GENERATIVE TRANSFORMERS AND HOW TO EVALUATE THEM

Raghav Kansal*, Anni Li, Javier Duarte (UCSD) Nadya Chernyavskaya, Maurizio Pierini (CERN) Breno Orzari, Thiago Tomei (SPRACE)

*Also Fermilab

IML Meeting 14/02/2023

ML4PS @ NeurlPS 2020 NeurlPS 2021 2211.10295 2022

GENERATIVE TRANSFORMERS AND HOW TO EVALUATE THEM

Raghav Kansal*, Anni Li, Javier Duarte (UCSD) Nadya Chernyavskaya, Maurizio Pierini (CERN) Breno Orzari, Thiago Tomei (SPRACE)

*Also Fermilab

IML Meeting 14/02/2023

Sources <u>K. Pedro, HSF 2020</u> J. Duarte, ANL 2021, Video

• Full detector simulation takes ~40% of grid CPU resources

• HL-LHC looming

Sources <u>K. Pedro, HSF 2020</u> J. Duarte, ANL 2021, Video

- HL-LHC looming
 - Order-of-magnitude more simulations needed

Sources <u>K. Pedro, HSF 2020</u> J. Duarte, ANL 2021, Video

- HL-LHC looming
 - Order-of-magnitude more simulations needed
 - Improved detectors \Rightarrow higher granularity, increased complexity

Sources <u>K. Pedro, HSF 2020</u> J. Duarte, ANL 2021, Video

- HL-LHC looming
 - Order-of-magnitude more simulations needed
 - Improved detectors \Rightarrow higher granularity, increased complexity
 - ML a possible solution?

3

• Opportunity for ML alternatives in many steps

• Trading accuracy of "FullSim" (Geant) for speed

Generative Transformers and How to Evaluate Them

• Opportunity for ML alternatives in many steps

• Trading accuracy of "FullSim" (Geant) for speed

• Trading interpretability/trust for # of steps

Raghav Kansal

• Lots of approaches in the last few years in ML for HEP simulations

• Lots of approaches in the last few years in ML for HEP simulations

• "It is time to harvest" - <u>CMS MLTownhall 2022</u>

• Lots of approaches in the last few years in ML for HEP simulations

• "It is time to harvest" - <u>CMS MLTownhall 2022</u>

• How do we choose and use these for HL-LHC?

Raghav Kansal

• How do we **trust** generated data?

How do we trust generated data?

• How do we compare generative models?

How do we trust generated data? Evaluation metrics

How do we compare generative models? Evaluation metrics

⇒ Multivariate goodness-of-fit (GOF) / two-sample test

- \Rightarrow Multivariate goodness-of-fit (GOF) / two-sample test
 - But no "best" GOF test (Cousins 2016)

- \Rightarrow Multivariate goodness-of-fit (GOF) / two-sample test
 - But no ''best'' GOF test (<u>Cousins 2016</u>)
 - Need to choose based on the relevant alternative hypotheses
• To trust generated data, tests should be:

- To trust generated data, tests should be:
 - Sensitive to quality

- To trust generated data, tests should be:
 - Sensitive to quality
 - Sensitive to diversity

- To trust generated data, tests should be:
 - Sensitive to quality
 - Sensitive to diversity
 - Multivariate (for correlations & conditional generation)

- To trust generated data, tests should be:
 - Sensitive to quality
 - Sensitive to diversity
 - Multivariate (for correlations & conditional generation)
 - Interpretable

- To trust generated data, tests should be:
 - Sensitive to quality
 - Sensitive to diversity
 - Multivariate (for correlations & conditional generation)
 - Interpretable
- To compare generative models, tests should be:

- To trust generated data, tests should be:
 - Sensitive to quality
 - Sensitive to diversity
 - Multivariate (for correlations & conditional generation)
 - Interpretable
- To compare generative models, tests should be:
 - Standardised

- To trust generated data, tests should be:
 - Sensitive to quality
 - Sensitive to diversity
 - Multivariate (for correlations & conditional generation)
 - Interpretable
- To compare generative models, tests should be:
 - Standardised
 - Reproducible

- To trust generated data, tests should be:
 - Sensitive to quality
 - Sensitive to diversity
 - Multivariate (for correlations & conditional generation)
 - Interpretable
- To compare generative models, tests should be:
 - Standardised
 - Reproducible
 - ~Efficient

METHODS

• Traditional method for evaluating physics simulations is to compare physical distributions

• Traditional method for evaluating physics simulations is to compare physical distributions

• Traditional method for evaluating physics simulations is to compare physical distributions

• Valuable insight into physics performance

300

320

340

• Traditional method for evaluating physics simulations is to compare physical distributions

LAGAN (de Oliveira et al '17)

- Valuable insight into physics performance
- Should be quantified

• Traditional method for evaluating physics simulations is to compare physical distributions

LAGAN (de Oliveira et al '17)

- Valuable insight into physics performance
- Should be quantified
- Cons:

• Traditional method for evaluating physics simulations is to compare physical distributions

- Valuable insight into physics performance
- Should be quantified
- Cons:
 - Only ID (curse of dimensionality for multivariate histograms)

• Traditional method for evaluating physics simulations is to compare physical distributions

- Valuable insight into physics performance
- Should be quantified
- Cons:
 - Only ID (curse of dimensionality for multivariate histograms)
 - Binning dependent

• Traditional method for evaluating physics simulations is to compare physical distributions

- Valuable insight into physics performance
- Should be quantified
- Cons:
 - Only ID (curse of dimensionality for multivariate histograms)
 - Binning dependent
 - No well-defined way to aggregate scores across multiple distributions

Sources <u>1, 2</u>

 $p_{\text{real}}(\mathbf{x}) \lor s p_{\text{gen}}(\mathbf{x})$

 $p_{\text{real}}(\mathbf{x}) \lor s p_{\text{gen}}(\mathbf{x})$

Integral Probability Metrics $D_{\mathcal{F}}(p_{real}, p_{gen})$

 $\sup_{f \in \mathcal{F}} \|\mathbb{E}_{x \sim p_{\text{real}}} f(x) - \mathbb{E}_{y \sim p_{\text{gen}}} f(y)\|$

 $p_{\text{real}}(\mathbf{x}) \lor s p_{\text{gen}}(\mathbf{x})$

Integral Probability Metrics $D_{\mathcal{F}}(p_{real}, p_{gen})$

Wasserstein I-distance (W_1)

 $\sup_{f \in \mathcal{F}} \|\mathbb{E}_{x \sim p_{\text{real}}} f(x) - \mathbb{E}_{y \sim p_{\text{gen}}} f(y)\|$

 $p_{\text{real}}(\mathbf{x}) \lor s p_{\text{gen}}(\mathbf{x})$

Integral Probability Metrics $D_{\mathcal{F}}(p_{real}, p_{gen})$

Wasserstein I - distance (W_1)

$$\sup_{f \in \mathscr{F}} |\mathbb{E}_{x \sim p_{\text{real}}} f(x) - \mathbb{E}_{y \sim p_{\text{gen}}} f(y)|$$

 $p_{\text{real}}(\mathbf{x}) \lor s p_{\text{gen}}(\mathbf{x})$

Integral Probability Metrics $D_{\mathcal{F}}(p_{real}, p_{gen})$

f-Divergences $D_f(p_{real}, p_{gen})$

Wasserstein I - distance (W_1)

 $\sup_{f \in \mathcal{F}} |\mathbb{E}_{x \sim p_{\text{real}}} f(x) - \mathbb{E}_{y \sim p_{\text{gen}}} f(y)|$

 $\int p_{\text{real}}(x) f\left(\frac{p_{\text{real}}(x)}{p_{\text{gen}}(x)}\right) dx$

 $p_{\text{real}}(\mathbf{x}) \lor s p_{\text{gen}}(\mathbf{x})$

Integral Probability Metrics $D_{\mathcal{F}}(p_{real}, p_{gen})$

f-Divergences $D_f(p_{real}, p_{gen})$

KL

Wasserstein I - distance (W_1)

 $\sup_{f \in \mathcal{F}} |\mathbb{E}_{x \sim p_{\text{real}}} f(x) - \mathbb{E}_{y \sim p_{\text{gen}}} f(y)|$

 $\int p_{\text{real}}(x) f\left(\frac{p_{\text{real}}(x)}{p_{\text{gen}}(x)}\right) dx$

IS

 $p_{\text{real}}(\mathbf{x}) \lor s p_{\text{gen}}(\mathbf{x})$

Integral Probability Metrics $D_{\mathcal{F}}(p_{real}, p_{gen})$

f-Divergences $D_f(p_{real}, p_{gen})$

KL

Wasserstein I - distance (W_1)

 $\sup_{f \in \mathcal{F}} |\mathbb{E}_{x \sim p_{\text{real}}} f(x) - \mathbb{E}_{y \sim p_{\text{gen}}} f(y)|$

 $\int p_{\text{real}}(x) f\left(\frac{p_{\text{real}}(x)}{p_{\text{real}}(x)}\right) dx$

IS

 $p_{\text{real}}(\mathbf{x}) \lor s p_{\text{gen}}(\mathbf{x})$

Integral Probability Metrics $D_{\mathcal{F}}(p_{real}, p_{gen})$

f-Divergences $D_f(p_{real}, p_{gen})$

KL

Wasserstein I - distance (W_1)

 $\sup_{f \in \mathcal{F}} \left| \mathbb{E}_{x \sim p_{\text{real}}} f(x) - \mathbb{E}_{y \sim p_{\text{gen}}} f(y) \right|$

 $\int p_{\text{real}}(x) f\left(\frac{p_{\text{real}}(x)}{p_{\text{real}}(x)}\right) dx$

Pearson χ^2

IS

 $p_{\text{real}}(\mathbf{x}) \lor s p_{\text{gen}}(\mathbf{x})$

Integral Probability Metrics $D_{\mathcal{F}}(p_{real}, p_{gen})$

f-Divergences $D_f(p_{real}, p_{gen})$

KL

Wasserstein I - distance (W_1)

$$\sup_{f \in \mathcal{F}} |\mathbb{E}_{x \sim p_{\text{real}}} f(x) - \mathbb{E}_{y \sim p_{\text{gen}}} f(y)|$$

maximum mean discrepancy (MMD)

 $\int p_{\text{real}}(x) f\left(\frac{p_{\text{real}}(x)}{p_{\text{real}}(x)}\right) dx$

Pearson χ^2

• IPMs take into account metric space

 $p_{\text{real}}(\mathbf{x}) \lor s p_{\text{gen}}(\mathbf{x})$

Integral Probability Metrics $D_{\mathcal{F}}(p_{real}, p_{gen})$

f-Divergences $D_f(p_{real}, p_{gen})$

KL

Wasserstein I-distance (W_1)

$$\sup_{f \in \mathcal{F}} |\mathbb{E}_{x \sim p_{\text{real}}} f(x) - \mathbb{E}_{y \sim p_{\text{gen}}} f(y)|$$

maximum mean discrepancy (MMD)

IPMs take into account metric space ٠

 $\int p_{\text{real}}(x) f\left(\frac{p_{\text{real}}(x)}{p_{\text{real}}(x)}\right) dx$

Pearson χ^2

Real Jet Mass (GeV)

 $p_{\text{real}}(\mathbf{x}) \lor s p_{\text{gen}}(\mathbf{x})$

Integral Probability Metrics $D_{\mathcal{F}}(p_{real}, p_{gen})$

f-Divergences $D_f(p_{real}, p_{gen})$

Wasserstein I-distance (W_1)

$$\sup_{f \in \mathscr{F}} |\mathbb{E}_{x \sim p_{\text{real}}} f(x) - \mathbb{E}_{y \sim p_{\text{gen}}} f(y)|$$

maximum mean discrepancy (MMD)

IPMs take into account metric space ٠

Pearson χ^2

KL

200 Generated Jet Mass 2 (GeV)

Raghav Kansal

Generative Transformers and How to Evaluate Them

500

Generated Jet Mass I (GeV)

200

Generated Jet Mass 2 (GeV)

 $p_{\text{real}}(\mathbf{x}) \lor s p_{\text{gen}}(\mathbf{x})$

Integral Probability Metrics $D_{\mathcal{F}}(p_{real}, p_{gen})$

f-Divergences $D_f(p_{real}, p_{gen})$

Wasserstein I - distance (W_1)

$$\sup_{f \in \mathscr{F}} |\mathbb{E}_{x \sim p_{\text{real}}} f(x) - \mathbb{E}_{y \sim p_{\text{gen}}} f(y)|$$

maximum mean discrepancy (MMD)

