GENERATIVE TRANSFORMERS AND HOW TO EVALUATE THEM

Raghav Kansal*, Anni Li, Javier Duarte (UCSD) Nadya Chernyavskaya, Maurizio Pierini (CERN) Breno Orzari, Thiago Tomei (SPRACE)

*Also Fermilab

1

IML Meeting 14/02/2023

ML4PS @ NeurlPS 2020 NeurlPS 2021 [2211.10295 2022](https://arxiv.org/abs/2211.10295)

GENERATIVE TRANSFORMERS AND HOW TO EVALUATE THEM

Raghav Kansal*, Anni Li, Javier Duarte (UCSD) Nadya Chernyavskaya, Maurizio Pierini (CERN) Breno Orzari, Thiago Tomei (SPRACE)

*Also Fermilab

1

IML Meeting 14/02/2023

Sources [K. Pedro, HSF 2020](https://indico.cern.ch/event/941278/contributions/4084848/) [J. Duarte, ANL 2021](https://www.dropbox.com/s/vc6m16rgij6fnb7/Argonne_Edge_12Aug2021.pdf?dl=0), [Video](https://argonne.zoomgov.com/rec/play/uCjdk4Pk436S5NYn3s7VEzE7fvRhnfpUeHAq__pEclUxnzu6HANitZPWywYkCIxVFISW8xaL-TERBiCN.6lA2KaFd8UPzCj0N?continueMode=true)

• Full detector simulation takes ~40% of grid CPU resources

• HL-LHC looming

- **HL-LHC** looming
	- Order-of-magnitude more simulations needed

- **HL-LHC** looming
	- Order-of-magnitude more simulations needed
	- Improved detectors \Rightarrow higher granularity, increased complexity

Sources [K. Pedro, HSF 2020](https://indico.cern.ch/event/941278/contributions/4084848/) . Duarte, ANL 2021, [Video](https://argonne.zoomgov.com/rec/play/uCjdk4Pk436S5NYn3s7VEzE7fvRhnfpUeHAq__pEclUxnzu6HANitZPWywYkCIxVFISW8xaL-TERBiCN.6lA2KaFd8UPzCj0N?continueMode=true)

- **HL-LHC** looming
	- Order-of-magnitude more simulations needed
	- Improved detectors \Rightarrow higher granularity, increased complexity
	- ML a possible solution?

Sources [S. Sekmen, LPC 2017](https://indico.cern.ch/event/596660/contributions/2412429/attachments/1411828/2159813/SekmenFSDHowITWorks170213.pdf) [F. Krauss, Kyoto 2011](https://www.ippp.dur.ac.uk/~krauss/Lectures/MonteCarlos/MC2_Kyoto.pdf)

• Opportunity for ML alternatives in many steps

• Trading accuracy of "FullSim" (Geant) for speed

Raghav Kansal **Generative Transformers and How to Evaluate Them** 4

• Opportunity for ML alternatives in many steps

• Trading accuracy of "FullSim" (Geant) for speed

• Trading interpretability/trust for # of steps

• Lots of approaches in the last few years in ML for HEP simulations

• Lots of approaches in the last few years in ML for HEP simulations

• *"It is time to harvest"* - [CMS ML Townhall 2022](https://indico.cern.ch/event/1166570/timetable/?view=standard#6-overview-and-outlook-machine)

• Lots of approaches in the last few years in ML for HEP simulations

• *"It is time to harvest"* - [CMS ML Townhall 2022](https://indico.cern.ch/event/1166570/timetable/?view=standard#6-overview-and-outlook-machine)

• How do we choose and use these for HL-LHC?

• How do we trust generated data?

• How do we trust generated data?

• How do we compare generative models?

• How do we trust generated data? Evaluation metrics

• How do we compare generative models? Evaluation metrics

⇒ Multivariate goodness-of-fit (GOF) / two-sample test

- ⇒ Multivariate goodness-of-fit (GOF) / two-sample test
	- But no "best" GOF test ([Cousins 2016](https://www.physics.ucla.edu/~cousins/stats/ongoodness6march2016.pdf))

-
- ⇒ Multivariate goodness-of-fit (GOF) / two-sample test
	- But no "best" GOF test ([Cousins 2016](https://www.physics.ucla.edu/~cousins/stats/ongoodness6march2016.pdf))
	- Need to choose based on the relevant alternative hypotheses
• To trust generated data, tests should be:

- To trust generated data, tests should be:
	- Sensitive to quality

- To trust generated data, tests should be:
	- Sensitive to quality
	- Sensitive to diversity

- To trust generated data, tests should be:
	- Sensitive to quality
	- Sensitive to diversity
	- Multivariate (for correlations & conditional generation)

- To trust generated data, tests should be:
	- Sensitive to quality
	- Sensitive to diversity
	- Multivariate (for correlations & conditional generation)
	- Interpretable

- To trust generated data, tests should be:
	- Sensitive to quality
	- Sensitive to diversity
	- Multivariate (for correlations & conditional generation)
	- Interpretable
- To compare generative models, tests should be:

- To trust generated data, tests should be:
	- Sensitive to quality
	- Sensitive to diversity
	- Multivariate (for correlations & conditional generation)
	- Interpretable
- To compare generative models, tests should be:
	- Standardised

- To trust generated data, tests should be:
	- Sensitive to quality
	- Sensitive to diversity
	- Multivariate (for correlations & conditional generation)
	- Interpretable
- To compare generative models, tests should be:
	- Standardised
	- Reproducible

- To trust generated data, tests should be:
	- Sensitive to quality
	- Sensitive to diversity
	- Multivariate (for correlations & conditional generation)
	- Interpretable
- To compare generative models, tests should be:
	- Standardised
	- Reproducible
	- \bullet ~ Efficient

METHODS

• Traditional method for evaluating physics simulations is to compare physical distributions

• Valuable insight into physics performance

- Valuable insight into physics performance
- Should be quantified

- Valuable insight into physics performance
- Should be quantified
- Cons:

- Valuable insight into physics performance
- Should be quantified
- Cons:
	- Only ID (curse of dimensionality for multivariate histograms)

- Valuable insight into physics performance
- Should be quantified
- Cons:
	- Only ID (curse of dimensionality for multivariate histograms)
	- Binning dependent

• Traditional method for evaluating physics simulations is to compare physical distributions

- Valuable insight into physics performance
- Should be quantified
- Cons:
	- Only ID (curse of dimensionality for multivariate histograms)
	- Binning dependent
	- No well-defined way to aggregate scores across multiple distributions

Raghav Kansal Generative Transformers and How to Evaluate Them

generated $(W' \rightarrow WZ)$

generated (QCD dijets)

Pythia $(W' \rightarrow WZ)$

[1] Pythia (QCD dijets)

240

260

Discretized p_T of Jet Image

280

300

320

 $p_{\text{real}}(\mathbf{x})$ vs $p_{\text{gen}}(\mathbf{x})$

 $p_{\text{real}}(\mathbf{x})$ vs $p_{\text{gen}}(\mathbf{x})$

Integral Probability Metrics $D_{\mathscr{F}}(p_{\text{real}}, p_{\text{gen}})$

sup *f*∈ℱ $\|E_{x \sim p_{\text{real}}} f(x) - E_{y \sim p_{\text{gen}}} f(y)\|$

 $p_{\text{real}}(\mathbf{x})$ vs $p_{\text{gen}}(\mathbf{x})$

Integral Probability Metrics $D_{\mathscr{F}}(p_{\text{real}}, p_{\text{gen}})$

Wasserstein I-distance (W_1)

sup *f*∈ℱ $\|E_{x \sim p_{\text{real}}} f(x) - E_{y \sim p_{\text{gen}}} f(y)\|$

 $p_{\text{real}}(\mathbf{x})$ vs $p_{\text{gen}}(\mathbf{x})$

Integral Probability Metrics $D_{\mathscr{F}}(p_{\text{real}}, p_{\text{gen}})$

Wasserstein I-distance (W_1)

$$
\sup_{f \in \mathcal{F}} | \mathbb{E}_{x \sim p_{\text{real}}} f(x) - \mathbb{E}_{y \sim p_{\text{gen}}} f(y) |
$$

 $p_{\text{real}}(\mathbf{x})$ vs $p_{\text{gen}}(\mathbf{x})$

f-Divergences $D_f(p_{\text{real}}, p_{\text{gen}})$

Wasserstein I-distance (W_1)

$$
\sup_{f \in \mathcal{F}} | \mathbb{E}_{x \sim p_{\text{real}}} f(x) - \mathbb{E}_{y \sim p_{\text{gen}}} f(y) |
$$

 \int *p*_{real}(*x*) *f* $p_{\text{real}}(x)$ $\frac{p_{\text{gen}}(x)}{p_{\text{gen}}(x)}$

