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• Lots of approaches in the last few years in ML for HEP simulations

• “It is time to harvest” - CMS ML Townhall 2022

• How do we choose and use these for HL-LHC?
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• To trust generated data, tests should be:

• Sensitive to quality

• Sensitive to diversity

• Multivariate (for correlations & conditional generation)

• Interpretable

• To compare generative models, tests should be:

• Standardised

• Reproducible
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HISTOGRAMS
• Traditional method for evaluating physics simulations is to compare physical distributions 
MC generator evaluation (Ellis et al ’96) FastSim (Sekmen ’17) LAGAN (de Oliveira et al ’17)

• Valuable insight into physics performance

• Should be quantified

• Cons:

• Only 1D (curse of dimensionality for multivariate histograms) 

• Binning dependent

• No well-defined way to aggregate scores across multiple distributions
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• Maximum Mean Discrepancy (MMD) 
(  is unit ball in reproducing Kernel Hilbert space (RKHS) for a chosen kernel )ℱ k(x, y)
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• Fast, unbiased estimators, used in computer vision (KID) but depends on kernel
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• Estimate real and generated manifold

• Can disentangle quality and diversity

• Classifier-based metrics: train a classifier between real and generated data  
Friedman 2003, Paz and Oquab 2017 (C2ST), Krause and Shih (2021)

• Can be powerful test of quality and diversity

• Practical limitations: interpretability, generalising to conditional generation, standardising a 
specific architecture for all alternative hypotheses, reproducability of trainings, inefficiency

• In terms of GOF testing: comparing different test statistics for different models
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• Typically raw data (particle / hit features) is very high dimensional

• Not necessarily what we care about

• ML solution: derive lower dimensional salient features from a pre-trained classifier

• Alternative? Use physicists’ hand-engineered features: jet observables, shower-shape variables
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knn+ 

EdgeConv
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JET DISTRIBUTIONS
• Sample of gluon jets to test sensitivity of metrics

• We distort true distribution by: 1) Re-weighting in mass + 2) Smearing/shifting particle feature

17

RK et al. 2022 

• We look at sensitivity of metrics to distortions, using:

1.  Energy Flow Polynomials (EFPs) (d ≤ 4)

2.  ParticleNet activations

https://arxiv.org/abs/2211.10295


Raghav Kansal Generative Transformers and How to Evaluate Them
18

RESULTS RK et al. 2022 

https://arxiv.org/abs/2211.10295


Raghav Kansal Generative Transformers and How to Evaluate Them
19

RESULTSMost sensitive metric per 
distribution in bold

RK et al. 2022 

https://arxiv.org/abs/2211.10295


Raghav Kansal Generative Transformers and How to Evaluate Them
19

RESULTSMost sensitive metric per 
distribution in bold

RK et al. 2022 

•  - looking at1D mass distribution only - 
is somewhat sensitive to all
WM

1

https://arxiv.org/abs/2211.10295


Raghav Kansal Generative Transformers and How to Evaluate Them
19

RESULTSMost sensitive metric per 
distribution in bold

RK et al. 2022 

•  - looking at1D mass distribution only - 
is somewhat sensitive to all
WM

1

• Wasserstein is sensitive to most, but slow 
to converge 

https://arxiv.org/abs/2211.10295


Raghav Kansal Generative Transformers and How to Evaluate Them
19

RESULTSMost sensitive metric per 
distribution in bold

RK et al. 2022 

•  - looking at1D mass distribution only - 
is somewhat sensitive to all
WM

1

• Wasserstein is sensitive to most, but slow 
to converge 

• EFPs and PNet activations performance 
similar

https://arxiv.org/abs/2211.10295


Raghav Kansal Generative Transformers and How to Evaluate Them
19

RESULTSMost sensitive metric per 
distribution in bold

RK et al. 2022 

•  - looking at1D mass distribution only - 
is somewhat sensitive to all
WM

1

• Wasserstein is sensitive to most, but slow 
to converge 

• EFPs and PNet activations performance 
similar

• Precision, recall work roughly - useful for 
diagnosing failure modes but not for 
comparing

https://arxiv.org/abs/2211.10295


Raghav Kansal Generative Transformers and How to Evaluate Them
19

RESULTSMost sensitive metric per 
distribution in bold

RK et al. 2022 

•  - looking at1D mass distribution only - 
is somewhat sensitive to all
WM

1

• Wasserstein is sensitive to most, but slow 
to converge 

• EFPs and PNet activations performance 
similar

• Precision, recall work roughly - useful for 
diagnosing failure modes but not for 
comparing

• Classifiers, low-level (LLF) and high-level 
features (HLF), identify particle feature 
distortions but miss distribution-level 
discrepancies

https://arxiv.org/abs/2211.10295


Raghav Kansal Generative Transformers and How to Evaluate Them
19

RESULTSMost sensitive metric per 
distribution in bold

RK et al. 2022 

•  - looking at1D mass distribution only - 
is somewhat sensitive to all
WM

1

• Wasserstein is sensitive to most, but slow 
to converge 

• EFPs and PNet activations performance 
similar

• Precision, recall work roughly - useful for 
diagnosing failure modes but not for 
comparing