• IPMs take into account metric space

Pearson χ^2

0 200 300 400 500 Real Jet Mass (GeV)

KL, JS, χ^2 is the same for both

KL

Raghav Kansal

200

Generated Jet Mass 2 (GeV)

 $p_{\text{real}}(\mathbf{x}) \lor s p_{\text{gen}}(\mathbf{x})$

Integral Probability Metrics $D_{\mathcal{F}}(p_{real}, p_{gen})$

f-Divergences $D_f(p_{real}, p_{gen})$

Wasserstein I - distance (W_1)

$$\sup_{f \in \mathscr{F}} |\mathbb{E}_{x \sim p_{\text{real}}} f(x) - \mathbb{E}_{y \sim p_{\text{gen}}} f(y)|$$

maximum mean discrepancy (MMD)

- IPMs take into account metric space
- More useful for comparing generative models

 $p_{\text{real}}(x) f\left(\frac{p_{\text{real}}(x)}{p_{\text{real}}(x)}\right) dx$

Pearson χ^2

KL

KL, JS, χ^2 is the same for both

200

Generated Jet Mass 2 (GeV)

 $p_{\text{real}}(\mathbf{x}) \lor s p_{\text{gen}}(\mathbf{x})$

Integral Probability Metrics $D_{\mathcal{F}}(p_{real}, p_{gen})$

f-Divergences $D_f(p_{real}, p_{gen})$

Wasserstein I - distance (W_1)

$$\sup_{f \in \mathscr{F}} |\mathbb{E}_{x \sim p_{\text{real}}} f(x) - \mathbb{E}_{y \sim p_{\text{gen}}} f(y)|$$

maximum mean discrepancy (MMD)

- IPMs take into account metric space
- More useful for comparing generative models
- And more efficient to calculate in high dimensions

 $\int p_{\text{real}}(x) f\left(\frac{p_{\text{real}}(x)}{p_{\text{real}}(x)}\right) dx$

Pearson χ^2

KL

KL, JS, χ^2 is the same for both

MORE ON IPMS

 $\sup_{f \in \mathcal{F}} |\mathbb{E}_{x \sim p_{\text{real}}} f(x) - \mathbb{E}_{y \sim p_{\text{gen}}} f(y)|$

MORE ON IPMS

• Wasserstein distance (W_1) (F is all K-Lipschitz functions)

 $\sup_{f \in \mathcal{F}} |\mathbb{E}_{x \sim p_{\text{real}}} f(x) - \mathbb{E}_{y \sim p_{\text{gen}}} f(y)|$

$\sup_{f \in \mathcal{F}} |\mathbb{E}_{x \sim p_{\text{real}}} f(x) - \mathbb{E}_{y \sim p_{\text{gen}}} f(y)|$

- Wasserstein distance (W_1) (F is all K-Lipschitz functions)
 - Sensitive to quality, diversity; but biased and slow convergence

 $\sup_{f \in \mathcal{F}} |\mathbb{E}_{x \sim p_{\text{real}}} f(x) - \mathbb{E}_{y \sim p_{\text{gen}}} f(y)|$

- Wasserstein distance (W_1) (F is all K-Lipschitz functions)
 - Sensitive to quality, diversity; but biased and slow convergence
- Fréchet Gaussian distance (FGD)

- Wasserstein distance (W_1) (F is all K-Lipschitz functions)
 - Sensitive to quality, diversity; but biased and slow convergence
- Fréchet Gaussian distance (FGD)
 - Fréchet / W_2 distance between multivariate Gaussian fitted to observations

- Wasserstein distance (W_1) (F is all K-Lipschitz functions)
 - Sensitive to quality, diversity; but biased and slow convergence
- Fréchet Gaussian distance (FGD)
 - Fréchet / W_2 distance between multivariate Gaussian fitted to observations
 - Standard in computer vision (FID), efficient, sensitive to quality + diversity; but access only up to 2nd order moments

- Wasserstein distance (W_1) (F is all K-Lipschitz functions)
 - Sensitive to quality, diversity; but biased and slow convergence
- Fréchet Gaussian distance (FGD)
 - Fréchet / W_2 distance between multivariate Gaussian fitted to observations
 - Standard in computer vision (FID), efficient, sensitive to quality + diversity; but access only up to 2nd order moments
- Maximum Mean Discrepancy (MMD) (${\mathcal F}$ is unit ball in reproducing Kernel Hilbert space (RKHS) for a chosen kernel k(x,y))

 $\sup_{f \in \mathcal{F}} |\mathbb{E}_{x \sim p_{\text{real}}} f(x) - \mathbb{E}_{y \sim p_{\text{gen}}} f(y)|$

Gretton 2020

Generative Transformers and How to Evaluate Them

MORE ON IPMS

- Wasserstein distance (W_1) (F is all K-Lipschitz functions)
 - Sensitive to quality, diversity; but biased and slow convergence
- Fréchet Gaussian distance (FGD)
 - Fréchet / W_2 distance between multivariate Gaussian fitted to observations
 - Standard in computer vision (FID), efficient, sensitive to quality + diversity; but access only up to 2nd order moments
- Maximum Mean Discrepancy (MMD) (\mathscr{F} is unit ball in reproducing Kernel Hilbert space (RKHS) for a chosen kernel k(x, y))
 - Distance between embeddings of p_{real} and p_{gen} in RKHS

 $\{\mathbf{X}_{real}\}$

 $\sup_{f \in \mathcal{F}} \|\mathbb{E}_{x \sim p_{\text{real}}} f(x) - \mathbb{E}_{y \sim p_{\text{gen}}} f(y)\|$

 $\{\mathbf{X}_{\text{gen}}\}$

Generative Transformers and How to Evaluate Them

MORE ON IPMS

- Wasserstein distance (W_1) (F is all K-Lipschitz functions)
 - Sensitive to quality, diversity; but biased and slow convergence
- Fréchet Gaussian distance (FGD)
 - Fréchet / W_2 distance between multivariate Gaussian fitted to observations
 - Standard in computer vision (FID), efficient, sensitive to quality + diversity; but access only up to 2nd order moments
- Maximum Mean Discrepancy (MMD) (\mathcal{F} is unit ball in reproducing Kernel Hilbert space (RKHS) for a chosen kernel k(x, y))
 - Distance between embeddings of p_{real} and p_{gen} in RKHS
 - Fast, unbiased estimators, used in computer vision (KID) but depends on kernel

Gretton 2020

• Precision and recall (Kynkäänniemi et al 2019)

- Precision and recall (Kynkäänniemi et al 2019)
 - Estimate real and generated manifold

- Precision and recall (Kynkäänniemi et al 2019)
 - Estimate real and generated manifold
 - Can disentangle quality and diversity

- Precision and recall (Kynkäänniemi et al 2019)
 - Estimate real and generated manifold
 - Can disentangle quality and diversity

 Classifier-based metrics: train a classifier between real and generated data <u>Friedman 2003, Paz and Oquab 2017</u> (C2ST), <u>Krause and Shih (2021)</u>

- Precision and recall (Kynkäänniemi et al 2019)
 - Estimate real and generated manifold
 - Can disentangle quality and diversity

- Classifier-based metrics: train a classifier between real and generated data <u>Friedman 2003, Paz and Oquab 2017</u> (C2ST), <u>Krause and Shih (2021)</u>
 - Can be powerful test of quality and diversity

- Precision and recall (Kynkäänniemi et al 2019)
 - Estimate real and generated manifold
 - Can disentangle quality and diversity

- Classifier-based metrics: train a classifier between real and generated data <u>Friedman 2003, Paz and Oquab 2017</u> (C2ST), <u>Krause and Shih (2021)</u>
 - Can be powerful test of quality and diversity
 - Practical limitations: interpretability, generalising to conditional generation, standardising a specific architecture for all alternative hypotheses, reproducability of trainings, inefficiency

- Precision and recall (Kynkäänniemi et al 2019)
 - Estimate real and generated manifold
 - Can disentangle quality and diversity

- Classifier-based metrics: train a classifier between real and generated data <u>Friedman 2003, Paz and Oquab 2017</u> (C2ST), <u>Krause and Shih (2021)</u>
 - Can be powerful test of quality and diversity
 - Practical limitations: interpretability, generalising to conditional generation, standardising a specific architecture for all alternative hypotheses, reproducability of trainings, inefficiency
 - In terms of GOF testing: comparing different test statistics for different models

• Typically raw data (particle / hit features) is very high dimensional

- Typically raw data (particle / hit features) is very high dimensional
- Not necessarily what we care about

- Typically raw data (particle / hit features) is very high dimensional
- Not necessarily what we care about
- ML solution: derive lower dimensional salient features from a pre-trained classifier

- Typically raw data (particle / hit features) is very high dimensional
- Not necessarily what we care about
- ML solution: derive lower dimensional salient features from a pre-trained classifier

• Alternative? Use physicists' hand-engineered features: jet observables, shower-shape variables

TESTS

• Sample of gluon jets to test sensitivity of metrics

- Sample of gluon jets to test sensitivity of metrics
- We distort true distribution by: I) Re-weighting in mass + 2) Smearing/shifting particle feature

- Sample of gluon jets to test sensitivity of metrics
- We distort true distribution by: I) Re-weighting in mass + 2) Smearing/shifting particle feature

• We look at sensitivity of metrics to distortions, using:

- Sample of gluon jets to test sensitivity of metrics
- We distort true distribution by: I) Re-weighting in mass + 2) Smearing/shifting particle feature

- We look at sensitivity of metrics to distortions, using:
 - I. Energy Flow Polynomials (EFPs) (d \leq 4)

- Sample of gluon jets to test sensitivity of metrics
- We distort true distribution by: I) Re-weighting in mass + 2) Smearing/shifting particle feature

- We look at sensitivity of metrics to distortions, using:
 - I. Energy Flow Polynomials (EFPs) (d \leq 4)
 - 2. ParticleNet activations

Raghav Kansal

RESULTS

Metric	Truth	Smeared	Shifted	Removing tail	Particle features smeared	$\begin{array}{c} { m Particle} \ \eta^{ m rel} \ m smeared \end{array}$	$\begin{array}{c} { m Particle} \ p_{ m T}^{ m rel} \ { m smeared} \end{array}$	$egin{array}{c} { m Particle} \ p_{ m T}^{ m rel} \ { m shifted} \end{array}$
$\begin{array}{c c} W_1^M \times 10^3 \\ \text{Sign.} \end{array}$								
Wasserstein EFP Sign.								
$\begin{array}{c c} \hline FGD_{\infty} \ EFP \ \times 10^{3} \\ \hline Sign. \end{array}$								
$\begin{array}{c c} \text{MMD EFP} \times 10^3 \\ \text{Sign.} \end{array}$								
Precision EFP Sign.								
Recall EFP Sign.								
Wasserstein PN Sign.								
$\begin{array}{c c} FGD_{\infty} \ PN \ \times 10^{3} \\ Sign. \end{array}$								
MMD PN ×10 ³ Sign.								
Precision PN Sign.								
Recall PN Sign.								
Classifier LLF AUC Classifier HLF AUC								

