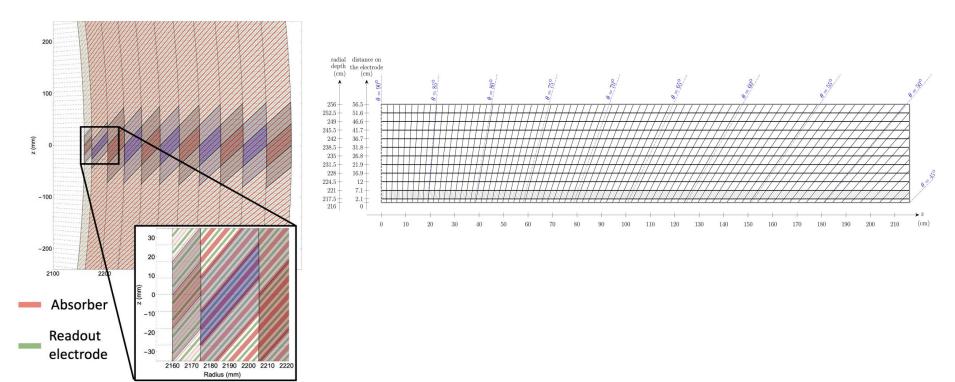
Main idea of the concept: straight PCBs as readout electrodes

Design driven by readout electrodes

Baseline (conservative) FCCee ECAL barrel design

- 1536 straight inclined (50°) 1.8mm Pb absorber plates
- Multi-layer PCBs as readout electrodes
- 1.2 2.4mm LAr gaps
- 40cm deep (22 X₀)
- $\Delta \theta$ = 10 (2.5) mrad for regular (strip) cells, $\Delta \phi$ = 8 mrad,

12 longitudinal layers


- Solid aluminum cryostat
- Implemented in FCC Fullsim

Lots of room for optimization and improvements

Geometry

Transverse

Longitudinal

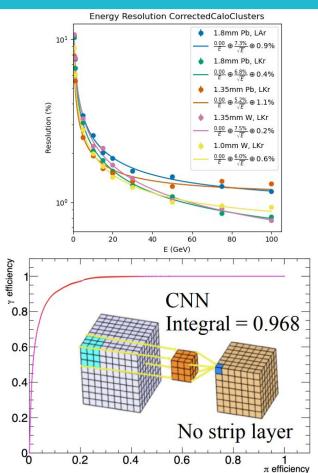

Main goals of the proposal

• Develop the calo design

- Study design solutions for endcaps
- Study general performance in simulation, in combination with some HCAL concept
- Optimize granularity
- Build a first prototype and measure

performance in testbeam

- Need to design and optimize electrodes, absorbers
- Readout electronics
- Can then be refined to test further developments / new ideas



4 Work Areas

- 1. General design and expected performance
- 2. Readout electrodes
- 3. Readout electronics
- 4. Mechanical studies and prototype

1. General design and expected performance

- Full simulation integrated in FCC software chain is a big asset
- First EM physics studies performed in 2022
 - Many more can be performed
 - Can guide LAr/LKr, granularity...
- Next major step will be addition of some HCAL in simulation, along with PFlow algorithms
 - Then can look at all physics performance metrics
- Performance in endcaps also has never been looked at
- Many opportunities for software development
 - Clever ML techniques for clustering / PID ?

1. General design and expected performance

Workplan

• Understand the required granularity

- Study pion ID (tau physics)
- Axion searches
- Jet energy reconstruction
- Using 4D imaging techniques, ML, PFlow

• Optimize design for EM resolution

- Electron and photon resolutions
- Pions, b-physics
- gap size, sampling fraction, active and passive material...

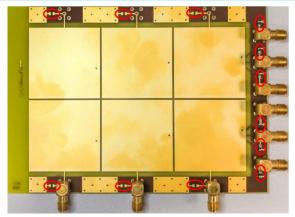
• Investigate possibility to readout Cerenkov light

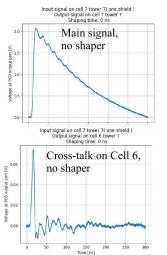
- Design feasibility
- Possible gains for timing or for DR measurements

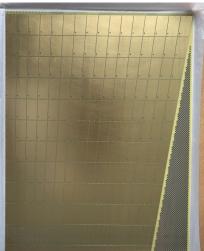
Institutes

Most institutes interested to contribute to simulation studies

 Mostly CPPM interested in the Cerenkov study


2. Readout electrodes prototypes: status


Small scale electrode @ IJCLab


- Detailed measurements of cell properties and cross-talk effects
- Frequency behaviour
- Good overall agreement with simulations on large frequency range

Larger scale electrode @ CERN

- 1:1 scale θ chunk: 16 towers with different layouts
- Electrical tests with scope and software shaper
- Sub-percent cross-talk easily achievable with > 50 ns shaping

2nd DRD Calorimetry m

2. Readout electrodes

Workplan

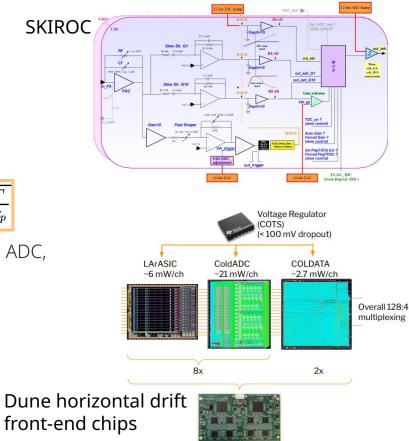
• Barrel electrodes

- Optimize granularity based on physics simulations
- Minimise noise (aim for photons down to 300 MeV and S/N>5 for MIP) and cross-talk
- Readout everything at the back
- Connectors
- HV layer, including resistors
- Aim for "final" prototype end of 2024

• Endcap electrodes

- Investigate possible geometries
- Optimize granularity
- Design prototypes

Institutes


- Barrel: CERN, IJCLab
- Endcaps: Arizona
- Also: BNL, Stony Brook

3. Readout electronics

- Warm Frontend electronics option
 - Requirements similar to other calos
 - Requires work on cables inside the cryostat
- Cold Frontend electronics option
 - Very appealing option
 - Needs dedicated work
 - How much can we put in the cold ? Preamp, ADC, multiplexer ? Optical conversion ?