 $p_{\text{real}}(\mathbf{x})$ vs $p_{\text{gen}}(\mathbf{x})$

Integral Probability Metrics $D_{\mathscr{F}}(p_{\text{real}}, p_{\text{gen}})$

f-Divergences $D_f(p_{\text{real}}, p_{\text{gen}})$

KL

Wasserstein I-distance (W_1)

sup *f*∈ℱ $\|E_{x \sim p_{\text{real}}} f(x) - E_{y \sim p_{\text{gen}}} f(y)\|$

 \int *p*_{real}(*x*) *f* $p_{\text{real}}(x)$ $\frac{p_{\text{gen}}(x)}{p_{\text{gen}}(x)}$

 $p_{\text{real}}(\mathbf{x})$ vs $p_{\text{gen}}(\mathbf{x})$

Integral Probability Metrics $D_{\mathscr{F}}(p_{\text{real}}, p_{\text{gen}})$

f-Divergences $D_f(p_{\text{real}}, p_{\text{gen}})$

Wasserstein I-distance (W_1)

sup *f*∈ℱ $\|E_{x \sim p_{\text{real}}} f(x) - E_{y \sim p_{\text{gen}}} f(y)\|$

maximum mean discrepancy (MMD)

 \int *p*_{real}(*x*) *f* $p_{\text{real}}(x)$ $\frac{p_{\text{gen}}(x)}{p_{\text{gen}}(x)}$

KL JS

 $p_{\text{real}}(\mathbf{x})$ vs $p_{\text{gen}}(\mathbf{x})$

Integral Probability Metrics $D_{\mathscr{F}}(p_{\text{real}}, p_{\text{gen}})$

f-Divergences $D_f(p_{\text{real}}, p_{\text{gen}})$

KL JS

Wasserstein I-distance (W_1)

sup *f*∈ℱ $\|E_{x \sim p_{\text{real}}} f(x) - E_{y \sim p_{\text{gen}}} f(y)\|$

 \int *p*_{real}(*x*) *f* $p_{\text{real}}(x)$ $\frac{p_{\text{gen}}(x)}{p_{\text{gen}}(x)}$

Pearson *χ*²

 $p_{\text{real}}(\mathbf{x})$ vs $p_{\text{gen}}(\mathbf{x})$

Integral Probability Metrics $D_{\mathscr{F}}(p_{\text{real}}, p_{\text{gen}})$

f-Divergences $D_f(p_{\text{real}}, p_{\text{gen}})$

KL JS

Wasserstein I-distance (W_1)

$$
\sup_{f \in \mathcal{F}} | \mathbb{E}_{x \sim p_{\text{real}}} f(x) - \mathbb{E}_{y \sim p_{\text{gen}}} f(y) |
$$

maximum mean discrepancy (MMD)

 \int *p*_{real}(*x*) *f* $p_{\text{real}}(x)$ $\frac{p_{\text{gen}}(x)}{p_{\text{gen}}(x)}$

Pearson *χ*²

• IPMs take into account metric space

 $p_{\text{real}}(\mathbf{x})$ vs $p_{\text{gen}}(\mathbf{x})$

f-Divergences $D_f(p_{\text{real}}, p_{\text{gen}})$

KL JS

Wasserstein I-distance (W_1)

$$
\sup_{f \in \mathcal{F}} | \mathbb{E}_{x \sim p_{\text{real}}} f(x) - \mathbb{E}_{y \sim p_{\text{gen}}} f(y) |
$$

maximum mean discrepancy (MMD)

• IPMs take into account metric space

 \int *p*_{real}(*x*) *f* $p_{\text{real}}(x)$ $\frac{p_{\text{gen}}(x)}{p_{\text{gen}}(x)}$

Pearson *χ*²

Real Jet Mass (GeV)

100 200 300 400 500

 $p_{\text{real}}(\mathbf{x})$ vs $p_{\text{gen}}(\mathbf{x})$

f-Divergences $D_f(p_{\text{real}}, p_{\text{gen}})$

Wasserstein I-distance (W_1)

$$
\sup_{f \in \mathcal{F}} | \mathbb{E}_{x \sim p_{\text{real}}} f(x) - \mathbb{E}_{y \sim p_{\text{gen}}} f(y) |
$$

maximum mean discrepancy (MMD)

• IPMs take into account metric space

KL JS

Pearson *χ*²

Raghav Kansal Generative Transformers and How to Evaluate Them

500

Generated Jet Mass 1 (GeV)

f-Divergences $D_f(p_{\text{real}}, p_{\text{gen}})$

Wasserstein I-distance (W_1)

$$
\sup_{f \in \mathcal{F}} | \mathbb{E}_{x \sim p_{\text{real}}} f(x) - \mathbb{E}_{y \sim p_{\text{gen}}} f(y) |
$$

maximum mean discrepancy (MMD)

• IPMs take into account metric space

KL JS

Pearson *χ*²

KL, JS, χ^2 is the same for both

Raghav Kansal Generative Transformers and How to Evaluate Them

100 200 300 400 500

Generated Jet Mass 2 (GeV)

 $p_{\text{real}}(\mathbf{x})$ vs $p_{\text{gen}}(\mathbf{x})$

f-Divergences $D_f(p_{\text{real}}, p_{\text{gen}})$

Wasserstein I-distance (W_1)

$$
\sup_{f \in \mathcal{F}} | \mathbb{E}_{x \sim p_{\text{real}}} f(x) - \mathbb{E}_{y \sim p_{\text{gen}}} f(y) |
$$

maximum mean discrepancy (MMD)

- IPMs take into account metric space
- More useful for comparing generative models

KL JS

Pearson *χ*²

KL, JS, χ^2 is the same for both

Raghav Kansal Generative Transformers and How to Evaluate Them

100 200 300 400 500

Generated Jet Mass 2 (GeV)

 $p_{\text{real}}(\mathbf{x})$ vs $p_{\text{gen}}(\mathbf{x})$

f-Divergences $D_f(p_{\text{real}}, p_{\text{gen}})$

Wasserstein I-distance (W_1)

$$
\sup_{f \in \mathcal{F}} | \mathbb{E}_{x \sim p_{\text{real}}} f(x) - \mathbb{E}_{y \sim p_{\text{gen}}} f(y) |
$$

maximum mean discrepancy (MMD)

- IPMs take into account metric space
- More useful for comparing generative models
- And more efficient to calculate in high dimensions

KL
\n
$$
\int p_{\text{real}}(x) f\left(\frac{p_{\text{real}}(x)}{p_{\text{gen}}(x)}\right) dx
$$

Pearson
$$
\chi^2
$$

KL, JS, χ^2 is the same for both

Raghav Kansal Generative Transformers and How to Evaluate Them

100 200 300 400 500

Generated Jet Mass 2 (GeV)

MORE ON IPMS

f∈ℱ $\|E_{x \sim p_{\text{real}}} f(x) - E_{y \sim p_{\text{gen}}} f(y)\|$

MORE ON IPMS

• Wasserstein distance (W_1) $(\mathcal{F}% _{k}(G)_{k})$ is all K-Lipschitz functions)

sup *f*∈ℱ $\|E_{x \sim p_{\text{real}}} f(x) - E_{y \sim p_{\text{gen}}} f(y)\|$

sup *f*∈ℱ $\|E_{x \sim p_{\text{real}}} f(x) - E_{y \sim p_{\text{gen}}} f(y)\|$

• Wasserstein distance (W_1) $(\mathcal{F}% _{k}(G)_{k})$ is all K-Lipschitz functions)

• Sensitive to quality, diversity; but biased and slow convergence

sup *f*∈ℱ $\|E_{x \sim p_{\text{real}}} f(x) - E_{y \sim p_{\text{gen}}} f(y)\|$

- Wasserstein distance (W_1) $(\mathcal{F}% _{k}(G)_{k})$ is all K-Lipschitz functions)
	- Sensitive to quality, diversity; but biased and slow convergence
- Fréchet Gaussian distance (FGD)

- Wasserstein distance (W_1) $(\mathcal{F}% _{k}(G)_{k})$ is all K-Lipschitz functions)
	- Sensitive to quality, diversity; but biased and slow convergence
- Fréchet Gaussian distance (FGD)
	- Fréchet / W_2 distance between multivariate Gaussian fitted to observations

- Wasserstein distance (W_1) $(\mathcal{F}% _{k}(G)_{k})$ is all K-Lipschitz functions)
	- Sensitive to quality, diversity; but biased and slow convergence
- Fréchet Gaussian distance (FGD)
	- Fréchet / W_2 distance between multivariate Gaussian fitted to observations
	- Standard in computer vision (FID), efficient, sensitive to quality + diversity; but access only up to 2nd order moments

- Wasserstein distance (W_1) $(\mathcal{F}% _{k}(G)_{k})$ is all K-Lipschitz functions)
	- Sensitive to quality, diversity; but biased and slow convergence
- Fréchet Gaussian distance (FGD)
	- Fréchet / W_2 distance between multivariate Gaussian fitted to observations
	- Standard in computer vision (FID), efficient, sensitive to quality + diversity; but access only up to 2nd order moments
- Maximum Mean Discrepancy (MMD) (ℱ is unit ball in reproducing Kernel Hilbert space (RKHS) for a chosen kernel *k*(*x*, *y*))