RESULTS

RK	et	al.	2022

Metric	Truth	Smeared	Shifted	Removing tail	Particle features smeared	$egin{array}{c} ext{Particle} \ \eta^{ ext{rel}} \ ext{smeared} \end{array}$	$egin{array}{c} { m Particle} \ p_{ m T}^{ m rel} \ { m smeared} \end{array}$	$egin{array}{c} { m Particle} \ p_{ m T}^{ m rel} \ { m shifted} \end{array}$
$\begin{array}{c c} W_1^M \times 10^3 \\ \text{Sign.} \end{array}$	$\begin{array}{c} 0.28 \pm 0.05 \\ \end{array}$	$\begin{array}{c} 2.1\pm0.2\\ 37\pm3 \end{array}$	$\begin{array}{c} 6.0\pm0.3\\ 114\pm6 \end{array}$	$\begin{array}{c} 0.6\pm0.2\\7\pm2 \end{array}$	$\begin{array}{c} 1.7\pm0.2\\ 28\pm3 \end{array}$	$\begin{array}{c} 0.9\pm0.3\\ 12\pm4 \end{array}$	$\begin{array}{c} 0.5\pm0.2\\ 4\pm1 \end{array}$	5.8 ± 0.2 111 ± 3
Wasserstein EFP Sign.	0.02 ± 0.01 —	$\begin{array}{c} 0.09 \pm 0.05 \\ 6 \pm 4 \end{array}$	$\begin{array}{c} 0.10\pm0.02\\ 7\pm1 \end{array}$	0.016 ± 0.007 0.06 ± 0.02	$\begin{array}{c} 0.19\pm0.08\\ 14\pm6 \end{array}$	0.03 ± 0.01 0.8 ± 0.4	$0.03 \pm 0.02 \\ 0.9 \pm 0.6$	$\begin{array}{c} 0.06\pm0.02\\ 4\pm1 \end{array}$
$\begin{array}{c c} \mathrm{FGD}_{\infty} \ \mathrm{EFP} \ \times 10^3 & \\ \mathrm{Sign.} & \end{array}$	0.08 ± 0.03 —	$\begin{array}{c} 20 \pm 1 \\ 580 \pm 30 \end{array}$	$\begin{array}{c} 26.6 \pm 0.9 \\ 760 \pm 20 \end{array}$	$\begin{array}{c} 2.4 \pm 0.1 \\ 66 \pm 4 \end{array}$	$\begin{array}{c} 21\pm2\\ 610\pm40 \end{array}$	$\begin{array}{c} \textbf{3.6} \pm \textbf{0.3} \\ \textbf{103} \pm \textbf{8} \end{array}$	$\begin{array}{c} 2.3\pm0.2\\ 64\pm4 \end{array}$	$\begin{array}{c} 29.1\pm0.4\\ 830\pm10\end{array}$
$\begin{array}{c c} \text{MMD EFP} \times 10^3 \\ \text{Sign.} \end{array}$	-0.006 ± 0.005	$\begin{array}{c} 0.17\pm0.06\\ 30\pm10 \end{array}$	$\begin{array}{c} 0.9\pm0.1\\ 170\pm20 \end{array}$	$\begin{array}{c} 0.03\pm0.02\\ 6\pm4 \end{array}$	$\begin{array}{c} 0.35\pm0.09\\ 70\pm10\end{array}$	0.08 ± 0.05 10 ± 10	$\begin{array}{c} 0.01 \pm 0.02 \\ 3 \pm 5 \end{array}$	$\begin{array}{c} 1.8\pm0.1\\ 360\pm20 \end{array}$
Precision EFP Sign.	0.9 ± 0.1	$\begin{array}{c} 0.94\pm0.04\\ 0\end{array}$	$\begin{array}{c} 0.978 \pm 0.005 \\ 0 \end{array}$	0.88 ± 0.08 0.109 ± 0.009	$\begin{array}{c} 0.7\pm0.1\\ 1.9\pm0.3 \end{array}$	$\begin{array}{c} 0.94 \pm 0.06 \\ 0 \end{array}$	$\begin{array}{c} 0.7\pm0.1\\ 2.0\pm0.3\end{array}$	$0.79 \pm 0.09 \\ 0.9 \pm 0.1$
Recall EFP Sign.	0.9 ± 0.1	$\begin{array}{c} 0.88\pm0.07\\ 0.16\pm0.01\end{array}$	$\begin{array}{c} 0.97 \pm 0.01 \\ 0 \end{array}$	$\begin{array}{c} 0.92\pm0.06\\ 0\end{array}$	0.83 ± 0.05 0.58 ± 0.04	$\begin{array}{c} 0.92 \pm 0.07 \\ 0 \end{array}$	$\begin{array}{c} 0.8\pm0.1\\ 0.8\pm0.1 \end{array}$	$\begin{array}{c} 0.8\pm0.1\\ 1.1\pm0.2 \end{array}$
Wasserstein PN Sign.	1.65 ± 0.06 —	$\begin{array}{c} 1.7\pm0.1\\ 0.84\pm0.05\end{array}$	$\begin{array}{c} 2.4\pm0.4\\ 12\pm2 \end{array}$	1.71 ± 0.08 0.97 ± 0.05	$\begin{array}{c} 4.5\pm0.1\\ 45\pm1 \end{array}$	1.79 ± 0.05 2.26 ± 0.06	$\begin{array}{c} 4.0\pm0.4\\ 37\pm3 \end{array}$	$\begin{array}{c} 7.6\pm0.2\\ 95\pm3 \end{array}$
$FGD_{\infty} PN \times 10^3$ Sign.	0.6 ± 0.4 —	$\begin{array}{c} 37\pm2\\ 98\pm4 \end{array}$	$\begin{array}{c} 202\pm4\\ 540\pm0\end{array}$	$\begin{array}{c} 4.3\pm0.4\\ 9.8\pm0.9\end{array}$	$\begin{array}{c} 1220\pm10\\ 3320\pm20 \end{array}$	$\begin{array}{c} 20\pm1\\ 51\pm3 \end{array}$	$\begin{array}{c} 1230\pm10\\ 3340\pm30\end{array}$	$\begin{array}{c} 3630\pm10\\ 9870\pm30\end{array}$
MMD PN ×10 ³ Sign.	-2 ± 2	$\begin{array}{c}4\pm8\\3\pm6\end{array}$	$\begin{array}{c} 80\pm10\\ 40\pm10 \end{array}$	$\begin{array}{c} -1\pm 4\\ 0\pm 3\end{array}$	$\begin{array}{c} 500\pm100\\ 280\pm70 \end{array}$	$\begin{array}{c} 3\pm2\\ 3\pm2\end{array}$	$\begin{array}{c} 560\pm60\\ 310\pm30\end{array}$	$\begin{array}{c} 1100\pm40\\ 610\pm20 \end{array}$
Precision PN Sign.	$\begin{array}{c} 0.68 \pm 0.07 \\ \end{array}$	$\begin{array}{c} 0.64\pm0.04\\ 0.57\pm0.04\end{array}$	$\begin{array}{c} 0.71 \pm 0.06 \\ 0 \end{array}$	$\begin{array}{c} 0.73 \pm 0.03 \\ 0 \end{array}$	$\begin{array}{c} 0.09\pm0.04\\ 8\pm4 \end{array}$	$\begin{array}{c} 0.75 \pm 0.08 \\ 0 \end{array}$	$\begin{array}{c} 0.08\pm0.04\\ 8\pm5 \end{array}$	$\begin{array}{c} 0.39\pm0.08\\ 4.0\pm0.8\end{array}$
Recall PN Sign.	0.70 ± 0.05	$\begin{array}{c} 0.61 \pm 0.04 \\ 1.8 \pm 0.1 \end{array}$	0.61 ± 0.08 1.8 ± 0.2	$0.73 \pm 0.06 \\ 0$	$\begin{array}{c} 0.014 \pm 0.009 \\ 14 \pm 9 \end{array}$	0.7 ± 0.1 0	$\begin{array}{c} 0.01 \pm 0.01 \\ 10 \pm 10 \end{array}$	$\begin{array}{c} 0.57 \pm 0.09 \\ 2.6 \pm 0.4 \end{array}$
Classifier LLF AUC Classifier HLF AUC	0.50 0.50	$0.52 \\ 0.53$	$0.54 \\ 0.55$	$0.50 \\ 0.50$	0.97 0.84	0.81 0.64	0.93 0.74	0.99 0.92

RESULTS

<u>RK et al. 2022</u>

• W_1^M - looking at I D mass distribution only - is somewhat sensitive to all

Metric	Truth	Smeared	Shifted	Removing tail	Particle features smeared	$egin{array}{c} ext{Particle} \ \eta^{ ext{rel}} \ ext{smeared} \end{array}$	$\begin{array}{c} { m Particle} \ p_{ m T}^{ m rel} \ { m smeared} \end{array}$	$egin{array}{c} { m Particle} \ p_{ m T}^{ m rel} \ { m shifted} \end{array}$
$W_1^M imes 10^3$ Sign.	0.28 ± 0.05 —	$\begin{array}{c} 2.1\pm0.2\\ 37\pm3 \end{array}$	$\begin{array}{c} 6.0\pm0.3\\ 114\pm6 \end{array}$	$\begin{array}{c} 0.6\pm0.2\\7\pm2 \end{array}$	$\begin{array}{c} 1.7\pm0.2\\ 28\pm3 \end{array}$	$\begin{array}{c} 0.9\pm0.3\\ 12\pm4 \end{array}$	$\begin{array}{c} 0.5\pm0.2\\ 4\pm1 \end{array}$	5.8 ± 0.2 111 ± 3
Wasserstein EFP Sign.	0.02 ± 0.01 —	$\begin{array}{c} 0.09\pm0.05\\ 6\pm4 \end{array}$	$\begin{array}{c} 0.10\pm0.02\\7\pm1\end{array}$	$\begin{array}{c} 0.016 \pm 0.007 \\ 0.06 \pm 0.02 \end{array}$	$\begin{array}{c} 0.19\pm0.08\\ 14\pm6 \end{array}$	$\begin{array}{c} 0.03 \pm 0.01 \\ 0.8 \pm 0.4 \end{array}$	$\begin{array}{c} 0.03 \pm 0.02 \\ 0.9 \pm 0.6 \end{array}$	$\begin{array}{c} 0.06\pm0.02\\ 4\pm1 \end{array}$
$\begin{array}{c c} \mathrm{FGD}_{\infty} \ \mathrm{EFP} \ \times 10^{3} \\ \mathrm{Sign.} \end{array}$	0.08 ± 0.03	$\begin{array}{c} 20 \pm 1 \\ 580 \pm 30 \end{array}$	$\begin{array}{c} 26.6 \pm 0.9 \\ 760 \pm 20 \end{array}$	$\begin{array}{c} 2.4 \pm 0.1 \\ 66 \pm 4 \end{array}$	$\begin{array}{c} 21\pm2\\ 610\pm40 \end{array}$	$\begin{array}{c} \textbf{3.6} \pm \textbf{0.3} \\ \textbf{103} \pm \textbf{8} \end{array}$	$\begin{array}{c} 2.3\pm0.2\\ 64\pm4 \end{array}$	$\begin{array}{c} 29.1\pm0.4\\ 830\pm10\end{array}$
$\begin{array}{c c} \text{MMD EFP} \times 10^3 \\ \text{Sign.} \end{array}$	-0.006 ± 0.005	$\begin{array}{c} 0.17\pm0.06\\ 30\pm10 \end{array}$	$\begin{array}{c} 0.9\pm0.1\\ 170\pm20 \end{array}$	$\begin{array}{c} 0.03 \pm 0.02 \\ 6 \pm 4 \end{array}$	$\begin{array}{c} 0.35\pm0.09\\ 70\pm10 \end{array}$	$\begin{array}{c} 0.08\pm0.05\\ 10\pm10 \end{array}$	$\begin{array}{c} 0.01 \pm 0.02 \\ 3 \pm 5 \end{array}$	$\begin{array}{c} 1.8\pm0.1\\ 360\pm20 \end{array}$
Precision EFP Sign.	0.9 ± 0.1	$\begin{array}{c} 0.94 \pm 0.04 \\ 0 \end{array}$	$\begin{array}{c} 0.978 \pm 0.005 \\ 0 \end{array}$	0.88 ± 0.08 0.109 ± 0.009	$\begin{array}{c} 0.7\pm0.1\\ 1.9\pm0.3 \end{array}$	$\begin{array}{c} 0.94 \pm 0.06 \\ 0 \end{array}$	$\begin{array}{c} 0.7\pm0.1\\ 2.0\pm0.3\end{array}$	$\begin{array}{c} 0.79 \pm 0.09 \\ 0.9 \pm 0.1 \end{array}$
Recall EFP Sign.	0.9 ± 0.1	$\begin{array}{c} 0.88\pm0.07\\ 0.16\pm0.01\end{array}$	$\begin{array}{c} 0.97 \pm 0.01 \\ 0 \end{array}$	$\begin{array}{c} 0.92\pm0.06\\ 0\end{array}$	$\begin{array}{c} 0.83 \pm 0.05 \\ 0.58 \pm 0.04 \end{array}$	$\begin{array}{c} 0.92 \pm 0.07 \\ 0 \end{array}$	$\begin{array}{c} 0.8\pm0.1\\ 0.8\pm0.1 \end{array}$	$\begin{array}{c} 0.8\pm0.1\\ 1.1\pm0.2 \end{array}$
Wasserstein PN Sign.	1.65 ± 0.06 —	$\begin{array}{c} 1.7\pm0.1\\ 0.84\pm0.05\end{array}$	$\begin{array}{c} 2.4\pm0.4\\ 12\pm2 \end{array}$	1.71 ± 0.08 0.97 ± 0.05	$\begin{array}{c} 4.5\pm0.1\\ 45\pm1 \end{array}$	1.79 ± 0.05 2.26 ± 0.06	$\begin{array}{c} 4.0\pm0.4\\ 37\pm3 \end{array}$	$\begin{array}{c} 7.6\pm0.2\\ 95\pm3 \end{array}$
$\begin{array}{c c} \mathrm{FGD}_{\infty} \ \mathrm{PN} \ \times 10^{3} \\ \mathrm{Sign.} \end{array}$	0.6 ± 0.4 —	$\begin{array}{c} 37\pm2\\ 98\pm4 \end{array}$	$\begin{array}{c} 202\pm4\\ 540\pm0\end{array}$	$\begin{array}{c} 4.3\pm0.4\\ 9.8\pm0.9\end{array}$	$\begin{array}{c} 1220\pm10\\ 3320\pm20 \end{array}$	$\begin{array}{c} 20\pm1\\ 51\pm3 \end{array}$	$\begin{array}{c} 1230 \pm 10 \\ 3340 \pm 30 \end{array}$	$\begin{array}{c} 3630 \pm 10 \\ 9870 \pm 30 \end{array}$
$\begin{array}{c c} \text{MMD PN} \times 10^3 \\ \text{Sign.} \end{array}$	-2 ± 2	$\begin{array}{c} 4\pm8\\ 3\pm6\end{array}$	$\begin{array}{c} 80\pm10\\ 40\pm10 \end{array}$	$\begin{array}{c} -1\pm 4\\ 0\pm 3\end{array}$	$\begin{array}{c} 500\pm100\\ 280\pm70 \end{array}$	$\begin{array}{c} 3\pm2\\ 3\pm2\end{array}$	$\begin{array}{c} 560\pm60\\ 310\pm30\end{array}$	$\begin{array}{c} 1100\pm40\\ 610\pm20 \end{array}$
Precision PN Sign.	$\begin{array}{c} 0.68\pm0.07\\\end{array}$	$\begin{array}{c} 0.64\pm0.04\\ 0.57\pm0.04\end{array}$	$\begin{array}{c} 0.71 \pm 0.06 \\ 0 \end{array}$	$\begin{array}{c} 0.73 \pm 0.03 \\ 0 \end{array}$	$\begin{array}{c} 0.09\pm0.04\\ 8\pm4 \end{array}$	$\begin{array}{c} 0.75 \pm 0.08 \\ 0 \end{array}$	$\begin{array}{c} 0.08\pm0.04\\ 8\pm5 \end{array}$	$\begin{array}{c} 0.39 \pm 0.08 \\ 4.0 \pm 0.8 \end{array}$
Recall PN Sign.	0.70 ± 0.05	$\begin{array}{c} 0.61\pm0.04\\ 1.8\pm0.1 \end{array}$	$\begin{array}{c} 0.61\pm0.08\\ 1.8\pm0.2 \end{array}$	$\begin{array}{c} 0.73 \pm 0.06 \\ 0 \end{array}$	$\begin{array}{c} 0.014 \pm 0.009 \\ 14 \pm 9 \end{array}$	0.7 ± 0.1 0	$\begin{array}{c} 0.01\pm0.01\\ 10\pm10 \end{array}$	0.57 ± 0.09 2.6 ± 0.4
Classifier LLF AUC Classifier HLF AUC	$0.50 \\ 0.50$	$0.52 \\ 0.53$	$\begin{array}{c} 0.54 \\ 0.55 \end{array}$	0.50 0.50	0.97 0.84	0.81 0.64	0.93 0.74	0.99 0.92