• Classifiers, low-level (LLF) and high-level 
features (HLF), identify particle feature 
distortions but miss distribution-level 
discrepancies

• FGD is the most sensitive to all distortions

https://arxiv.org/abs/2211.10295


Raghav Kansal Generative Transformers and How to Evaluate Them
19

RESULTSMost sensitive metric per 
distribution in bold

RK et al. 2022 

•  - looking at1D mass distribution only - 
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to converge 

• EFPs and PNet activations performance 
similar

• Precision, recall work roughly - useful for 
diagnosing failure modes but not for 
comparing

• Classifiers, low-level (LLF) and high-level 
features (HLF), identify particle feature 
distortions but miss distribution-level 
discrepancies

• FGD is the most sensitive to all distortions

• MMD reasonably sensitive to most

https://arxiv.org/abs/2211.10295
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JetNet Library: 
25k downloads, [1, 2, 3]
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https://arxiv.org/abs/2106.11535
https://github.com/jet-net/jetnet
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APPROACH 1: MPGAN
• Majority of work, while successful, is image-based

• Difficult to scale to HL-LHC and apply to e.g CMS high-granularity calorimeter

• We develop a particle cloud, graph-based approach

• Key ideas:

• Natural, sparse, and flexible representation for data

• Learn global features and inter-particle correlations (i.e. jet, shower structure)
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• Outperforms all existing point cloud GANs (metrics in backup)
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• Retain key ideas of MPGAN

• Particle cloud data, fully connected particle interactions
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Message passing

• Based on GAST (Stelzner et al. 2020), “Generative adversarial particle transformer” (GAPT)

• 5-15x faster than MPGAN

• MPGAN and naive GAPT scale as  with # of nodesO(N2)

• But linear scaling with induced self-attention blocks (ISAB)

ISAB (Lee et al. ICML 2019)
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FPD (10-3) KPD (10-3) W1-M(10-5) Inference time per jet (µs)*

Truth 0.08 ± 0.03 −0.006 ± 0.005 0.28 ± 0.05 -

MPGAN 0.30 ± 0.06 −0.001 ± 0.004 0.54 ± 0.06 41

GAPT 0.66 ± 0.09 0.001 ± 0.005 0.56 ± 0.08 9

Gluon Jets 
30 particles

• Both well performing, difficult to discern visually

• FPD necessary to differentiate performance - MPGAN samples are higher quality

• FPD and W1-M show MPGAN isn’t perfectly compatible with true jets yet

• GAPT is significantly faster, both  faster than FullSimO(104)
*On an A6000

RK et al., 2022 

https://arxiv.org/abs/2211.10295
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CONCLUSION
• Propose Fréchet and kernel physics distances (FPD and KPD) for evaluating generative models in HEP

• Developed two particle cloud simulators: graph-based MPGAN, attention-based GAPT

• Both very high performing, MPGAN has the edge currently

• GAPT significantly faster, promising avenue for scaling to large clouds

• Next steps:

• Discuss metrics with FastSim community

• FPD and KPD will be added to JetNet for easy, standard use

• Extend GAPT to larger clouds, more datasets (esp. calorimeter showers)

29

JetNet

https://github.com/jet-net/JetNet
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LHC SIMULATIONS

• Want model  for underlying data distribution pθ(x) p(x)

• Rich area in machine learning: deep generative models

• Deep neural networks are flexible and expressive 

•  typically modelled with high-capacity DNNspθ(x)
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• Fréchet Gaussian Distance (FGD)

• Fréchet /  distance between multivariate Gaussian fitted to observations W2

• Standard in computer vision (FID)

• Computationally efficient

• Gaussian assumption

• Biased (  - extrapolate to infinity)FGD∞
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• Machine learning version of this: use classifier hidden features instead!

• Example: apply to jet generation using pre-trained ParticleNet graph classifier :

Real Jets

Gen Jets

μr, Σr

μg, Σg

{30 particles
{ featuresη, φ, pT

Class
{Internal Repr.

Pooling

FCN
knn+ 

EdgeConv

ParticleNet

FCN

• High-performing classifier learns salient hidden features from data

• Retain sensitivity to quality, diversity from , reproducible and efficient plus:W1

• Single aggregate score, correlations ( ) between features, easy to scaleΣ

Kansal et al., NeurIPS 2021

FGD = Frechet(𝒩(μr, Σr), 𝒩(μg, Σg)) = | |μr − μg | |2 + Tr[Σr + Σg−2(ΣrΣg)1/2]

https://arxiv.org/abs/2106.11535
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• IPM where  is unit ball in the reproducing kernel Hilbert space (RKHS) for kernel ℱ
k(x, y)