 $\mathcal{T}_{p\rightarrow q}(\mathbf{x})$

 $p(\mathbf{x})$

Raghav Kansal Generative Transformers and How to Evaluate Them 13

MORE ON IPMS

- Wasserstein distance (W_1) $(\mathcal{F}% _{k}(G)_{k})$ is all K-Lipschitz functions)
	- Sensitive to quality, diversity; but biased and slow convergence
- Fréchet Gaussian distance (FGD)
	- Fréchet / W_2 distance between multivariate Gaussian fitted to observations
	- Standard in computer vision (FID), efficient, sensitive to quality + diversity; but access only up to 2nd order moments
- Maximum Mean Discrepancy (MMD) (ℱ is unit ball in reproducing Kernel Hilbert space (RKHS) for a chosen kernel *k*(*x*, *y*))
	- Distance between embeddings of p_{real} and p_{gen} in RKHS

[Gretton 2020](https://www.gatsby.ucl.ac.uk/~gretton/papers/oxford20.pdf)

Raghav Kansal Generative Transformers and How to Evaluate Them 13

MORE ON IPMS

- Wasserstein distance (W_1) $(\mathcal{F}% _{k}(G)_{k})$ is all K-Lipschitz functions)
	- Sensitive to quality, diversity; but biased and slow convergence
- Fréchet Gaussian distance (FGD)
	- Fréchet / W_2 distance between multivariate Gaussian fitted to observations
	- Standard in computer vision (FID), efficient, sensitive to quality + diversity; but access only up to 2nd order moments
- Maximum Mean Discrepancy (MMD) (ℱ is unit ball in reproducing Kernel Hilbert space (RKHS) for a chosen kernel *k*(*x*, *y*))
	- Distance between embeddings of p_{real} and p_{gen} in RKHS
	- Fast, unbiased estimators, used in computer vision (KID) but depends on kernel

[Gretton 2020](https://www.gatsby.ucl.ac.uk/~gretton/papers/oxford20.pdf)

• Precision and recall ([Kynkäänniemi et al 2019](https://arxiv.org/pdf/1904.06991.pdf))

- Precision and recall ([Kynkäänniemi et al 2019](https://arxiv.org/pdf/1904.06991.pdf))
	- Estimate real and generated manifold

- Precision and recall ([Kynkäänniemi et al 2019](https://arxiv.org/pdf/1904.06991.pdf))
	- Estimate real and generated manifold
	- Can disentangle quality and diversity

- Precision and recall ([Kynkäänniemi et al 2019](https://arxiv.org/pdf/1904.06991.pdf))
	- Estimate real and generated manifold
	- Can disentangle quality and diversity

• Classifier-based metrics: train a classifier between real and generated data [Friedman 2003](https://www.slac.stanford.edu/econf/C030908/papers/THPD002.pdf), [Paz and Oquab 2017](https://arxiv.org/pdf/1610.06545.pdf) (C2ST), [Krause and Shih \(2021\)](https://arxiv.org/pdf/2106.05285.pdf)

- Precision and recall ([Kynkäänniemi et al 2019](https://arxiv.org/pdf/1904.06991.pdf))
	- Estimate real and generated manifold
	- Can disentangle quality and diversity

- Classifier-based metrics: train a classifier between real and generated data [Friedman 2003](https://www.slac.stanford.edu/econf/C030908/papers/THPD002.pdf), [Paz and Oquab 2017](https://arxiv.org/pdf/1610.06545.pdf) (C2ST), [Krause and Shih \(2021\)](https://arxiv.org/pdf/2106.05285.pdf)
	- Can be powerful test of quality and diversity

- Precision and recall ([Kynkäänniemi et al 2019](https://arxiv.org/pdf/1904.06991.pdf))
	- Estimate real and generated manifold
	- Can disentangle quality and diversity

- Classifier-based metrics: train a classifier between real and generated data [Friedman 2003](https://www.slac.stanford.edu/econf/C030908/papers/THPD002.pdf), [Paz and Oquab 2017](https://arxiv.org/pdf/1610.06545.pdf) (C2ST), [Krause and Shih \(2021\)](https://arxiv.org/pdf/2106.05285.pdf)
	- Can be powerful test of quality and diversity
	- Practical limitations: interpretability, generalising to conditional generation, standardising a specific architecture for all alternative hypotheses, reproducability of trainings, inefficiency

- Precision and recall ([Kynkäänniemi et al 2019](https://arxiv.org/pdf/1904.06991.pdf))
	- Estimate real and generated manifold
	- Can disentangle quality and diversity

- Classifier-based metrics: train a classifier between real and generated data [Friedman 2003](https://www.slac.stanford.edu/econf/C030908/papers/THPD002.pdf), [Paz and Oquab 2017](https://arxiv.org/pdf/1610.06545.pdf) (C2ST), [Krause and Shih \(2021\)](https://arxiv.org/pdf/2106.05285.pdf)
	- Can be powerful test of quality and diversity
	- Practical limitations: interpretability, generalising to conditional generation, standardising a specific architecture for all alternative hypotheses, reproducability of trainings, inefficiency
	- In terms of GOF testing: comparing different test statistics for different models

• Typically raw data (particle / hit features) is very high dimensional

- Typically raw data (particle / hit features) is very high dimensional
- Not necessarily what we care about

- Typically raw data (particle / hit features) is very high dimensional
- Not necessarily what we care about
- ML solution: derive lower dimensional salient features from a pre-trained classifier

- Typically raw data (particle / hit features) is very high dimensional
- Not necessarily what we care about
- ML solution: derive lower dimensional salient features from a pre-trained classifier

• Alternative? Use physicists' hand-engineered features: jet observables, shower-shape variables

TESTS

• Sample of gluon jets to test sensitivity of metrics

- Sample of gluon jets to test sensitivity of metrics
- We distort true distribution by: 1) Re-weighting in mass + 2) Smearing/shifting particle feature

- Sample of gluon jets to test sensitivity of metrics
- We distort true distribution by: 1) Re-weighting in mass + 2) Smearing/shifting particle feature

• We look at sensitivity of metrics to distortions, using:

- Sample of gluon jets to test sensitivity of metrics
- We distort true distribution by: 1) Re-weighting in mass + 2) Smearing/shifting particle feature

- We look at sensitivity of metrics to distortions, using:
	- 1. Energy Flow Polynomials (EFPs) $(d \le 4)$

- Sample of gluon jets to test sensitivity of metrics
- We distort true distribution by: 1) Re-weighting in mass + 2) Smearing/shifting particle feature

- We look at sensitivity of metrics to distortions, using:
	- 1. Energy Flow Polynomials (EFPs) $(d \le 4)$
	- 2. ParticleNet activations

Raghav Kansal Generative Transformers and How to Evaluate Them

RESULTS [RK et al. 2022](https://arxiv.org/abs/2211.10295)

distribution in bold

Most sensitive metric per
distribution in bold
RESULTS

• W_1^M - looking at ID mass distribution only is somewhat sensitive to all

Raghav Kansal Generative Transformers and How to Evaluate Them

distribution in bold

Most sensitive metric per

distribution in bold

RESULTS

[RK et al. 2022](https://arxiv.org/abs/2211.10295)

- W_1^M looking at ID mass distribution only is somewhat sensitive to all
- Wasserstein is sensitive to most, but slow to converge

Raghav Kansal **Generative Transformers and How to Evaluate Them**

- W_1^M looking at ID mass distribution only is somewhat sensitive to all
- Wasserstein is sensitive to most, but slow to converge
- EFPs and PNet activations performance similar

 \mathbf{N}

- W_1^M looking at ID mass distribution only somewhat sensitive to all
- Wasserstein is sensitive to most, but slow o converge
- FPs and PNet activations performance imilar

recision, recall work roughly - useful for liagnosing failure modes but not for comparing

Metr

 W_1^M

Wass

FGD

MM

Preci

Reca

 $\qquad \qquad = \qquad$ Wass

FGD

MM

Reca

 $\qquad \qquad = \qquad$

- W_1^M looking at ID mass distribution only is somewhat sensitive to all
- Wasserstein is sensitive to most, but slow to converge
- EFPs and PNet activations performance similar
- Precision, recall work roughly useful for diagnosing failure modes but not for comparing
- Classifiers, low-level (LLF) and high-level features (HLF), identify particle feature distortions but miss distribution-level discrepancies

Most sensitive metric per

distribution in bold

ALSULTS distribution in bold

[RK et al. 2022](https://arxiv.org/abs/2211.10295)

- W_1^M looking at ID mass distribution only is somewhat sensitive to all
- Wasserstein is sensitive to most, but slow to converge
- EFPs and PNet activations performance similar
- Precision, recall work roughly useful for diagnosing failure modes but not for comparing
- Classifiers, low-level (LLF) and high-level features (HLF), identify particle feature distortions but miss distribution-level discrepancies
- FGD is the most sensitive to all distortions