Generative Transformers and How to Evaluate Them

RESULTS

•

- W_1^M looking at I D mass distribution only is somewhat sensitive to all
- Wasserstein is sensitive to most, but slow to converge

Metric	Truth	Smeared	Shifted	Removing tail	Particle features smeared	$egin{array}{c} ext{Particle} \ \eta^{ ext{rel}} \ ext{smeared} \end{array}$	$egin{array}{c} { m Particle} \ p_{ m T}^{ m rel} \ { m smeared} \end{array}$	$egin{array}{c} { m Particle} \ p_{ m T}^{ m rel} \ { m shifted} \end{array}$
$\left. \begin{array}{c} W_1^M \times 10^3 \\ \text{Sign.} \end{array} \right $	0.28 ± 0.05 —	$\begin{array}{c} 2.1\pm0.2\\ 37\pm3 \end{array}$	$\begin{array}{c} 6.0\pm0.3\\ 114\pm6 \end{array}$	$\begin{array}{c} 0.6\pm0.2\\7\pm2 \end{array}$	$\begin{array}{c} 1.7\pm0.2\\ 28\pm3 \end{array}$	$\begin{array}{c} 0.9\pm0.3\\ 12\pm4 \end{array}$	$\begin{array}{c} 0.5\pm0.2\\ 4\pm1 \end{array}$	5.8 ± 0.2 111 ± 3
Wasserstein EFP Sign.	0.02 ± 0.01 —	$\begin{array}{c} 0.09 \pm 0.05 \\ 6 \pm 4 \end{array}$	$\begin{array}{c} 0.10\pm0.02\\7\pm1\end{array}$	$\begin{array}{c} 0.016 \pm 0.007 \\ 0.06 \pm 0.02 \end{array}$	$\begin{array}{c} 0.19\pm0.08\\ 14\pm6 \end{array}$	$0.03 \pm 0.01 \\ 0.8 \pm 0.4$	$0.03 \pm 0.02 \\ 0.9 \pm 0.6$	$\begin{array}{c} 0.06\pm0.02\\ 4\pm1 \end{array}$
$\begin{array}{c c} \mathrm{FGD}_{\infty} \ \mathrm{EFP} \ imes 10^{3} & \\ \mathrm{Sign.} & \end{array}$	0.08 ± 0.03	$\begin{array}{c} 20 \pm 1 \\ 580 \pm 30 \end{array}$	$\begin{array}{c} 26.6 \pm 0.9 \\ 760 \pm 20 \end{array}$	$\begin{array}{c} 2.4 \pm 0.1 \\ 66 \pm 4 \end{array}$	$\begin{array}{c} 21\pm2\\ 610\pm40 \end{array}$	$\begin{array}{c} 3.6 \pm 0.3 \\ 103 \pm 8 \end{array}$	$\begin{array}{c} 2.3\pm0.2\\ 64\pm4 \end{array}$	$\begin{array}{c} 29.1\pm0.4\\ 830\pm10\end{array}$
MMD EFP ×10 ³ Sign.	-0.006 ± 0.005	$\begin{array}{c} 0.17 \pm 0.06 \\ 30 \pm 10 \end{array}$	$\begin{array}{c} 0.9\pm0.1\\ 170\pm20 \end{array}$	$\begin{array}{c} 0.03 \pm 0.02 \\ 6 \pm 4 \end{array}$	$\begin{array}{c} 0.35\pm0.09\\ 70\pm10 \end{array}$	$\begin{array}{c} 0.08 \pm 0.05 \\ 10 \pm 10 \end{array}$	$\begin{array}{c} 0.01 \pm 0.02 \\ 3 \pm 5 \end{array}$	$\begin{array}{c} 1.8\pm0.1\\ 360\pm20 \end{array}$
Precision EFP Sign.	0.9 ± 0.1	$\begin{array}{c} 0.94 \pm 0.04 \\ 0 \end{array}$	$\begin{array}{c} 0.978 \pm 0.005 \\ 0 \end{array}$	$\begin{array}{c} 0.88 \pm 0.08 \\ 0.109 \pm 0.009 \end{array}$	$\begin{array}{c} 0.7\pm0.1\\ 1.9\pm0.3 \end{array}$	$\begin{array}{c} 0.94 \pm 0.06 \\ 0 \end{array}$	$\begin{array}{c} 0.7\pm0.1\\ 2.0\pm0.3\end{array}$	$0.79 \pm 0.09 \\ 0.9 \pm 0.1$
Recall EFP Sign.	0.9 ± 0.1	$\begin{array}{c} 0.88 \pm 0.07 \\ 0.16 \pm 0.01 \end{array}$	$\begin{array}{c} 0.97 \pm 0.01 \\ 0 \end{array}$	$\begin{array}{c} 0.92\pm0.06\\ 0\end{array}$	0.83 ± 0.05 0.58 ± 0.04	$\begin{array}{c} 0.92 \pm 0.07 \\ 0 \end{array}$	$\begin{array}{c} 0.8\pm0.1\\ 0.8\pm0.1 \end{array}$	$\begin{array}{c} 0.8\pm0.1\\ 1.1\pm0.2 \end{array}$
Wasserstein PN Sign.	1.65 ± 0.06 —	$\begin{array}{c} 1.7\pm0.1\\ 0.84\pm0.05\end{array}$	$\begin{array}{c} 2.4\pm0.4\\ 12\pm2 \end{array}$	1.71 ± 0.08 0.97 ± 0.05	$\begin{array}{c} 4.5\pm0.1\\ 45\pm1 \end{array}$	1.79 ± 0.05 2.26 ± 0.06	$\begin{array}{c} 4.0\pm0.4\\ 37\pm3 \end{array}$	$\begin{array}{c} 7.6\pm0.2\\ 95\pm3 \end{array}$
$FGD_{\infty} PN \times 10^3$ Sign.	0.6 ± 0.4 —	$\begin{array}{c} 37\pm2\\ 98\pm4 \end{array}$	$\begin{array}{c} 202\pm4\\ 540\pm0\end{array}$	$\begin{array}{c} 4.3\pm0.4\\ 9.8\pm0.9\end{array}$	$\begin{array}{c} 1220\pm10\\ 3320\pm20 \end{array}$	$\begin{array}{c} 20\pm1\\ 51\pm3 \end{array}$	$\begin{array}{c} 1230\pm10\\ 3340\pm30\end{array}$	$\begin{array}{c} 3630\pm10\\ 9870\pm30\end{array}$
MMD PN ×10 ³ Sign.	-2 ± 2	$\begin{array}{c} 4\pm8\\ 3\pm6\end{array}$	$\begin{array}{c} 80\pm10\\ 40\pm10 \end{array}$	$\begin{array}{c} -1\pm 4\\ 0\pm 3\end{array}$	$\begin{array}{c} 500\pm100\\ 280\pm70 \end{array}$	$\begin{array}{c} 3\pm2\\ 3\pm2 \end{array}$	$\begin{array}{c} 560\pm60\\ 310\pm30\end{array}$	$\begin{array}{c} 1100\pm40\\ 610\pm20 \end{array}$
Precision PN Sign.	0.68 ± 0.07	0.64 ± 0.04 0.57 ± 0.04	$\begin{array}{c} 0.71 \pm 0.06 \\ 0 \end{array}$	$\begin{array}{c} 0.73 \pm 0.03 \\ 0 \end{array}$	$\begin{array}{c} 0.09 \pm 0.04 \\ 8 \pm 4 \end{array}$	$\begin{array}{c} 0.75 \pm 0.08 \\ 0 \end{array}$	$\begin{array}{c} 0.08\pm0.04\\ 8\pm5 \end{array}$	$\begin{array}{c} 0.39\pm0.08\\ 4.0\pm0.8 \end{array}$
Recall PN Sign.	0.70 ± 0.05	$\begin{array}{c} 0.61 \pm 0.04 \\ 1.8 \pm 0.1 \end{array}$	$\begin{array}{c} 0.61\pm0.08\\ 1.8\pm0.2 \end{array}$	$\begin{array}{c} 0.73 \pm 0.06 \\ 0 \end{array}$	$\begin{array}{c} 0.014 \pm 0.009 \\ 14 \pm 9 \end{array}$	$\begin{array}{c} 0.7\pm0.1\\ 0\end{array}$	$\begin{array}{c} 0.01\pm0.01\\ 10\pm10 \end{array}$	$\begin{array}{c} 0.57 \pm 0.09 \\ 2.6 \pm 0.4 \end{array}$
Classifier LLF AUC Classifier HLF AUC	0.50 0.50	$0.52 \\ 0.53$	$\begin{array}{c} 0.54 \\ 0.55 \end{array}$	0.50 0.50	0.97 0.84	0.81 0.64	0.93 0.74	0.99 0.92