• RKHS  , where ⇔ f(x) = ⟨ f, φ(x)⟩ℱ k(x, y) = ⟨φ(x), φ(y)⟩ℱ

• 𝔼x∼p f(x) = ⟨ f, 𝔼x∼pφ(x)⟩ℱ = ⟨ f, μp⟩ℱ

•  is the embedding of distribution  in μp p ℱ

• if  is ‘characteristic’, e.g. Gaussian,  is injective (  captures everything)k p → μp μp

⇒ sup
f∈ℱ

|𝔼x∼preal
f(x) − 𝔼y∼pgen

f(y) | = sup
f∈ℱ

|⟨ f, μpreal
− μpgen

⟩ℱ | = | |μpreal
− μpgen

| |

• MMD: distance between means in embedding space

• Very powerful method for calculating distance between distributions
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TESTS FOR QUALITY / DIVERSITY
• Can be valuable to disentangle these

• Precision & Recall (Kynkäänniemi et al 2019)

• Estimate real and generated manifold using k-nearest-neighbours

• Precision: fraction of generated samples lying within real manifold (quality)

• Recall: fraction of real samples which lying within gen manifold (diversity)

• Density & Coverage (Naeem et al 2020)

• Like P&R, but takes into account density of real manifold

https://arxiv.org/pdf/1904.06991.pdf
https://arxiv.org/pdf/2002.09797.pdf
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TOY DISTRIBUTIONS
Tests if metrics are sensitive 

to correlations

Tests sensitivity to quality Tests sensitivity to diversity Mixture with same mean, 
variance and covariance as truth: 

Tests sensitivity to shape of 
distribution

Same statistics, but easier to 
distinguish (by eye)

• We first test on toy Gaussian distributions
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TRUTH SCORES

•  and MMD are effectively unbiased

• Wasserstein, density, and coverage very slow to converge

FGD∞

Scores vs sample size comparing 
samples of the true distribution
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TRUTH SCORES

• Wasserstein, , MMD find all alternatives discrepant, except  on mixtures

•  generally the most sensitive otherwise, but misses shape distortions

• Precision and recall do their job, density and coverage give unintuitive results

FGD∞ FGD∞

FGD∞

Most sensitive metric per 
distribution in bold
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EFP SCORES VS SAMPLE SIZE

•  (looking at1D mass distribution only) works somewhat, but not as sensitiveWM
1

• Wasserstein distance is biased and slow to converge

• Precision, recall work roughly - useful for diagnosing failure modes but not for comparing

• FGD is the most sensitive

• MMD reasonable
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PARTICLENET ACTIVATION SCORES

• Same conclusions overall as for EFPs

• FGD the best, MMD reasonable, P&R are OK for diagnosing failure modes
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*Mean and error over 5 sets of 

pairs of 10,000 jets each
Sample feature distributions, with MPGAN compared to baseline point cloud generators

Generator Discriminator W1-P (10-3) W1-M (10-3) W1-EFP (10-5) FPND

FC PointNet 1.3 ± 0.2 1.3 ± 0.4 1.5 ± 0.9 5.0

GraphCNN PointNet 16 ± 6 1.9 ± 0.2 200 ± 1000 7k

MP MP 0.9 ± 0.3 0.7 ± 0.2 0.7 ± 0.2 0.12

MP PointNet 1.2 ± 0.4 1.3 ± 0.4 4 ± 2 18

Real vs real average particle 
features  score*  

(W1-P) = (0.44 ± 0.09)  10-3
W1

×

Real vs real jet mass  score  
(W1-M) = (0.7 ± 0.2)  10-3

W1
× Real vs real average jet EFPs  score  

(W1-EFP) = (0.62 ± 0.07)  10-5
W1
×

• MPGAN generator is the best performing on every metric

• Significantly outperforms alternatives on high level feature metrics (W1-M, W1-EFP, FPND)

• Mass and ave. EFP scores are within error of the real vs real baseline  learning jet substructure correctly⇒

Kansal et al., ML4PS @ NeurIPS 2020
Kansal et al., NeurIPS 2021

https://arxiv.org/abs/2012.00173
https://arxiv.org/abs/2106.11535
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Generator Discriminator W1-P (10-3) W1-M (10-3) W1-EFP (10-5) FPND

FC PointNet 1.6 ± 0.4 2.7 ± 0.1 7.7 ± 0.5 3.9

GraphCNN PointNet 30 ± 20 11.3 ± 0.9 37 ± 2 30k

MP MP 2.3 ± 0.3 0.6 ± 0.2 2 ± 1 0.37

MP PointNet 1.6 ± 0.4 0.76 ± 0.08 4 ± 1 3.7

Real vs real 
W1-P = (0.55 ± 0.07)  10-3×

Real vs real 
W1-M = (0.51 ± 0.07)  10-3×

Real vs real  
W1-EFP = (1.1 ± 0.1)  10-5×

• MPGAN learns perfectly the complex bimodal jet feature distributions

• Mass and ave. EFP scores remain within error of real vs real baseline