Most sensitive metric per

distribution in bold

ALSULTS distribution in bold

- W_1^M looking at ID mass distribution only is somewhat sensitive to all
- Wasserstein is sensitive to most, but slow to converge
- EFPs and PNet activations performance similar
- Precision, recall work roughly useful for diagnosing failure modes but not for comparing
- Classifiers, low-level (LLF) and high-level features (HLF), identify particle feature distortions but miss distribution-level discrepancies
- FGD is the most sensitive to all distortions
- MMD reasonably sensitive to most
• Re-iterating [Cousins 2016:](https://www.physics.ucla.edu/~cousins/stats/ongoodness6march2016.pdf) no best GOF test for all alternative hypotheses

- Re-iterating [Cousins 2016:](https://www.physics.ucla.edu/~cousins/stats/ongoodness6march2016.pdf) no best GOF test for all alternative hypotheses
	- His suggestion: use multiple, covering the relevant alternatives

- Re-iterating [Cousins 2016:](https://www.physics.ucla.edu/~cousins/stats/ongoodness6march2016.pdf) no best GOF test for all alternative hypotheses
	- His suggestion: use multiple, covering the relevant alternatives
- FGD proves to be the most sensitive for typical distortions we expect

- Re-iterating [Cousins 2016:](https://www.physics.ucla.edu/~cousins/stats/ongoodness6march2016.pdf) no best GOF test for all alternative hypotheses
	- His suggestion: use multiple, covering the relevant alternatives
- FGD proves to be the most sensitive for typical distortions we expect
	- Hand-engineered features and ParticleNet activations are similarly sensitive

- Re-iterating [Cousins 2016:](https://www.physics.ucla.edu/~cousins/stats/ongoodness6march2016.pdf) no best GOF test for all alternative hypotheses
	- His suggestion: use multiple, covering the relevant alternatives
- FGD proves to be the most sensitive for typical distortions we expect
	- Hand-engineered features and ParticleNet activations are similarly sensitive
	- Hand engineered are more interpretable, standardisable, and efficient

- Re-iterating [Cousins 2016:](https://www.physics.ucla.edu/~cousins/stats/ongoodness6march2016.pdf) no best GOF test for all alternative hypotheses
	- His suggestion: use multiple, covering the relevant alternatives
- FGD proves to be the most sensitive for typical distortions we expect
	- Hand-engineered features and ParticleNet activations are similarly sensitive
	- Hand engineered are more interpretable, standardisable, and efficient
	- ⇒ Recommend Fréchet Physics Distance (FPD), using EFPs and shower-shape variables, for overall model evaluation and comparison

- Re-iterating [Cousins 2016:](https://www.physics.ucla.edu/~cousins/stats/ongoodness6march2016.pdf) no best GOF test for all alternative hypotheses
	- His suggestion: use multiple, covering the relevant alternatives
- FGD proves to be the most sensitive for typical distortions we expect
	- Hand-engineered features and ParticleNet activations are similarly sensitive
	- Hand engineered are more interpretable, standardisable, and efficient
	- ⇒ Recommend Fréchet Physics Distance (FPD), using EFPs and shower-shape variables, for overall model evaluation and comparison
	- Multivariate so directly applicable to conditional evaluation

- Re-iterating [Cousins 2016:](https://www.physics.ucla.edu/~cousins/stats/ongoodness6march2016.pdf) no best GOF test for all alternative hypotheses
	- His suggestion: use multiple, covering the relevant alternatives
- FGD proves to be the most sensitive for typical distortions we expect
	- Hand-engineered features and ParticleNet activations are similarly sensitive
	- Hand engineered are more interpretable, standardisable, and efficient
	- ⇒ Recommend Fréchet Physics Distance (FPD), using EFPs and shower-shape variables, for overall model evaluation and comparison
	- Multivariate so directly applicable to conditional evaluation
- But FGD can miss shape discrepancies, so use as well:

- Re-iterating [Cousins 2016:](https://www.physics.ucla.edu/~cousins/stats/ongoodness6march2016.pdf) no best GOF test for all alternative hypotheses
	- His suggestion: use multiple, covering the relevant alternatives
- FGD proves to be the most sensitive for typical distortions we expect
	- Hand-engineered features and ParticleNet activations are similarly sensitive
	- Hand engineered are more interpretable, standardisable, and efficient
	- ⇒ Recommend Fréchet Physics Distance (FPD), using EFPs and shower-shape variables, for overall model evaluation and comparison
	- Multivariate so directly applicable to conditional evaluation
- But FGD can miss shape discrepancies, so use as well:
	- Kernel Physics Distance (KPD) (MMD)

- Re-iterating [Cousins 2016:](https://www.physics.ucla.edu/~cousins/stats/ongoodness6march2016.pdf) no best GOF test for all alternative hypotheses
	- His suggestion: use multiple, covering the relevant alternatives
- FGD proves to be the most sensitive for typical distortions we expect
	- Hand-engineered features and ParticleNet activations are similarly sensitive
	- Hand engineered are more interpretable, standardisable, and efficient
	- ⇒ Recommend Fréchet Physics Distance (FPD), using EFPs and shower-shape variables, for overall model evaluation and comparison
	- Multivariate so directly applicable to conditional evaluation
- But FGD can miss shape discrepancies, so use as well:
	- Kernel Physics Distance (KPD) (MMD)
	- And continue with ID distributions (W_1)

Raghav Kansal Generative Transformers and How to Evaluate Them

JET SIMULATION

zenodo.org/record/5502543 DATASET

• Test-bench: Pythia-simulated high p_T jets ("JetNet")

zenodo.org/record/5502543 DATASET

• Test-bench: Pythia-simulated high p_T jets ("JetNet")

• 30 highest p_T particles, $(\eta^{rel}, \phi^{rel}, p_T^{rel})$ features

zenodo.org/record/5502543

DATASET

• Test-bench: Pythia-simulated high p_T jets ("JetNet")

• 30 highest p_T particles, $(\eta^{rel}, \phi^{rel}, p_T^{rel})$ features

φ

 \bigcirc

 $η$ ₁ 0 0

 \bigcirc

Particle Cloud

 \circ o

 \bigcirc

JetNet

φ

zenodo.org/record/5502543

DATASET

• Test-bench: Pythia-simulated high p_T jets ("JetNet")

• 30 highest p_T particles, $(\eta^{rel}, \phi^{rel}, p_T^{rel})$ features

• Gen particle \rightarrow Reco jet

ο
_{η</sup> + ^{Ο} Ο</sub>}

 \bigcirc

Particle Cloud

 \circ o

 \bigcirc

JetNet

φ

zenodo.org/record/5502543

DATASET

• Test-bench: Pythia-simulated high p_T jets ("JetNet")

• 30 highest p_T particles, $(\eta^{rel}, \phi^{rel}, p_T^{rel})$ features

• Gen particle → Reco jet

^{*η*} 4 0 ⁰

 \bigcirc

Particle Cloud

 \circ \circ

 \bigcirc

 $25k$ downloads, $[1, 2, 3]$ $[1, 2, 3]$ $[1, 2, 3]$ $[1, 2, 3]$ $[1, 2, 3]$ $[1, 2, 3]$

JetNet

[JetNet Library](https://github.com/jet-net/jetnet):

φ

zenodo.org/record/5502543

DATASET

• Test-bench: Pythia-simulated high p_T jets ("JetNet")

• 30 highest p_T particles, $(\eta^{rel}, \phi^{rel}, p_T^{rel})$ features

RK et al., NeurlPS 2021

APPROACH 1: MPGAN

• Majority of work, while successful, is image-based

• Majority of work, while successful, is image-based

• Difficult to scale to HL-LHC and apply to e.g CMS high-granularity calorimeter

• Majority of work, while successful, is image-based

• Difficult to scale to HL-LHC and apply to e.g CMS high-granularity calorimeter

• We develop a particle cloud, graph-based approach

• Majority of work, while successful, is image-based

• Difficult to scale to HL-LHC and apply to e.g CMS high-granularity calorimeter

• We develop a particle cloud, graph-based approach

• Key ideas:

• Majority of work, while successful, is image-based

• Difficult to scale to HL-LHC and apply to e.g CMS high-granularity calorimeter

• We develop a particle cloud, graph-based approach

- Key ideas:
	- Natural, sparse, and flexible representation for data

• Majority of work, while successful, is image-based

• Difficult to scale to HL-LHC and apply to e.g CMS high-granularity calorimeter

• We develop a particle cloud, graph-based approach

- Key ideas:
	- Natural, sparse, and flexible representation for data
	- Learn global features *and* inter-particle correlations (i.e. jet, shower structure)

GANS: GENERATIVE ADVERSARIAL NETWORKS

GANS: GENERATIVE ADVERSARIAL NETWORKS

RK et al., NeurlPS 2021

RK et al., NeurlPS 2021

MPGAN

• We develop a GAN with a fully-connected message-passing (MP) generator and discriminator

• We develop a GAN with a fully-connected message-passing (MP) generator and discriminator

• We develop a GAN with a fully-connected message-passing (MP) generator and discriminator

• We develop a GAN with a fully-connected message-passing (MP) generator and discriminator

• We develop a GAN with a fully-connected message-passing (MP) generator and discriminator