Generative Transformers and How to Evaluate Them

RI	ESL	儿	-S

- W_1^M looking at I D mass distribution only is somewhat sensitive to all
- Wasserstein is sensitive to most, but slow to converge
- EFPs and PNet activations performance similar

Metric	Truth	Smeared	Shifted	Removing tail	Particle features smeared	$egin{array}{c} ext{Particle} \ \eta^{ ext{rel}} \ ext{smeared} \end{array}$	$egin{array}{c} ext{Particle} \ p_{ ext{T}}^{ ext{rel}} \ ext{smeared} \end{array}$	$egin{array}{c} { m Particle} \ p_{ m T}^{ m rel} \ { m shifted} \end{array}$
$\begin{array}{c} W_1^M \times 10^3 \\ \text{Sign.} \end{array}$	0.28 ± 0.05 —	$\begin{array}{c} 2.1\pm0.2\\ 37\pm3 \end{array}$	$\begin{array}{c} 6.0\pm0.3\\ 114\pm6 \end{array}$	$\begin{array}{c} 0.6\pm0.2\\7\pm2 \end{array}$	$\begin{array}{c} 1.7\pm0.2\\ 28\pm3 \end{array}$	$\begin{array}{c} 0.9\pm0.3\\ 12\pm4 \end{array}$	$\begin{array}{c} 0.5\pm0.2\\ 4\pm1 \end{array}$	5.8 ± 0.2 111 ± 3
Wasserstein EFP Sign.	0.02 ± 0.01 —	$\begin{array}{c} 0.09 \pm 0.05 \\ 6 \pm 4 \end{array}$	$\begin{array}{c} 0.10\pm0.02\\7\pm1\end{array}$	$\begin{array}{c} 0.016 \pm 0.007 \\ 0.06 \pm 0.02 \end{array}$	$\begin{array}{c} 0.19\pm0.08\\ 14\pm6 \end{array}$	$0.03 \pm 0.01 \\ 0.8 \pm 0.4$	$\begin{array}{c} 0.03\pm0.02\\ 0.9\pm0.6\end{array}$	$\begin{array}{c} 0.06\pm0.02\\ 4\pm1 \end{array}$
$FGD_{\infty} EFP \times 10^{3}$ Sign.	0.08 ± 0.03	$\begin{array}{c} 20 \pm 1 \\ 580 \pm 30 \end{array}$	$\begin{array}{c} 26.6 \pm 0.9 \\ 760 \pm 20 \end{array}$	$\begin{array}{c} 2.4 \pm 0.1 \\ 66 \pm 4 \end{array}$	$\begin{array}{c} 21\pm2\\ 610\pm40 \end{array}$	$\begin{array}{c} \textbf{3.6} \pm \textbf{0.3} \\ \textbf{103} \pm \textbf{8} \end{array}$	$\begin{array}{c} 2.3\pm0.2\\ 64\pm4 \end{array}$	$\begin{array}{c} 29.1\pm0.4\\ 830\pm10\end{array}$
$\begin{array}{c} \text{MMD EFP} \times 10^3 \\ \text{Sign.} \end{array}$	-0.006 ± 0.005	$\begin{array}{c} 0.17 \pm 0.06 \\ 30 \pm 10 \end{array}$	$\begin{array}{c} 0.9\pm0.1\\ 170\pm20 \end{array}$	$\begin{array}{c} 0.03 \pm 0.02 \\ 6 \pm 4 \end{array}$	$\begin{array}{c} 0.35\pm0.09\\ 70\pm10 \end{array}$	$\begin{array}{c} 0.08\pm0.05\\ 10\pm10 \end{array}$	$\begin{array}{c} 0.01\pm0.02\\ 3\pm5 \end{array}$	$\begin{array}{c} 1.8\pm0.1\\ 360\pm20 \end{array}$
Precision EFP Sign.	0.9 ± 0.1 —	$\begin{array}{c} 0.94 \pm 0.04 \\ 0 \end{array}$	$\begin{array}{c} 0.978 \pm 0.005 \\ 0 \end{array}$	$\begin{array}{c} 0.88 \pm 0.08 \\ 0.109 \pm 0.009 \end{array}$	$\begin{array}{c} 0.7\pm0.1\\ 1.9\pm0.3 \end{array}$	$\begin{array}{c} 0.94 \pm 0.06 \\ 0 \end{array}$	$\begin{array}{c} 0.7\pm0.1\\ 2.0\pm0.3\end{array}$	$\begin{array}{c} 0.79 \pm 0.09 \\ 0.9 \pm 0.1 \end{array}$
Recall EFP Sign.	0.9 ± 0.1	$\begin{array}{c} 0.88\pm0.07\\ 0.16\pm0.01\end{array}$	$\begin{array}{c} 0.97 \pm 0.01 \\ 0 \end{array}$	$\begin{array}{c} 0.92\pm0.06\\ 0\end{array}$	$\begin{array}{c} 0.83\pm0.05\\ 0.58\pm0.04 \end{array}$	$\begin{array}{c} 0.92 \pm 0.07 \\ 0 \end{array}$	$\begin{array}{c} 0.8\pm0.1\\ 0.8\pm0.1 \end{array}$	$\begin{array}{c} 0.8\pm0.1\\ 1.1\pm0.2 \end{array}$
Wasserstein PN Sign.	$\begin{array}{c} 1.65\pm0.06\\\end{array}$	$\begin{array}{c} 1.7\pm0.1\\ 0.84\pm0.05\end{array}$	$\begin{array}{c} 2.4\pm0.4\\ 12\pm2 \end{array}$	1.71 ± 0.08 0.97 ± 0.05	$\begin{array}{c} 4.5\pm0.1\\ 45\pm1 \end{array}$	1.79 ± 0.05 2.26 ± 0.06	$\begin{array}{c} 4.0\pm0.4\\ 37\pm3 \end{array}$	$\begin{array}{c} 7.6\pm0.2\\ 95\pm3 \end{array}$
$FGD_{\infty} PN \times 10^{3}$ Sign.	0.6 ± 0.4 —	$\begin{array}{c} 37\pm2\\ 98\pm4 \end{array}$	$\begin{array}{c} 202\pm4\\ 540\pm0\end{array}$	4.3 ± 0.4 9.8 ± 0.9	$\begin{array}{c} 1220\pm10\\ 3320\pm20 \end{array}$	$\begin{array}{c} 20\pm1\\ 51\pm3 \end{array}$	$\begin{array}{c} 1230\pm10\\ 3340\pm30\end{array}$	$\begin{array}{c} 3630\pm10\\ 9870\pm30\end{array}$
$\begin{array}{c} \text{MMD PN} \times 10^3 \\ \text{Sign.} \end{array}$	-2 ± 2	$\begin{array}{c} 4\pm8\\ 3\pm6 \end{array}$	$\begin{array}{c} 80\pm10\\ 40\pm10 \end{array}$	$\begin{array}{c} -1\pm 4\\ 0\pm 3\end{array}$	$\begin{array}{c} 500\pm100\\ 280\pm70 \end{array}$	$\begin{array}{c} 3\pm2\\ 3\pm2 \end{array}$	$\begin{array}{c} 560\pm60\\ 310\pm30\end{array}$	$\begin{array}{c} 1100\pm40\\ 610\pm20 \end{array}$
Precision PN Sign.	$\begin{array}{c} 0.68 \pm 0.07 \\ \end{array}$	$\begin{array}{c} 0.64\pm0.04\\ 0.57\pm0.04\end{array}$	$\begin{array}{c} 0.71 \pm 0.06 \\ 0 \end{array}$	$\begin{array}{c} 0.73 \pm 0.03 \\ 0 \end{array}$	$\begin{array}{c} 0.09\pm0.04\\ 8\pm4 \end{array}$	$\begin{array}{c} 0.75 \pm 0.08 \\ 0 \end{array}$	$\begin{array}{c} 0.08\pm0.04\\ 8\pm5 \end{array}$	$\begin{array}{c} 0.39\pm0.08\\ 4.0\pm0.8\end{array}$
Recall PN Sign.	$\begin{array}{c} 0.70 \pm 0.05 \\ \end{array}$	$\begin{array}{c} 0.61\pm0.04\\ 1.8\pm0.1 \end{array}$	$\begin{array}{c} 0.61\pm0.08\\ 1.8\pm0.2 \end{array}$	$\begin{array}{c} 0.73 \pm 0.06 \\ 0 \end{array}$	$\begin{array}{c} 0.014 \pm 0.009 \\ 14 \pm 9 \end{array}$	$\begin{array}{c} 0.7\pm0.1\\ 0\end{array}$	$\begin{array}{c} 0.01 \pm 0.01 \\ 10 \pm 10 \end{array}$	$\begin{array}{c} 0.57 \pm 0.09 \\ 2.6 \pm 0.4 \end{array}$
Classifier LLF AUC Classifier HLF AUC	0.50 0.50	$0.52 \\ 0.53$	$0.54 \\ 0.55$	$0.50 \\ 0.50$	0.97 0.84	0.81 0.64	0.93 0.74	0.99 0.92

RESULTS	5
---------	---

W_1^M - looking at ID mass distribution only	_
is somewhat sensitive to all	

- Wasserstein is sensitive to most, but slow to converge
- EFPs and PNet activations performance • similar

•

Precision, recall work roughly - useful for diagnosing failure modes but not for comparing

					Particle	Particle	Particle	Particle
Metric	Truth	Smeared	Shifted	Removing tail	features	$\eta^{ m rel}$	$p_{\mathrm{T}}^{\mathrm{rel}}$	$p_{\mathrm{T}}^{\mathrm{rel}}$
					smeared	smeared	smeared	shifted
$W_1^M \times 10^3$	0.28 ± 0.05	2.1 ± 0.2	6.0 ± 0.3	0.6 ± 0.2	1.7 ± 0.2	0.9 ± 0.3	0.5 ± 0.2	5.8 ± 0.2
Sign.	—	37 ± 3	114 ± 6	7 ± 2	28 ± 3	12 ± 4	4 ± 1	111 ± 3
Wasserstein EFP	0.02 ± 0.01	0.09 ± 0.05	0.10 ± 0.02	0.016 ± 0.007	0.19 ± 0.08	0.03 ± 0.01	0.03 ± 0.02	0.06 ± 0.02
Sign.	_	6 ± 4	7 ± 1	0.06 ± 0.02	14 ± 6	0.8 ± 0.4	0.9 ± 0.6	4 ± 1
$FGD_{\infty} EFP \times 10^3$	0.08 ± 0.03	${\bf 20}\pm{\bf 1}$	26.6 ± 0.9	2.4 ± 0.1	21 ± 2	3.6 ± 0.3	2.3 ± 0.2	29.1 ± 0.4
Sign.	_	580 ± 30	760 ± 20	$\bf 66 \pm 4$	610 ± 40	${\bf 103\pm 8}$	64 ± 4	830 ± 10
MMD EFP $\times 10^3$	$ -0.006 \pm 0.005 $	0.17 ± 0.06	0.9 ± 0.1	0.03 ± 0.02	0.35 ± 0.09	0.08 ± 0.05	0.01 ± 0.02	1.8 ± 0.1
Sign.	_	30 ± 10	170 ± 20	6 ± 4	70 ± 10	10 ± 10	3 ± 5	360 ± 20
Precision EFP	0.9 ± 0.1	0.94 ± 0.04	0.978 ± 0.005	0.88 ± 0.08	0.7 ± 0.1	0.94 ± 0.06	0.7 ± 0.1	0.79 ± 0.09
Sign.		0	0	0.109 ± 0.009	1.9 ± 0.3	0	2.0 ± 0.3	0.9 ± 0.1
Recall EFP	0.9 ± 0.1	0.88 ± 0.07	0.97 ± 0.01	0.92 ± 0.06	0.83 ± 0.05	0.92 ± 0.07	0.8 ± 0.1	0.8 ± 0.1
Sign.	_	0.16 ± 0.01	0	0	0.58 ± 0.04	0	0.8 ± 0.1	1.1 ± 0.2
Wasserstein PN	1.65 ± 0.06	1.7 ± 0.1	2.4 ± 0.4	1.71 ± 0.08	4.5 ± 0.1	1.79 ± 0.05	4.0 ± 0.4	7.6 ± 0.2
Sign.	_	0.84 ± 0.05	12 ± 2	0.97 ± 0.05	45 ± 1	2.26 ± 0.06	37 ± 3	95 ± 3
$\mathrm{FGD}_{\infty}~\mathrm{PN}~{ imes}10^3$	0.6 ± 0.4	37 ± 2	202 ± 4	4.3 ± 0.4	1220 ± 10	20 ± 1	1230 ± 10	$\textbf{3630} \pm \textbf{10}$
Sign.	_	98 ± 4	540 ± 0	9.8 ± 0.9	$\textbf{3320} \pm \textbf{20}$	51 ± 3	$\textbf{3340} \pm \textbf{30}$	$\textbf{9870} \pm \textbf{30}$
MMD PN $\times 10^3$	-2 ± 2	4 ± 8	80 ± 10	-1 ± 4	500 ± 100	3 ± 2	560 ± 60	1100 ± 40
Sign.	—	3 ± 6	40 ± 10	0 ± 3	280 ± 70	3 ± 2	310 ± 30	610 ± 20
Precision PN	0.68 ± 0.07	0.64 ± 0.04	0.71 ± 0.06	0.73 ± 0.03	0.09 ± 0.04	0.75 ± 0.08	0.08 ± 0.04	0.39 ± 0.08
Sign.	_	0.57 ± 0.04	0	0	8 ± 4	0	8 ± 5	4.0 ± 0.8
Recall PN	0.70 ± 0.05	0.61 ± 0.04	0.61 ± 0.08	0.73 ± 0.06	0.014 ± 0.009	0.7 ± 0.1	0.01 ± 0.01	0.57 ± 0.09
Sign.	-	1.8 ± 0.1	1.8 ± 0.2	0	14 ± 9	0	10 ± 10	2.6 ± 0.4
Classifier LLF AUC	0.50	0.52	0.54	0.50	0.97	0.81	0.93	0.99
Classifier HLF AUC	0.50	0.53	0.55	0.50	0.84	0.64	0.74	0.92