 $N\sim C_{d}$,

- Power consumption is a huge challenge
- Backend electronics and DAQ
 - Requirements not yet defined

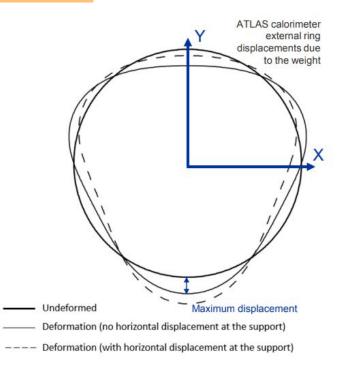
4kT

3. Readout electronics

Workplan

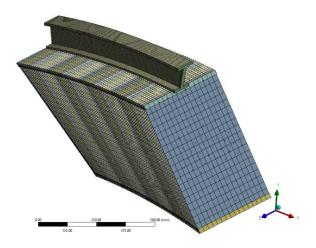
• Both Frontend options

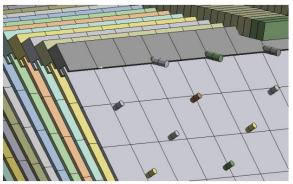
- Take advantage of synergies with existing chips and with transverse proposal by CdIT, OG and MI
- Develop frontend boards
- Warm Frontend electronics option
 - Specific work on cables inside the cryostat
- Cold Frontend electronics option
 - Adapt 'regular' chips to LAr temperatures, or start from Dune experience
 - Specific work on power consumption
- Backend electronics and DAQ
 - Requirements not yet defined


Institutes

- Frontend: BNL, Omega, IJCLab, UT Austin
- Backend: CPPM

4. Mechanical studies

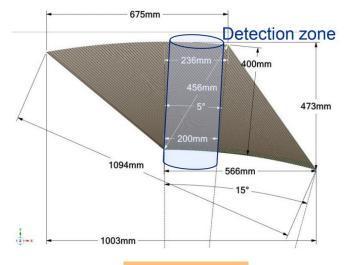

Small systematics require highly uniform and stable calorimeter


- Studies just starting
 - Identifying what are our requirements and learning from ATLAS
 - First FEM studies
- Overall challenge: make the whole structure rigid enough, while keeping light on support structures
- Lots of room for new ideas

4. Absorbers and spacers

- Basic absorber design directly inspired from ATLAS
 - Can we do better ?
 - Thickness, tolerances...
- Simpler because no accordion bending
- New idea of trapezoidal absorbers
 - Can it be done, with what tolerances ?
 - Need iterations with industry
- ATLAS spacers: honeycomb
 - Including variable size in the endcaps
- Spacers: can we instead 3D-print pillars to be placed regularly ?

4. Towards a prototype


Workplan

• Absorbers

- Find best compromise in feasibility, between thickness, rigidity, support structures
- Prototypes in 2024 and 2025
- Small module
 - Requires to put everything together
 - Design in 2024 and 2025
 - Assemble and test at warm temperatures in 2027
 - Cold tests and testbeam in 2028

Infrastructure

- Use of common tools (EUDAQ...) would facilitate the integration in a testbeam facility
- Strong testbeam expertise from some institutes

Institutes

- Absorbers: CERN
- Most institutes interested to contribute to testbeam
- Contributions in construction not yet discussed

4. Cryostat for first prototype

- Carbon fiber-based cryostats show excellent perspectives for "transparent" cryostats
 - CFRP shell + Al honeycomb sandwich
 - Optimization between X_0 and mechanical properties
- Ongoing R&Ds at CERN to address CFRP / metal interfaces, and sealing methods
- Testbeam will use prototype carbon fiber cryostat, or re-use existing aluminum cryostat

Co	in [0,45 re : Al I in [0,45	Radiation length X ₀ [mm] AI = 88.9 HM CFRP = 260 Solid Shell Honeycomb AI= 6000						
Criteria: Safety Factor = 2	Sandwich shell				Solid shell			
	HM CFRP		Al		HM CFRP		Al	
	owc	ICC	owc	ICC	owc	ICC	OWC	ICC
Material budget X/Xo	0.03	0.043	0.094	0.17	0.092	0.12	0.34	0.44
Xo % savings	-68%	-75%	REF	REF	-2%	-29%	262%	159%
Skin Th. [mm]	3.2	4.8	3.9	7.5				
Core Th. [mm]	32	38	40	40				
Total Th. [mm]	38.4	47.6	47.8	55	24	30.4	30	39
Thickness % savings	-20%	-13%	REF	REF	-50%	-45%	-37%	-29%

NASA's lineless cryotank

Sealing with Belleville washers

2nd DRD Calorimetry meeting, 20/04/2023

- TF2 united behind one common input proposal
- First definition of milestones and deliverables
 - Simulation work to define and optimize designs
 - First prototype in testbeam by 2028
- Interests of institutes still evolving