RK et al., NeurlPS 2021

• We develop a GAN with a fully-connected message-passing (MP) generator and discriminator

RK et al., NeurlPS 2021

• We develop a GAN with a fully-connected message-passing (MP) generator and discriminator

• We develop a GAN with a fully-connected message-passing (MP) generator and discriminator

> *f t e*

 $f_{ij}^{t+1} = f_e^{t+1}(\mathbf{h}_i^t \oplus \mathbf{h}_j^t)$

MP Generator

RK et al., NeurlPS 2021

• We develop a GAN with a fully-connected message-passing (MP) generator and discriminator

 $f_{ij}^{t+1} = f_e^{t+1}(\mathbf{h}_i^t \oplus \mathbf{h}_j^t)$ ${\bf h}_v^{t+1} = f_n^{t+1}({\bf h}_i^t \oplus \sum {\bf m}_{ij}^{t+1})$ *j*∈*J*

MP Generator

RK et al., NeurlPS 2021

• We develop a GAN with a fully-connected message-passing (MP) generator and discriminator

 $f_{ij}^{t+1} = f_e^{t+1}(\mathbf{h}_i^t \oplus \mathbf{h}_j^t)$ ${\bf h}_v^{t+1} = f_n^{t+1}({\bf h}_i^t \oplus \sum {\bf m}_{ij}^{t+1})$ *j*∈*J*

 \mathbf{h}^0_1 1

RK et al., NeurlPS 2021

• We develop a GAN with a fully-connected message-passing (MP) generator and discriminator

 $f_{ij}^{t+1} = f_e^{t+1}(\mathbf{h}_i^t \oplus \mathbf{h}_j^t)$ ${\bf h}_v^{t+1} = f_n^{t+1}({\bf h}_i^t \oplus \sum {\bf m}_{ij}^{t+1})$ *j*∈*J*

 $\times T$

 \mathbf{h}_2^T 2

RK et al., NeurlPS 2021

• We develop a GAN with a fully-connected message-passing (MP) generator and discriminator

 $f_{ij}^{t+1} = f_e^{t+1}(\mathbf{h}_i^t \oplus \mathbf{h}_j^t)$ ${\bf h}_v^{t+1} = f_n^{t+1}({\bf h}_i^t \oplus \sum {\bf m}_{ij}^{t+1})$ *j*∈*J*

 $\times T$

 \mathbf{h}_2^T 2

RK et al., NeurlPS 2021

• We develop a GAN with a fully-connected message-passing (MP) generator and discriminator

 $f_{ij}^{t+1} = f_e^{t+1}(\mathbf{h}_i^t \oplus \mathbf{h}_j^t)$ ${\bf h}_v^{t+1} = f_n^{t+1}({\bf h}_i^t \oplus \sum {\bf m}_{ij}^{t+1})$ *j*∈*J*

MP Discriminator

 \mathbf{h}_2^T 2

RK et al., NeurlPS 2021

• We develop a GAN with a fully-connected message-passing (MP) generator and discriminator

 $f_{ij}^{t+1} = f_e^{t+1}(\mathbf{h}_i^t \oplus \mathbf{h}_j^t)$ ${\bf h}_v^{t+1} = f_n^{t+1}({\bf h}_i^t \oplus \sum {\bf m}_{ij}^{t+1})$ *j*∈*J*

MP Discriminator

2

RK et al., NeurlPS 2021

• We develop a GAN with a fully-connected message-passing (MP) generator and discriminator

 $f_{ij}^{t+1} = f_e^{t+1}(\mathbf{h}_i^t \oplus \mathbf{h}_j^t)$ ${\bf h}_v^{t+1} = f_n^{t+1}({\bf h}_i^t \oplus \sum {\bf m}_{ij}^{t+1})$ *j*∈*J*

MP Discriminator

Raghav Kansal Generative Transformers and How to Evaluate Them

RK et al., NeurlPS 2021

 $f_{ij}^{t+1} = f_e^{t+1}(\mathbf{h}_i^t \oplus \mathbf{h}_j^t)$ ${\bf h}_v^{t+1} = f_n^{t+1}({\bf h}_i^t \oplus \sum {\bf m}_{ij}^{t+1})$ *j*∈*J*

MP Discriminator

MP Generator

Raghav Kansal Generative Transformers and How to Evaluate Them

MPGAN: RESULTS RK et al., NeurlPS 2021

Raghav Kansal Generative Transformers and How to Evaluate Them 1965 1976 1989

Raghav Kansal Generative Transformers and How to Evaluate Them ||

• MPGAN (blue) learns real (red) distributions well

Raghav Kansal Generative Transformers and How to Evaluate Them

- MPGAN (blue) learns real (red) distributions well
- Outperforms all existing point cloud GANS (metrics in backup)

Raghav Kansal Generative Transformers and How to Evaluate Them

[RK et al., 2022](https://arxiv.org/abs/2211.10295)

APPROACH 2: GAPT

[RK et al., 2022](https://arxiv.org/abs/2211.10295)

APPROACH 2: GAPT

• Retain key ideas of MPGAN

- Retain key ideas of MPGAN
	- Particle cloud data, fully connected particle interactions

- Retain key ideas of MPGAN
	- Particle cloud data, fully connected particle interactions

Message passing

- Retain key ideas of MPGAN
	- Particle cloud data, fully connected particle interactions

[RK et al., 2022](https://arxiv.org/abs/2211.10295)

 \bigcirc

O

 \bigcirc

 \bigcirc

 Ω

- Retain key ideas of MPGAN
	- Particle cloud data, fully connected particle interactions

[RK et al., 2022](https://arxiv.org/abs/2211.10295)

 \bigcirc

O

 \bigcirc

 \bigcirc

 Ω

- Retain key ideas of MPGAN
	- Particle cloud data, fully connected particle interactions

φ

 \bigcirc

 Ω

[RK et al., 2022](https://arxiv.org/abs/2211.10295)

 \bigcirc

O

 \bigcirc

 \bigcirc

- Retain key ideas of MPGAN
	- Particle cloud data, fully connected particle interactions

φ

 \bigcirc

 Ω

[RK et al., 2022](https://arxiv.org/abs/2211.10295)

 \bigcirc

O

O

 \bigcirc

- Retain key ideas of MPGAN
	- Particle cloud data, fully connected particle interactions

φ

 \overline{O}

 Ω

[RK et al., 2022](https://arxiv.org/abs/2211.10295)

 \bigcirc

O

 \bigcirc

 \overline{O}

 \circ

 Ω

- Retain key ideas of MPGAN
	- Particle cloud data, fully connected particle interactions

φ

 \overline{O}

 Ω

[RK et al., 2022](https://arxiv.org/abs/2211.10295)

 \overline{O}

O

 \bigcirc

 \overline{O}

 \bigcirc

- Retain key ideas of MPGAN
	- Particle cloud data, fully connected particle interactions

[RK et al., 2022](https://arxiv.org/abs/2211.10295)

 \overline{O}

O

 \bigcirc

 \overline{O}

 Ω

 \overline{O}

- Retain key ideas of MPGAN
	- Particle cloud data, fully connected particle interactions

φ

 \overline{O}

 Ω

[RK et al., 2022](https://arxiv.org/abs/2211.10295)

 \overline{O}

O

 \bigcirc

 \overline{O}

 \bigcirc

 \overline{O}

- Retain key ideas of MPGAN
	- Particle cloud data, fully connected particle interactions

• Based on GAST [\(Stelzner et al. 2020](https://ml-research.github.io/papers/stelzner2020ood_gast.pdf)), "Generative adversarial particle transformer" (GAPT)

φ

 \bigcirc

[RK et al., 2022](https://arxiv.org/abs/2211.10295)

O

O

- Retain key ideas of MPGAN
	- Particle cloud data, fully connected particle interactions

- Based on GAST [\(Stelzner et al. 2020](https://ml-research.github.io/papers/stelzner2020ood_gast.pdf)), "Generative adversarial particle transformer" (GAPT)
- 5-15x faster than MPGAN

φ

 \bigcirc

[RK et al., 2022](https://arxiv.org/abs/2211.10295)

 \bigcirc

O

- Retain key ideas of MPGAN
	- Particle cloud data, fully connected particle interactions

- Based on GAST [\(Stelzner et al. 2020](https://ml-research.github.io/papers/stelzner2020ood_gast.pdf)), "Generative adversarial particle transformer" (GAPT)
- 5-15x faster than MPGAN
- MPGAN and naive GAPT scale as $O(N^2)$ with # of nodes

φ

 \bigcirc

[RK et al., 2022](https://arxiv.org/abs/2211.10295)

 \bigcup

- Retain key ideas of MPGAN
	- Particle cloud data, fully connected particle interactions

- Based on GAST [\(Stelzner et al. 2020](https://ml-research.github.io/papers/stelzner2020ood_gast.pdf)), "Generative adversarial particle transformer" (GAPT)
- 5-15x faster than MPGAN
- MPGAN and naive GAPT scale as $O(N^2)$ with # of nodes
- But linear scaling with induced self-attention blocks (ISAB)