=

RESUL	TS
-------	----

Metric	Truth	Smeared	Shifted	Removing tail	Particle features smeared	$egin{array}{c} ext{Particle} \ \eta^{ ext{rel}} \ ext{smeared} \end{array}$	$egin{array}{c} { m Particle} \ p_{ m T}^{ m rel} \ { m smeared} \end{array}$	$egin{array}{c} { m Particle} \ p_{ m T}^{ m rel} \ { m shifted} \end{array}$
$W_1^M imes 10^3$ Sign.	$ 0.28 \pm 0.05$ —	$\begin{array}{c} 2.1\pm0.2\\ 37\pm3 \end{array}$	$\begin{array}{c} 6.0\pm0.3\\ 114\pm6 \end{array}$	$\begin{array}{c} 0.6\pm0.2\\7\pm2\end{array}$	$\begin{array}{c} 1.7\pm0.2\\ 28\pm3 \end{array}$	$\begin{array}{c} 0.9\pm0.3\\ 12\pm4 \end{array}$	$\begin{array}{c} 0.5\pm0.2\\ 4\pm1 \end{array}$	$\begin{array}{c} 5.8\pm0.2\\111\pm3\end{array}$
Wasserstein EFP Sign.	$ 0.02 \pm 0.01 \\ -$	$\begin{array}{c} 0.09\pm0.05\\ 6\pm4 \end{array}$	$\begin{array}{c} 0.10\pm0.02\\ 7\pm1 \end{array}$	$\begin{array}{c} 0.016 \pm 0.007 \\ 0.06 \pm 0.02 \end{array}$	$\begin{array}{c} 0.19\pm0.08\\ 14\pm6 \end{array}$	0.03 ± 0.01 0.8 ± 0.4	0.03 ± 0.02 0.9 ± 0.6	$\begin{array}{c} 0.06\pm0.02\\ 4\pm1 \end{array}$
$FGD_{\infty} EFP \times 10^{3}$ Sign.	$ 0.08 \pm 0.03 -$	$\begin{array}{c} 20 \pm 1 \\ 580 \pm 30 \end{array}$	$\begin{array}{c} 26.6 \pm 0.9 \\ 760 \pm 20 \end{array}$	$\begin{array}{c} 2.4 \pm 0.1 \\ 66 \pm 4 \end{array}$	$\begin{array}{c} 21\pm2\\ 610\pm40 \end{array}$	$\begin{array}{c} \textbf{3.6} \pm \textbf{0.3} \\ \textbf{103} \pm \textbf{8} \end{array}$	$\begin{array}{c} 2.3\pm0.2\\ 64\pm4 \end{array}$	$\begin{array}{c} 29.1\pm0.4\\ 830\pm10\end{array}$
$\begin{array}{c} \text{MMD EFP} \times 10^3 \\ \text{Sign.} \end{array}$	$ -0.006 \pm 0.005$	$\begin{array}{c} 0.17 \pm 0.06 \\ 30 \pm 10 \end{array}$	$\begin{array}{c} 0.9\pm0.1\\ 170\pm20 \end{array}$	$\begin{array}{c} 0.03 \pm 0.02 \\ 6 \pm 4 \end{array}$	$\begin{array}{c} 0.35\pm0.09\\ 70\pm10 \end{array}$	0.08 ± 0.05 10 ± 10	$\begin{array}{c} 0.01\pm0.02\\ 3\pm5 \end{array}$	1.8 ± 0.1 360 ± 20
Precision EFP Sign.	0.9 ± 0.1 —	$\begin{array}{c} 0.94 \pm 0.04 \\ 0 \end{array}$	$\begin{array}{c} 0.978 \pm 0.005 \\ 0 \end{array}$	$\begin{array}{c} 0.88 \pm 0.08 \\ 0.109 \pm 0.009 \end{array}$	$\begin{array}{c} 0.7\pm0.1\\ 1.9\pm0.3 \end{array}$	$\begin{array}{c} 0.94 \pm 0.06 \\ 0 \end{array}$	$\begin{array}{c} 0.7\pm0.1\\ 2.0\pm0.3\end{array}$	$\begin{array}{c} 0.79\pm0.09\\ 0.9\pm0.1 \end{array}$
Recall EFP Sign.	0.9 ± 0.1 —	$\begin{array}{c} 0.88\pm0.07\\ 0.16\pm0.01\end{array}$	$\begin{array}{c} 0.97 \pm 0.01 \\ 0 \end{array}$	$\begin{array}{c} 0.92\pm0.06\\ 0\end{array}$	$\begin{array}{c} 0.83\pm0.05\\ 0.58\pm0.04 \end{array}$	$\begin{array}{c} 0.92 \pm 0.07 \\ 0 \end{array}$	$\begin{array}{c} 0.8\pm0.1\\ 0.8\pm0.1 \end{array}$	$\begin{array}{c} 0.8\pm0.1\\ 1.1\pm0.2 \end{array}$
Wasserstein PN Sign.	$ 1.65 \pm 0.06 \\ -$	$\begin{array}{c} 1.7\pm0.1\\ 0.84\pm0.05\end{array}$	$\begin{array}{c} 2.4\pm0.4\\ 12\pm2 \end{array}$	1.71 ± 0.08 0.97 ± 0.05	$\begin{array}{c} 4.5\pm0.1\\ 45\pm1 \end{array}$	1.79 ± 0.05 2.26 ± 0.06	$\begin{array}{c} 4.0\pm0.4\\ 37\pm3 \end{array}$	7.6 ± 0.2 95 ± 3
$\mathrm{FGD}_{\infty} \ \mathrm{PN} \ imes 10^{3}$ $\mathrm{Sign.}$	$\left \begin{array}{c} 0.6 \pm 0.4 \\ - \end{array} \right $	$\begin{array}{c} 37\pm2\\ 98\pm4 \end{array}$	$\begin{array}{c} 202\pm4\\ 540\pm0\end{array}$	$\begin{array}{c} 4.3\pm0.4\\ 9.8\pm0.9\end{array}$	$\begin{array}{c} 1220\pm10\\ 3320\pm20 \end{array}$	$\begin{array}{c} 20\pm1\\ 51\pm3 \end{array}$	$\begin{array}{c} 1230\pm10\\ 3340\pm30\end{array}$	$\begin{array}{c} 3630 \pm 10 \\ 9870 \pm 30 \end{array}$
$\begin{array}{l} \mathrm{MMD} \ \mathrm{PN} \ \times 10^{3} \\ \mathrm{Sign.} \end{array}$	$\begin{vmatrix} -2 \pm 2 \\ -2 \pm 2 \end{vmatrix}$	$\begin{array}{c} 4\pm8\\ 3\pm6\end{array}$	$\begin{array}{c} 80\pm10\\ 40\pm10 \end{array}$	$\begin{array}{c} -1\pm 4\\ 0\pm 3\end{array}$	$\begin{array}{c} 500\pm100\\ 280\pm70 \end{array}$	$\begin{array}{c} 3\pm2\\ 3\pm2 \end{array}$	$\begin{array}{c} 560\pm60\\ 310\pm30\end{array}$	$\begin{array}{c} 1100\pm40\\ 610\pm20 \end{array}$
Precision PN Sign.	$\begin{vmatrix} 0.68 \pm 0.07 \\ - \end{vmatrix}$	$\begin{array}{c} 0.64\pm0.04\\ 0.57\pm0.04\end{array}$	$\begin{array}{c} 0.71 \pm 0.06 \\ 0 \end{array}$	$\begin{array}{c} 0.73 \pm 0.03 \\ 0 \end{array}$	$\begin{array}{c} 0.09\pm0.04\\ 8\pm4 \end{array}$	$\begin{array}{c} 0.75 \pm 0.08 \\ 0 \end{array}$	$\begin{array}{c} 0.08\pm0.04\\ 8\pm5 \end{array}$	$\begin{array}{c} 0.39\pm0.08\\ 4.0\pm0.8 \end{array}$
Recall PN Sign.	$\begin{vmatrix} 0.70 \pm 0.05 \\ - \end{vmatrix}$	$\begin{array}{c} 0.61\pm0.04\\ 1.8\pm0.1 \end{array}$	0.61 ± 0.08 1.8 ± 0.2	$\begin{array}{c} 0.73 \pm 0.06 \\ 0 \end{array}$	0.014 ± 0.009 14 ± 9	$\begin{array}{c} 0.7\pm0.1\\ 0\end{array}$	$\begin{array}{c} 0.01 \pm 0.01 \\ 10 \pm 10 \end{array}$	$\begin{array}{c} 0.57 \pm 0.09 \\ 2.6 \pm 0.4 \end{array}$
Classifier LLF AUC Classifier HLF AUC	0.50 0.50	$0.52 \\ 0.53$	$0.54 \\ 0.55$	0.50 0.50	0.97 0.84	0.81 0.64	0.93 0.74	0.99 0.92

- W_1^M looking at ID mass distribution only is somewhat sensitive to all
- Wasserstein is sensitive to most, but slow to converge
- EFPs and PNet activations performance similar
- Precision, recall work roughly useful for diagnosing failure modes but not for comparing
- Classifiers, low-level (LLF) and high-level features (HLF), identify particle feature distortions but miss distribution-level discrepancies

Metric	Truth	Smeared	Shifted	Removing tail	Particle features smeared	$egin{array}{c} ext{Particle} \ \eta^{ ext{rel}} \ ext{smeared} \end{array}$	$\begin{array}{c} { m Particle} \ p_{ m T}^{ m rel} \ { m smeared} \end{array}$	$egin{array}{c} { m Particle} \ p_{ m T}^{ m rel} \ { m shifted} \end{array}$
$\begin{array}{c c} W_1^M \times 10^3 \\ \text{Sign.} \end{array}$	0.28 ± 0.05 —	$\begin{array}{c} 2.1\pm0.2\\ 37\pm3 \end{array}$	$\begin{array}{c} 6.0\pm0.3\\ 114\pm6 \end{array}$	$\begin{array}{c} 0.6\pm0.2\\7\pm2\end{array}$	$\begin{array}{c} 1.7\pm0.2\\ 28\pm3 \end{array}$	$\begin{array}{c} 0.9\pm0.3\\ 12\pm4 \end{array}$	$\begin{array}{c} 0.5\pm0.2\\ 4\pm1 \end{array}$	5.8 ± 0.2 111 ± 3
Wasserstein EFP Sign.	0.02 ± 0.01	$\begin{array}{c} 0.09 \pm 0.05 \\ 6 \pm 4 \end{array}$	$\begin{array}{c} 0.10\pm0.02\\ 7\pm1 \end{array}$	0.016 ± 0.007 0.06 ± 0.02	$\begin{array}{c} 0.19\pm0.08\\ 14\pm6 \end{array}$	$0.03 \pm 0.01 \\ 0.8 \pm 0.4$	$0.03 \pm 0.02 \\ 0.9 \pm 0.6$	$\begin{array}{c} 0.06\pm0.02\\ 4\pm1 \end{array}$
$\mathrm{FGD}_{\infty} \ \mathrm{EFP} \ imes 10^3$ Sign.	0.08 ± 0.03 —	$\begin{array}{c} 20\pm1\\ 580\pm30 \end{array}$	$\begin{array}{c} 26.6 \pm 0.9 \\ 760 \pm 20 \end{array}$	$\begin{array}{c} 2.4 \pm 0.1 \\ 66 \pm 4 \end{array}$	$\begin{array}{c} 21\pm2\\ 610\pm40 \end{array}$	$\begin{array}{c} 3.6 \pm 0.3 \\ 103 \pm 8 \end{array}$	$\begin{array}{c} 2.3\pm0.2\\ 64\pm4 \end{array}$	$\begin{array}{c} 29.1\pm0.4\\ 830\pm10\end{array}$
$\begin{array}{c c} \text{MMD EFP} \times 10^3 \\ \text{Sign.} \end{array} \right $	-0.006 ± 0.005	$\begin{array}{c} 0.17 \pm 0.06 \\ 30 \pm 10 \end{array}$	$\begin{array}{c} 0.9\pm0.1\\ 170\pm20 \end{array}$	$\begin{array}{c} 0.03 \pm 0.02 \\ 6 \pm 4 \end{array}$	$\begin{array}{c} 0.35\pm0.09\\ 70\pm10 \end{array}$	$\begin{array}{c} 0.08\pm0.05\\ 10\pm10 \end{array}$	$\begin{array}{c} 0.01\pm0.02\\ 3\pm5 \end{array}$	$\begin{array}{c} 1.8\pm0.1\\ 360\pm20 \end{array}$
Precision EFP Sign.	0.9 ± 0.1	$\begin{array}{c} 0.94 \pm 0.04 \\ 0 \end{array}$	$\begin{array}{c} 0.978 \pm 0.005 \\ 0 \end{array}$	0.88 ± 0.08 0.109 ± 0.009	$\begin{array}{c} 0.7\pm0.1\\ 1.9\pm0.3 \end{array}$	$\begin{array}{c} 0.94 \pm 0.06 \\ 0 \end{array}$	$\begin{array}{c} 0.7\pm0.1\\ 2.0\pm0.3\end{array}$	$0.79 \pm 0.09 \\ 0.9 \pm 0.1$
Recall EFP Sign.	0.9 ± 0.1	0.88 ± 0.07 0.16 ± 0.01	$\begin{array}{c} 0.97 \pm 0.01 \\ 0 \end{array}$	$\begin{array}{c} 0.92\pm 0.06\\ 0\end{array}$	0.83 ± 0.05 0.58 ± 0.04	$\begin{array}{c} 0.92 \pm 0.07 \\ 0 \end{array}$	$\begin{array}{c} 0.8\pm0.1\\ 0.8\pm0.1\end{array}$	$\begin{array}{c} 0.8\pm0.1\\ 1.1\pm0.2 \end{array}$
Wasserstein PN Sign.	1.65 ± 0.06 —	$\begin{array}{c} 1.7\pm0.1\\ 0.84\pm0.05\end{array}$	$\begin{array}{c} 2.4\pm0.4\\ 12\pm2 \end{array}$	1.71 ± 0.08 0.97 ± 0.05	$\begin{array}{c} 4.5\pm0.1\\ 45\pm1 \end{array}$	1.79 ± 0.05 2.26 ± 0.06	$\begin{array}{c} 4.0\pm0.4\\ 37\pm3 \end{array}$	$\begin{array}{c} 7.6\pm0.2\\ 95\pm3\end{array}$
$FGD_{\infty} PN \times 10^3$ Sign.	0.6 ± 0.4 —	$\begin{array}{c} 37\pm2\\ 98\pm4 \end{array}$	$\begin{array}{c} 202\pm4\\ 540\pm0\end{array}$	$\begin{array}{c} 4.3\pm0.4\\ 9.8\pm0.9\end{array}$	$\begin{array}{c} 1220\pm10\\ 3320\pm20 \end{array}$	$\begin{array}{c} 20\pm1\\ 51\pm3 \end{array}$	$\begin{array}{c} 1230\pm10\\ 3340\pm30\end{array}$	$\begin{array}{c} 3630\pm10\\ 9870\pm30\end{array}$
MMD PN ×10 ³ Sign.	-2 ± 2	$\begin{array}{c} 4\pm8\\ 3\pm6 \end{array}$	$\begin{array}{c} 80\pm10\\ 40\pm10 \end{array}$	$\begin{array}{c} -1\pm 4\\ 0\pm 3\end{array}$	$\begin{array}{c} 500\pm100\\ 280\pm70 \end{array}$	$3\pm2\3\pm2$	$\begin{array}{c} 560\pm60\\ 310\pm30\end{array}$	$\begin{array}{c} 1100\pm40\\ 610\pm20 \end{array}$
Precision PN Sign.	$\begin{array}{c} 0.68 \pm 0.07 \\ \end{array}$	$\begin{array}{c} 0.64\pm0.04\\ 0.57\pm0.04\end{array}$	$\begin{array}{c} 0.71 \pm 0.06 \\ 0 \end{array}$	$\begin{array}{c} 0.73 \pm 0.03 \\ 0 \end{array}$	$\begin{array}{c} 0.09\pm0.04\\ 8\pm4 \end{array}$	$\begin{array}{c} 0.75 \pm 0.08 \\ 0 \end{array}$	$\begin{array}{c} 0.08\pm0.04\\ 8\pm5 \end{array}$	$\begin{array}{c} 0.39 \pm 0.08 \\ 4.0 \pm 0.8 \end{array}$
Recall PN Sign.	0.70 ± 0.05 —	0.61 ± 0.04 1.8 ± 0.1	0.61 ± 0.08 1.8 ± 0.2	$\begin{array}{c} 0.73 \pm 0.06 \\ 0 \end{array}$	0.014 ± 0.009 14 ± 9	0.7 ± 0.1 0	0.01 ± 0.01 10 ± 10	0.57 ± 0.09 2.6 ± 0.4
Classifier LLF AUC Classifier HLF AUC	0.50 0.50	$0.52 \\ 0.53$	$\begin{array}{c} 0.54 \\ 0.55 \end{array}$	0.50 0.50	0.97 0.84	0.81 0.64	0.93 0.74	0.99 0.92

- W_1^M looking at I D mass distribution only is somewhat sensitive to all
- Wasserstein is sensitive to most, but slow to converge
- EFPs and PNet activations performance similar
 - Precision, recall work roughly useful for diagnosing failure modes but not for comparing

•

•

- Classifiers, low-level (LLF) and high-level features (HLF), identify particle feature distortions but miss distribution-level discrepancies
 - FGD is the most sensitive to all distortions

RESULTS

Metric	Truth	Smeared	Shifted	Removing tail	Particle features smeared	$egin{array}{c} ext{Particle} & & & & & & & & & & & & & & & & & & &$	$\begin{array}{c} { m Particle} \ p_{ m T}^{ m rel} \ { m smeared} \end{array}$	$egin{array}{c} { m Particle} \ p_{ m T}^{ m rel} \ { m shifted} \end{array}$
$\begin{array}{c c} W_1^M \times 10^3 \\ \text{Sign.} \end{array}$	0.28 ± 0.05 —	$\begin{array}{c} 2.1\pm0.2\\ 37\pm3 \end{array}$	$\begin{array}{c} 6.0\pm0.3\\ 114\pm6 \end{array}$	$\begin{array}{c} 0.6\pm0.2\\7\pm2 \end{array}$	$\begin{array}{c} 1.7\pm0.2\\ 28\pm3 \end{array}$	$\begin{array}{c} 0.9\pm0.3\\ 12\pm4 \end{array}$	$\begin{array}{c} 0.5\pm0.2\\ 4\pm1 \end{array}$	5.8 ± 0.2 111 ± 3
Wasserstein EFP Sign.	0.02 ± 0.01 —	$\begin{array}{c} 0.09 \pm 0.05 \\ 6 \pm 4 \end{array}$	$\begin{array}{c} 0.10\pm0.02\\ 7\pm1 \end{array}$	0.016 ± 0.007 0.06 ± 0.02	$\begin{array}{c} 0.19\pm0.08\\ 14\pm6 \end{array}$	0.03 ± 0.01 0.8 ± 0.4	$0.03 \pm 0.02 \\ 0.9 \pm 0.6$	$\begin{array}{c} 0.06\pm0.02\\ 4\pm1 \end{array}$
$\begin{array}{c c} \text{FGD}_{\infty} \text{ EFP } \times 10^3 \\ \text{Sign.} \end{array}$	0.08 ± 0.03	$\begin{array}{c} 20 \pm 1 \\ 580 \pm 30 \end{array}$	$\begin{array}{c} 26.6 \pm 0.9 \\ 760 \pm 20 \end{array}$	$\begin{array}{c} 2.4 \pm 0.1 \\ 66 \pm 4 \end{array}$	$\begin{array}{c} 21\pm2\\ 610\pm40 \end{array}$	$\begin{array}{c} \textbf{3.6} \pm \textbf{0.3} \\ \textbf{103} \pm \textbf{8} \end{array}$	$\begin{array}{c} 2.3\pm0.2\\ 64\pm4 \end{array}$	$\begin{array}{c} 29.1\pm0.4\\ 830\pm10\end{array}$
$\begin{array}{c} \text{MMD EFP} \times 10^3 \\ \text{Sign.} \end{array}$	-0.006 ± 0.005 —	$\begin{array}{c} 0.17 \pm 0.06 \\ 30 \pm 10 \end{array}$	$\begin{array}{c} 0.9\pm0.1 \\ 170\pm20 \end{array}$	$\begin{array}{c} 0.03 \pm 0.02 \\ 6 \pm 4 \end{array}$	$\begin{array}{c} 0.35\pm0.09\\ 70\pm10 \end{array}$	$\begin{array}{c} 0.08 \pm 0.05 \\ 10 \pm 10 \end{array}$	$\begin{array}{c} 0.01 \pm 0.02 \\ 3 \pm 5 \end{array}$	$\begin{array}{c} 1.8\pm0.1\\ 360\pm20 \end{array}$
Precision EFP Sign.	0.9 ± 0.1	$\begin{array}{c} 0.94 \pm 0.04 \\ 0 \end{array}$	$\begin{array}{c} 0.978 \pm 0.005 \\ 0 \end{array}$	0.88 ± 0.08 0.109 ± 0.009	$\begin{array}{c} 0.7\pm0.1\\ 1.9\pm0.3 \end{array}$	$\begin{array}{c} 0.94 \pm 0.06 \\ 0 \end{array}$	$\begin{array}{c} 0.7\pm0.1\\ 2.0\pm0.3\end{array}$	0.79 ± 0.09 0.9 ± 0.1
Recall EFP Sign.	0.9 ± 0.1 —	0.88 ± 0.07 0.16 ± 0.01	$\begin{array}{c} 0.97 \pm 0.01 \\ 0 \end{array}$	$\begin{array}{c} 0.92\pm0.06\\ 0\end{array}$	0.83 ± 0.05 0.58 ± 0.04	$\begin{array}{c} 0.92\pm0.07\\ 0\end{array}$	$\begin{array}{c} 0.8\pm0.1\\ 0.8\pm0.1\end{array}$	$\begin{array}{c} 0.8\pm0.1\\ 1.1\pm0.2 \end{array}$
Wasserstein PN Sign.	$\begin{array}{c} 1.65\pm0.06\\\end{array}$	$\begin{array}{c} 1.7\pm0.1\\ 0.84\pm0.05\end{array}$	$\begin{array}{c} 2.4\pm0.4\\ 12\pm2 \end{array}$	1.71 ± 0.08 0.97 ± 0.05	$\begin{array}{c} 4.5\pm0.1\\ 45\pm1 \end{array}$	1.79 ± 0.05 2.26 ± 0.06	$\begin{array}{c} 4.0\pm0.4\\ 37\pm3 \end{array}$	$\begin{array}{c} 7.6\pm0.2\\ 95\pm3 \end{array}$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.6 ± 0.4 —	$\begin{array}{c} 37\pm2\\ 98\pm4 \end{array}$	$\begin{array}{c} 202\pm4\\ 540\pm0\end{array}$	$\begin{array}{c} 4.3\pm0.4\\ 9.8\pm0.9\end{array}$	$\begin{array}{c} 1220\pm10\\ 3320\pm20 \end{array}$	$\begin{array}{c} 20\pm1\\ 51\pm3 \end{array}$	$\begin{array}{c} 1230\pm10\\ 3340\pm30\end{array}$	$\begin{array}{c} 3630 \pm 10 \\ 9870 \pm 30 \end{array}$
$\begin{array}{c} \text{MMD PN} \times 10^3 \\ \text{Sign.} \end{array}$	-2 ± 2 	$\begin{array}{c}4\pm8\\3\pm6\end{array}$	$\begin{array}{c} 80\pm10\\ 40\pm10 \end{array}$	$\begin{array}{c} -1\pm 4\\ 0\pm 3\end{array}$	$\begin{array}{c} 500\pm100\\ 280\pm70 \end{array}$	$\begin{array}{c} 3\pm2\\ 3\pm2\end{array}$	$\begin{array}{c} 560\pm60\\ 310\pm30\end{array}$	$\begin{array}{c} 1100\pm40\\ 610\pm20 \end{array}$
Precision PN Sign.	$\begin{array}{c} 0.68 \pm 0.07 \\ \end{array}$	$\begin{array}{c} 0.64\pm0.04\\ 0.57\pm0.04\end{array}$	$\begin{array}{c} 0.71 \pm 0.06 \\ 0 \end{array}$	$\begin{array}{c} 0.73 \pm 0.03 \\ 0 \end{array}$	$\begin{array}{c} 0.09 \pm 0.04 \\ 8 \pm 4 \end{array}$	$\begin{array}{c} 0.75 \pm 0.08 \\ 0 \end{array}$	$\begin{array}{c} 0.08\pm0.04\\ 8\pm5 \end{array}$	0.39 ± 0.08 4.0 ± 0.8
Recall PN Sign.	0.70 ± 0.05 —	$\begin{array}{c} 0.61\pm0.04\\ 1.8\pm0.1 \end{array}$	0.61 ± 0.08 1.8 ± 0.2	$\begin{array}{c} 0.73 \pm 0.06 \\ 0 \end{array}$	0.014 ± 0.009 14 ± 9	0.7 ± 0.1 0	0.01 ± 0.01 10 ± 10	$\begin{array}{c} 0.57 \pm 0.09 \\ 2.6 \pm 0.4 \end{array}$
Classifier LLF AUC Classifier HLF AUC	0.50 0.50	0.52 0.53	$\begin{array}{c} 0.54 \\ 0.55 \end{array}$	0.50 0.50	0.97 0.84	0.81 0.64	0.93 0.74	0.99 0.92