φ

 \bigcirc

[RK et al., 2022](https://arxiv.org/abs/2211.10295)

 \bigcup

Raghav Kansal Generative Transformers and How to Evaluate Them

[RK et al., 2022](https://arxiv.org/abs/2211.10295)

MPGAN VS GAPT

• Both well performing, difficult to discern visually

• Both well performing, difficult to discern visually

*On an A6000

Raghav Kansal Generative Transformers and How to Evaluate Them

- Both well performing, difficult to discern visually
- FPD necessary to differentiate performance MPGAN samples are higher quality

*On an A6000

Raghav Kansal Generative Transformers and How to Evaluate Them

- Both well performing, difficult to discern visually
- FPD necessary to differentiate performance MPGAN samples are higher quality
- FPD and W1-M show MPGAN isn't perfectly compatible with true jets yet

*On an A6000

- Both well performing, difficult to discern visually
- FPD necessary to differentiate performance MPGAN samples are higher quality
- FPD and W1-M show MPGAN isn't perfectly compatible with true jets yet
- GAPT is significantly faster, both $O(10^4)$ faster than FullSim

Raghav Kansal Generative Transformers and How to Evaluate Them

*On an A6000

• Propose Fréchet and kernel physics distances (FPD and KPD) for evaluating generative models in HEP

- Propose Fréchet and kernel physics distances (FPD and KPD) for evaluating generative models in HEP
- Developed two particle cloud simulators: graph-based MPGAN, attention-based GAPT

- Propose Fréchet and kernel physics distances (FPD and KPD) for evaluating generative models in HEP
- Developed two particle cloud simulators: graph-based MPGAN, attention-based GAPT
- Both very high performing, MPGAN has the edge currently

- Propose Fréchet and kernel physics distances (FPD and KPD) for evaluating generative models in HEP
- Developed two particle cloud simulators: graph-based MPGAN, attention-based GAPT
- Both very high performing, MPGAN has the edge currently
- GAPT significantly faster, promising avenue for scaling to large clouds

- Propose Fréchet and kernel physics distances (FPD and KPD) for evaluating generative models in HEP
- Developed two particle cloud simulators: graph-based MPGAN, attention-based GAPT
- Both very high performing, MPGAN has the edge currently
- GAPT significantly faster, promising avenue for scaling to large clouds
- Next steps:

- Propose Fréchet and kernel physics distances (FPD and KPD) for evaluating generative models in HEP
- Developed two particle cloud simulators: graph-based MPGAN, attention-based GAPT
- Both very high performing, MPGAN has the edge currently
- GAPT significantly faster, promising avenue for scaling to large clouds
- Next steps:
	- Discuss metrics with FastSim community

- Propose Fréchet and kernel physics distances (FPD and KPD) for evaluating generative models in HEP
- Developed two particle cloud simulators: graph-based MPGAN, attention-based GAPT
- Both very high performing, MPGAN has the edge currently
- GAPT significantly faster, promising avenue for scaling to large clouds
- Next steps:
	- Discuss metrics with FastSim community
	- FPD and KPD will be added to letNet for easy, standard use

- Propose Fréchet and kernel physics distances (FPD and KPD) for evaluating generative models in HEP
- Developed two particle cloud simulators: graph-based MPGAN, attention-based GAPT
- Both very high performing, MPGAN has the edge currently
- GAPT significantly faster, promising avenue for scaling to large clouds
- Next steps:
	- Discuss metrics with FastSim community
	- FPD and KPD will be added to letNet for easy, standard use
	- Extend GAPT to larger clouds, more datasets (esp. calorimeter showers)

• Want model $p_{\theta}(\mathbf{x})$ for underlying data distribution $p(\mathbf{x})$

• Want model $p_{\theta}(\mathbf{x})$ for underlying data distribution $p(\mathbf{x})$

- Want model $p_{\theta}(\mathbf{x})$ for underlying data distribution $p(\mathbf{x})$
- Rich area in machine learning: deep generative models

- Want model $p_{\theta}(\mathbf{x})$ for underlying data distribution $p(\mathbf{x})$
- Rich area in machine learning: deep generative models
	- Deep neural networks are flexible and expressive

- Want model $p_{\theta}(\mathbf{x})$ for underlying data distribution $p(\mathbf{x})$
- Rich area in machine learning: deep generative models
	- Deep neural networks are flexible and expressive
	- $p_{\theta}(\mathbf{x})$ typically modelled with high-capacity DNNs

f∈ℱ $\|E_{x \sim p_{\text{real}}} f(x) - E_{y \sim p_{\text{gen}}} f(y)\|$

• Fréchet Gaussian Distance (FGD)

sup *f*∈ℱ $\|E_{x \sim p_{\text{real}}} f(x) - E_{y \sim p_{\text{gen}}} f(y)\|$

- Fréchet Gaussian Distance (FGD)
	- Fréchet / W_2 distance between multivariate Gaussian fitted to observations

FGD = Frechet(
$$
\mathcal{N}(\mu_r, \Sigma_r)
$$
, $\mathcal{N}(\mu_g, \Sigma_g)$)
\n
$$
\begin{cases}\n\mathbf{x}_{\text{real}}\n\end{cases}
$$
\n
$$
\{ \mathbf{x}_{\text{gen}}\}
$$

sup *f*∈ℱ $\|E_{x \sim p_{\text{real}}} f(x) - E_{y \sim p_{\text{gen}}} f(y)\|$

- Fréchet Gaussian Distance (FGD)
	- Fréchet / W_2 distance between multivariate Gaussian fitted to observations
	- Standard in computer vision (FID)

FGD = Frechet(
$$
\mathcal{N}(\mu_r, \Sigma_r)
$$
, $\mathcal{N}(\mu_g, \Sigma_g)$)
\n
$$
\begin{cases}\n\mathbf{x}_{\text{real}}\n\end{cases}
$$
\n
$$
\{ \mathbf{x}_{\text{gen}}\}
$$

 $\sup_{x \sim p_{\text{real}}} f(x) - \mathbb{E}_{y \sim p_{\text{gen}}} f(y)$ *f*∈ℱ

- Fréchet Gaussian Distance (FGD)
	- Fréchet / W_2 distance between multivariate Gaussian fitted to observations
	- Standard in computer vision (FID)
	- Computationally efficient

FGD = Frechet(
$$
\mathcal{N}(\mu_r, \Sigma_r)
$$
, $\mathcal{N}(\mu_g, \Sigma_g)$)
\n
$$
\begin{cases}\n\mathbf{x}_{\text{real}}\n\end{cases}
$$
\n
$$
\{ \mathbf{x}_{\text{gen}}\}
$$

 $\sup_{x \sim p_{\text{real}}} f(x) - \mathbb{E}_{y \sim p_{\text{gen}}} f(y)$ *f*∈ℱ

- Fréchet Gaussian Distance (FGD)
	- Fréchet / W_2 distance between multivariate Gaussian fitted to observations
	- Standard in computer vision (FID)
	- Computationally efficient
	- Gaussian assumption

FGD = Frechet(
$$
\mathcal{N}(\mu_r, \Sigma_r)
$$
, $\mathcal{N}(\mu_g, \Sigma_g)$)
\n
$$
\begin{cases}\n\mathbf{x}_{\text{real}}\n\end{cases}
$$
\n
$$
\{ \mathbf{x}_{\text{gen}}\}
$$

sup *f*∈ℱ $\|E_{x \sim p_{\text{real}}} f(x) - E_{y \sim p_{\text{gen}}} f(y)\|$

- Fréchet Gaussian Distance (FGD)
	- Fréchet / W_2 distance between multivariate Gaussian fitted to observations
	- Standard in computer vision (FID)
	- Computationally efficient
	- Gaussian assumption
- $FGD = Frechet(\mathcal{N}(\mu_r, \Sigma_r), \mathcal{N}(\mu_g, \Sigma_g))$ ${\bf x}_{\text{real}}^{\prime}$
- Biased (*FGD*∞ extrapolate to infinity)

f∈ℱ $\|E_{x \sim p_{\text{real}}} f(x) - E_{y \sim p_{\text{gen}}} f(y)\|$

• Wasserstein *p*−distances (W_p):

 $\sup_{x \sim p_{\text{real}}} f(x) - \mathbb{E}_{y \sim p_{\text{gen}}} f(y)$ *f*∈ℱ

• Wasserstein *p*−distances (W_p):

• $\mathscr F$ is all K-Lipschitz functions

sup *f*∈ℱ $\|E_{x \sim p_{\text{real}}} f(x) - E_{y \sim p_{\text{gen}}} f(y)\|$

- Wasserstein *p*−distances (W_p):
	- $\mathscr F$ is all K-Lipschitz functions
	- "Work" needed to transport probability mass

 $\sup_{x \sim p_{\text{real}}} f(x) - \mathbb{E}_{y \sim p_{\text{gen}}} f(y)$ *f*∈ℱ

- Wasserstein *p*−distances (W_p):
	- $\mathscr F$ is all K-Lipschitz functions
	- "Work" needed to transport probability mass
	- Sensitive to quality and diversity

 $\sup_{x \sim p_{\text{real}}} f(x) - \mathbb{E}_{y \sim p_{\text{gen}}} f(y)$ *f*∈ℱ

- Wasserstein *p*−distances (W_p):
	- $\mathscr F$ is all K-Lipschitz functions
	- "Work" needed to transport probability mass
	- Sensitive to quality and diversity
	- Computationally challenging for large N, D

 $\sup_{x \sim p_{\text{real}}} f(x) - \mathbb{E}_{y \sim p_{\text{gen}}} f(y)$ *f*∈ℱ

- Wasserstein *p*−distances (W_p):
	- $\mathscr F$ is all K-Lipschitz functions
	- "Work" needed to transport probability mass
	- Sensitive to quality and diversity
	- Computationally challenging for large N, D
	- Biased estimators

f∈ℱ $\|E_{x \sim p_{\text{real}}} f(x) - E_{y \sim p_{\text{gen}}} f(y)\|$

• Maximum mean discrepancy (MMD)

sup *f*∈ℱ $\|E_{x \sim p_{\text{real}}} f(x) - E_{y \sim p_{\text{gen}}} f(y)\|$

- Maximum mean discrepancy (MMD)
	- ℱ is reproducing Kernel Hilbert space (RKHS) for a chosen kernel *k*(*x*, *y*)

 $\sup_{x \sim p_{\text{real}}} f(x) - \mathbb{E}_{y \sim p_{\text{gen}}} f(y)$ *f*∈ℱ

- Maximum mean discrepancy (MMD)
	- ℱ is reproducing Kernel Hilbert space (RKHS) for a chosen kernel *k*(*x*, *y*)
	- Distance between embeddings of p_{real} and p_{gen} in \mathcal{F}

sup *f*∈ℱ $\|E_{x \sim p_{\text{real}}} f(x) - E_{y \sim p_{\text{gen}}} f(y)\|$

- Maximum mean discrepancy (MMD)
	- ℱ is reproducing Kernel Hilbert space (RKHS) for a chosen kernel *k*(*x*, *y*)
	- Distance between embeddings of p_{real} and p_{gen} in \mathcal{F}
	- Proposed in computer vision (KID), 3rd order polynomial kernel

MORE ON IPMS

 $\sup_{x \sim p_{\text{real}}} f(x) - \mathbb{E}_{y \sim p_{\text{gen}}} f(y)$ *f*∈ℱ

- Maximum mean discrepancy (MMD)
	- ℱ is reproducing Kernel Hilbert space (RKHS) for a chosen kernel *k*(*x*, *y*)
	- Distance between embeddings of p_{real} and p_{gen} in \mathcal{F}
	- Proposed in computer vision (KID), 3rd order polynomial kernel
	- Unbiased estimators

MORE ON IPMS

 $\sup_{x \sim p_{\text{real}}} f(x) - \mathbb{E}_{y \sim p_{\text{gen}}} f(y)$ *f*∈ℱ

- Maximum mean discrepancy (MMD)
	- ℱ is reproducing Kernel Hilbert space (RKHS) for a chosen kernel *k*(*x*, *y*)
	- Distance between embeddings of p_{real} and p_{gen} in \mathcal{F}
	- Proposed in computer vision (KID), 3rd order polynomial kernel
	- Unbiased estimators
	- Kernel dependent

• Machine learning version of this: use classifier hidden features instead!

- Machine learning version of this: use classifier hidden features instead! [Kansal et al., NeurIPS 2021](https://arxiv.org/abs/2106.11535)
- Example: apply to jet generation using pre-trained ParticleNet graph classifier:

- Machine learning version of this: use classifier hidden features instead! [Kansal et al., NeurIPS 2021](https://arxiv.org/abs/2106.11535)
- Example: apply to jet generation using pre-trained ParticleNet graph classifier:

- Machine learning version of this: use classifier hidden features instead! [Kansal et al., NeurIPS 2021](https://arxiv.org/abs/2106.11535)
- Example: apply to jet generation using pre-trained ParticleNet graph classifier:

- Machine learning version of this: use classifier hidden features instead! [Kansal et al., NeurIPS 2021](https://arxiv.org/abs/2106.11535)
- Example: apply to jet generation using pre-trained ParticleNet graph classifier:

- Machine learning version of this: use classifier hidden features instead! [Kansal et al., NeurIPS 2021](https://arxiv.org/abs/2106.11535)
- Example: apply to jet generation using pre-trained ParticleNet graph classifier:

• High-performing classifier learns salient hidden features from data

- Machine learning version of this: use classifier hidden features instead! [Kansal et al., NeurIPS 2021](https://arxiv.org/abs/2106.11535)
- Example: apply to jet generation using pre-trained ParticleNet graph classifier:

- High-performing classifier learns salient hidden features from data
- Retain sensitivity to quality, diversity from W_1 , reproducible and efficient plus:

- Machine learning version of this: use classifier hidden features instead! [Kansal et al., NeurIPS 2021](https://arxiv.org/abs/2106.11535)
- Example: apply to jet generation using pre-trained ParticleNet graph classifier:

- High-performing classifier learns salient hidden features from data
- Retain sensitivity to quality, diversity from W_1 , reproducible and efficient plus:
	- Single aggregate score, correlations (Σ) between features, easy to scale

Raghav Kansal Generative Transformers and How to Evaluate Them

 \sup $\mathbb{E}_{x \sim p_{\text{real}}} f(x) - \mathbb{E}_{y \sim p_{\text{gen}}} f(y)$ *f*∈ℱ

• IPM where $\mathscr F$ is unit ball in the reproducing kernel Hilbert space (RKHS) for kernel $k(x, y)$

- IPM where $\mathscr F$ is unit ball in the reproducing kernel Hilbert space (RKHS) for kernel $k(x, y)$
	- RKHS $\Leftrightarrow f(x) = \langle f, \varphi(x) \rangle_{\mathcal{F}}$, where $k(x, y) = \langle \varphi(x), \varphi(y) \rangle_{\mathcal{F}}$

- IPM where $\mathscr F$ is unit ball in the reproducing kernel Hilbert space (RKHS) for kernel $k(x, y)$
	- RKHS $\Leftrightarrow f(x) = \langle f, \varphi(x) \rangle_{\mathcal{F}}$, where $k(x, y) = \langle \varphi(x), \varphi(y) \rangle_{\mathcal{F}}$
	- $\mathbb{E}_{x \sim p} f(x) = \langle f, \mathbb{E}_{x \sim p} \varphi(x) \rangle_{\mathcal{F}} = \langle f, \mu_p \rangle_{\mathcal{F}}$

- IPM where $\mathscr F$ is unit ball in the reproducing kernel Hilbert space (RKHS) for kernel $k(x, y)$
	- RKHS $\Leftrightarrow f(x) = \langle f, \varphi(x) \rangle_{\mathcal{F}}$, where $k(x, y) = \langle \varphi(x), \varphi(y) \rangle_{\mathcal{F}}$
	- $\mathbb{E}_{x \sim p} f(x) = \langle f, \mathbb{E}_{x \sim p} \varphi(x) \rangle_{\mathcal{F}} = \langle f, \mu_p \rangle_{\mathcal{F}}$
	- μ_p is the embedding of distribution p in $\mathcal F$

- IPM where $\mathscr F$ is unit ball in the reproducing kernel Hilbert space (RKHS) for kernel $k(x, y)$
	- RKHS $\Leftrightarrow f(x) = \langle f, \varphi(x) \rangle_{\mathcal{F}}$, where $k(x, y) = \langle \varphi(x), \varphi(y) \rangle_{\mathcal{F}}$
	- $\mathbb{E}_{x \sim p} f(x) = \langle f, \mathbb{E}_{x \sim p} \varphi(x) \rangle_{\mathcal{F}} = \langle f, \mu_p \rangle_{\mathcal{F}}$
	- μ_p is the embedding of distribution p in $\mathcal F$
	- if *k* is 'characteristic', e.g. Gaussian, $p \rightarrow \mu_p$ is injective $(\mu_p$ captures everything)

- IPM where $\mathscr F$ is unit ball in the reproducing kernel Hilbert space (RKHS) for kernel $k(x, y)$
	- RKHS $\Leftrightarrow f(x) = \langle f, \varphi(x) \rangle_{\mathscr{F}}$, where $k(x, y) = \langle \varphi(x), \varphi(y) \rangle_{\mathscr{F}}$

•
$$
\mathbb{E}_{x \sim p} f(x) = \langle f, \mathbb{E}_{x \sim p} \varphi(x) \rangle_{\mathcal{F}} = \langle f, \mu_p \rangle_{\mathcal{F}}
$$

- μ_p is the embedding of distribution p in $\mathcal F$
- if *k* is 'characteristic', e.g. Gaussian, $p \rightarrow \mu_p$ is injective $(\mu_p$ captures everything)

$$
\Rightarrow \sup_{f \in \mathcal{F}} |\mathbb{E}_{x \sim p_{\text{real}}} f(x) - \mathbb{E}_{y \sim p_{\text{gen}}} f(y)| = \sup_{f \in \mathcal{F}} |\langle f, \mu_{p_{\text{real}}} - \mu_{p_{\text{gen}}} \rangle_{\mathcal{F}}| = ||\mu_{p_{\text{real}}} - \mu_{p_{\text{gen}}}||
$$

 \sup $\mathbb{E}_{x \sim p_{\text{real}}} f(x) - \mathbb{E}_{y \sim p_{\text{gen}}} f(y)$ *f*∈ℱ

- IPM where $\mathscr F$ is unit ball in the reproducing kernel Hilbert space (RKHS) for kernel $k(x, y)$
	- RKHS $\Leftrightarrow f(x) = \langle f, \varphi(x) \rangle_{\mathscr{F}}$, where $k(x, y) = \langle \varphi(x), \varphi(y) \rangle_{\mathscr{F}}$

•
$$
\mathbb{E}_{x \sim p} f(x) = \langle f, \mathbb{E}_{x \sim p} \varphi(x) \rangle_{\mathcal{F}} = \langle f, \mu_p \rangle_{\mathcal{F}}
$$

- μ_p is the embedding of distribution p in $\mathcal F$
- if *k* is 'characteristic', e.g. Gaussian, $p \rightarrow \mu_p$ is injective $(\mu_p$ captures everything)

$$
\Rightarrow \sup_{f \in \mathcal{F}} |\mathbb{E}_{x \sim p_{\text{real}}} f(x) - \mathbb{E}_{y \sim p_{\text{gen}}} f(y)| = \sup_{f \in \mathcal{F}} |\langle f, \mu_{p_{\text{real}}} - \mu_{p_{\text{gen}}} \rangle_{\mathcal{F}}| = ||\mu_{p_{\text{real}}} - \mu_{p_{\text{gen}}}||
$$

• MMD: distance between means in embedding space

- IPM where $\mathscr F$ is unit ball in the reproducing kernel Hilbert space (RKHS) for kernel $k(x, y)$
	- RKHS $\Leftrightarrow f(x) = \langle f, \varphi(x) \rangle_{\mathscr{F}}$, where $k(x, y) = \langle \varphi(x), \varphi(y) \rangle_{\mathscr{F}}$

•
$$
\mathbb{E}_{x \sim p} f(x) = \langle f, \mathbb{E}_{x \sim p} \varphi(x) \rangle_{\mathcal{F}} = \langle f, \mu_p \rangle_{\mathcal{F}}
$$

- μ_p is the embedding of distribution p in $\mathcal F$
- if *k* is 'characteristic', e.g. Gaussian, $p \rightarrow \mu_p$ is injective $(\mu_p$ captures everything)

$$
\Rightarrow \sup_{f \in \mathcal{F}} |\mathbb{E}_{x \sim p_{\text{real}}} f(x) - \mathbb{E}_{y \sim p_{\text{gen}}} f(y)| = \sup_{f \in \mathcal{F}} |\langle f, \mu_{p_{\text{real}}} - \mu_{p_{\text{gen}}} \rangle_{\mathcal{F}}| = ||\mu_{p_{\text{real}}} - \mu_{p_{\text{gen}}}||
$$

- MMD: distance between means in embedding space
- Raghav Kansal Generative Transformers and How to Evaluate Them • Very powerful method for calculating distance between distributions

• Can be valuable to disentangle these

- Can be valuable to disentangle these
- Precision & Recall [\(Kynkäänniemi et al 2019](https://arxiv.org/pdf/1904.06991.pdf))

- Can be valuable to disentangle these
- Precision & Recall [\(Kynkäänniemi et al 2019](https://arxiv.org/pdf/1904.06991.pdf))

• Estimate real and generated manifold using k-nearest-neighbours

- Can be valuable to disentangle these
- Precision & Recall [\(Kynkäänniemi et al 2019](https://arxiv.org/pdf/1904.06991.pdf))

- Estimate real and generated manifold using k-nearest-neighbours
- Precision: fraction of generated samples lying within real manifold (quality)

- Can be valuable to disentangle these
- Precision & Recall [\(Kynkäänniemi et al 2019](https://arxiv.org/pdf/1904.06991.pdf))

- Estimate real and generated manifold using k-nearest-neighbours
- Precision: fraction of generated samples lying within real manifold (quality)
- Recall: fraction of real samples which lying within gen manifold (diversity)

- Can be valuable to disentangle these
- Precision & Recall [\(Kynkäänniemi et al 2019](https://arxiv.org/pdf/1904.06991.pdf))

- Estimate real and generated manifold using k-nearest-neighbours
- Precision: fraction of generated samples lying within real manifold (quality)
- Recall: fraction of real samples which lying within gen manifold (diversity)
- Density & Coverage ([Naeem et al 2020\)](https://arxiv.org/pdf/2002.09797.pdf)

- Can be valuable to disentangle these
- Precision & Recall [\(Kynkäänniemi et al 2019](https://arxiv.org/pdf/1904.06991.pdf))

- Estimate real and generated manifold using k-nearest-neighbours
- Precision: fraction of generated samples lying within real manifold (quality)
- Recall: fraction of real samples which lying within gen manifold (diversity)
- Density & Coverage ([Naeem et al 2020\)](https://arxiv.org/pdf/2002.09797.pdf)
	- Like P&R, but takes into account density of real manifold

Raghav Kansal Generative Transformers and How to Evaluate Them

• We first test on toy Gaussian distributions

• We first test on toy Gaussian distributions

• We first test on toy Gaussian distributions

• We first test on toy Gaussian distributions

• We first test on toy Gaussian distributions

• We first test on toy Gaussian distributions

Scores vs sample size comparing
samples of the true distribution

TH SCORES

Raghav Kansal **Generative Transformers and How to Evaluate Them**
Scores vs sample size comparing samples of the true distribution

TH SCORES

- FGD_∞ and MMD are effectively unbiased
- Wasserstein, density, and coverage very slow to converge

TRUTH SCORES Most sensitive metric per

TRUTH SCORES

• Wasserstein, FGD_∞ , MMD find all alternatives discrepant, except FGD_∞ on mixtures

- FGD_{∞} generally the most sensitive otherwise, but misses shape distortions
- Precision and recall do their job, density and coverage give unintuitive results

• *W*^M (looking at ID mass distribution only) works somewhat, but not as sensitive

• *W*^M (looking at ID mass distribution only) works somewhat, but not as sensitive

• Wasserstein distance is biased and slow to converge

• *W*^M (looking at ID mass distribution only) works somewhat, but not as sensitive

- Wasserstein distance is biased and slow to converge
- Precision, recall work roughly useful for diagnosing failure modes but not for comparing

• *W*^M (looking at ID mass distribution only) works somewhat, but not as sensitive

- Wasserstein distance is biased and slow to converge
- Precision, recall work roughly useful for diagnosing failure modes but not for comparing

- FGD is the most sensitive
- MMD reasonable

PARTICLENET ACTIVATION SCORES

PARTICLENET ACTIVATION SCORES

- Same conclusions overall as for EFPs
- FGD the best, MMD reasonable, P&R are OK for diagnosing failure modes
-

RESULTS: GLUON JETS [Kansal et al., ML4PS @ NeurIPS 2020](https://arxiv.org/abs/2012.00173)

[Kansal et al., NeurIPS 2021](https://arxiv.org/abs/2106.11535)

Sample feature distributions, with MPGAN compared to baseline point cloud generators

[Kansal et al., ML4PS @ NeurIPS 2020](https://arxiv.org/abs/2012.00173) [Kansal et al., NeurIPS 2021](https://arxiv.org/abs/2106.11535)

Sample feature distributions, with MPGAN compared to baseline point cloud generators

Raghav Kansal Generative Transformers and How to Evaluate Them 43

j1

Kansal et al., ML4PS @ NeurlPS 2020 [Kansal et al., NeurIPS 2021](https://arxiv.org/abs/2106.11535)

Sample feature distributions, with MPGAN compared to baseline point cloud generators

ï!

Kansal et al., ML4PS @ NeurlPS 2020 [Kansal et al., NeurIPS 2021](https://arxiv.org/abs/2106.11535)

Sample feature distributions, with MPGAN compared to baseline point cloud generators

j1

[Kansal et al., ML4PS @ NeurIPS 2020](https://arxiv.org/abs/2012.00173) [Kansal et al., NeurIPS 2021](https://arxiv.org/abs/2106.11535)

Sample feature distributions, with MPGAN compared to baseline point cloud generators

Raghav Kansal Generative Transformers and How to Evaluate Them 43

ï!

[Kansal et al., ML4PS @ NeurIPS 2020](https://arxiv.org/abs/2012.00173) [Kansal et al., NeurIPS 2021](https://arxiv.org/abs/2106.11535)

Raghav Kansal Generative Transformers and How to Evaluate Them 43

j!

[Kansal et al., ML4PS @ NeurIPS 2020](https://arxiv.org/abs/2012.00173) [Kansal et al., NeurIPS 2021](https://arxiv.org/abs/2106.11535)