- W_1^M looking at I D mass distribution only is somewhat sensitive to all
- Wasserstein is sensitive to most, but slow to converge
- EFPs and PNet activations performance similar

•

•

•

- Precision, recall work roughly useful for diagnosing failure modes but not for comparing
- Classifiers, low-level (LLF) and high-level features (HLF), identify particle feature distortions but miss distribution-level discrepancies
- FGD is the most sensitive to all distortions
- MMD reasonably sensitive to most

RESULTS
• Re-iterating <u>Cousins 2016</u>: no best GOF test for all alternative hypotheses

- Re-iterating <u>Cousins 2016</u>: no best GOF test for all alternative hypotheses
 - His suggestion: use multiple, covering the relevant alternatives

- Re-iterating <u>Cousins 2016</u>: no best GOF test for all alternative hypotheses
 - His suggestion: use multiple, covering the relevant alternatives
- FGD proves to be the most sensitive for typical distortions we expect

- Re-iterating <u>Cousins 2016</u>: no best GOF test for all alternative hypotheses
 - His suggestion: use multiple, covering the relevant alternatives
- FGD proves to be the most sensitive for typical distortions we expect
 - Hand-engineered features and ParticleNet activations are similarly sensitive

- Re-iterating <u>Cousins 2016</u>: no best GOF test for all alternative hypotheses
 - His suggestion: use multiple, covering the relevant alternatives
- FGD proves to be the most sensitive for typical distortions we expect
 - Hand-engineered features and ParticleNet activations are similarly sensitive
 - Hand engineered are more interpretable, standardisable, and efficient

- Re-iterating <u>Cousins 2016</u>: no best GOF test for all alternative hypotheses
 - His suggestion: use multiple, covering the relevant alternatives
- FGD proves to be the most sensitive for typical distortions we expect
 - Hand-engineered features and ParticleNet activations are similarly sensitive
 - Hand engineered are more interpretable, standardisable, and efficient
 - → Recommend Fréchet Physics Distance (FPD), using EFPs and shower-shape variables, for overall model evaluation and comparison

- Re-iterating <u>Cousins 2016</u>: no best GOF test for all alternative hypotheses
 - His suggestion: use multiple, covering the relevant alternatives
- FGD proves to be the most sensitive for typical distortions we expect
 - Hand-engineered features and ParticleNet activations are similarly sensitive
 - Hand engineered are more interpretable, standardisable, and efficient
 - → Recommend Fréchet Physics Distance (FPD), using EFPs and shower-shape variables, for overall model evaluation and comparison
 - Multivariate so directly applicable to conditional evaluation

- Re-iterating <u>Cousins 2016</u>: no best GOF test for all alternative hypotheses
 - His suggestion: use multiple, covering the relevant alternatives
- FGD proves to be the most sensitive for typical distortions we expect
 - Hand-engineered features and ParticleNet activations are similarly sensitive
 - Hand engineered are more interpretable, standardisable, and efficient
 - → Recommend Fréchet Physics Distance (FPD), using EFPs and shower-shape variables, for overall model evaluation and comparison
 - Multivariate so directly applicable to conditional evaluation
- But FGD can miss shape discrepancies, so use as well:

- Re-iterating <u>Cousins 2016</u>: no best GOF test for all alternative hypotheses
 - His suggestion: use multiple, covering the relevant alternatives
- FGD proves to be the most sensitive for typical distortions we expect
 - Hand-engineered features and ParticleNet activations are similarly sensitive
 - Hand engineered are more interpretable, standardisable, and efficient
 - → Recommend Fréchet Physics Distance (FPD), using EFPs and shower-shape variables, for overall model evaluation and comparison
 - Multivariate so directly applicable to conditional evaluation
- But FGD can miss shape discrepancies, so use as well:
 - Kernel Physics Distance (KPD) (MMD)

- Re-iterating <u>Cousins 2016</u>: no best GOF test for all alternative hypotheses
 - His suggestion: use multiple, covering the relevant alternatives
- FGD proves to be the most sensitive for typical distortions we expect
 - Hand-engineered features and ParticleNet activations are similarly sensitive
 - Hand engineered are more interpretable, standardisable, and efficient
 - → Recommend Fréchet Physics Distance (FPD), using EFPs and shower-shape variables, for overall model evaluation and comparison
 - Multivariate so directly applicable to conditional evaluation
- But FGD can miss shape discrepancies, so use as well:
 - Kernel Physics Distance (KPD) (MMD)
 - And continue with ID distributions (W_1)

JET SIMULATION

DATASET

• Test-bench: Pythia-simulated high p_T jets (''JetNet'')

DATASET

• Test-bench: Pythia-simulated high p_T jets (''JetNet'')

• 30 highest p_T particles, $(\eta^{rel}, \phi^{rel}, p_T^{rel})$ features

DATASET

• Test-bench: Pythia-simulated high p_T jets (''JetNet'')

• 30 highest p_T particles, $(\eta^{rel}, \phi^{rel}, p_T^{rel})$ features

0

JetNet

Particle Cloud

Ο

η **Ο** Ο

00

0

zenodo.org/record/5502543

DATASET

• Test-bench: Pythia-simulated high p_T jets (''JetNet'')

• 30 highest p_T particles, $(\eta^{rel}, \phi^{rel}, p_T^{rel})$ features

• Gen particle \rightarrow Reco jet

JetNet

Particle Cloud

0

00

0

zenodo.org/record/5502543

DATASET

• Test-bench: Pythia-simulated high p_T jets (''JetNet'')

• 30 highest p_T particles, $(\eta^{rel}, \phi^{rel}, p_T^{rel})$ features

• Gen particle \rightarrow Reco jet

DATASET

• Test-bench: Pythia-simulated high p_T jets (''JetNet'')

• 30 highest p_T particles, $(\eta^{rel}, \phi^{rel}, p_T^{rel})$ features

RK et al., NeurIPS 2021

APPROACH I: MPGAN

• Majority of work, while successful, is image-based

• Majority of work, while successful, is image-based

• Difficult to scale to HL-LHC and apply to e.g CMS high-granularity calorimeter

• Majority of work, while successful, is image-based

• Difficult to scale to HL-LHC and apply to e.g CMS high-granularity calorimeter

• We develop a particle cloud, graph-based approach

• Majority of work, while successful, is image-based

• Difficult to scale to HL-LHC and apply to e.g CMS high-granularity calorimeter

• We develop a particle cloud, graph-based approach

• Key ideas:

• Majority of work, while successful, is image-based

• Difficult to scale to HL-LHC and apply to e.g CMS high-granularity calorimeter

• We develop a particle cloud, graph-based approach

- Key ideas:
 - Natural, sparse, and flexible representation for data

• Majority of work, while successful, is image-based

• Difficult to scale to HL-LHC and apply to e.g CMS high-granularity calorimeter

• We develop a particle cloud, graph-based approach

- Key ideas:
 - Natural, sparse, and flexible representation for data
 - Learn global features and inter-particle correlations (i.e. jet, shower structure)

GANS: GENERATIVE ADVERSARIAL NETWORKS

GANS: GENERATIVE ADVERSARIAL NETWORKS

RK et al., NeurIPS 2021

MPGAN

RK et al., NeurIPS 2021

MPGAN

• We develop a GAN with a fully-connected message-passing (MP) generator and discriminator

• We develop a GAN with a fully-connected message-passing (MP) generator and discriminator

• We develop a GAN with a fully-connected message-passing (MP) generator and discriminator

• We develop a GAN with a fully-connected message-passing (MP) generator and discriminator

• We develop a GAN with a fully-connected message-passing (MP) generator and discriminator

• We develop a GAN with a fully-connected message-passing (MP) generator and discriminator

• We develop a GAN with a fully-connected message-passing (MP) generator and discriminator

• We develop a GAN with a fully-connected message-passing (MP) generator and discriminator

 $\mathbf{m}_{ij}^{t+1} = f_e^{t+1}(\mathbf{h}_i^t \oplus \mathbf{h}_j^t)$

MP Generator

RK et al., NeurIPS 2021

• We develop a GAN with a fully-connected message-passing (MP) generator and discriminator

 $\mathbf{m}_{ij}^{t+1} = f_e^{t+1}(\mathbf{h}_i^t \bigoplus \mathbf{h}_j^t)$ $\mathbf{h}_v^{t+1} = f_n^{t+1}(\mathbf{h}_i^t \bigoplus \sum_{j \in J} \mathbf{m}_{ij}^{t+1})$

MP Generator

RK et al., NeurIPS 2021

• We develop a GAN with a fully-connected message-passing (MP) generator and discriminator

 $\mathbf{m}_{ij}^{t+1} = f_e^{t+1}(\mathbf{h}_i^t \oplus \mathbf{h}_j^t)$ $\mathbf{h}_{v}^{t+1} = f_{n}^{t+1}(\mathbf{h}_{i}^{t} \bigoplus \sum \mathbf{m}_{ij}^{t+1})$ j∈J

MP Generator

RK et al., NeurIPS 2021

• We develop a GAN with a fully-connected message-passing (MP) generator and discriminator

 $\mathbf{m}_{ij}^{t+1} = f_e^{t+1}(\mathbf{h}_i^t \bigoplus \mathbf{h}_j^t)$ $\mathbf{h}_v^{t+1} = f_n^{t+1}(\mathbf{h}_i^t \bigoplus \sum_{j \in J} \mathbf{m}_{ij}^{t+1})$

 $\times T$

Generative Transformers and How to Evaluate Them

RK et al., NeurIPS 2021

• We develop a GAN with a fully-connected message-passing (MP) generator and discriminator

 $\mathbf{m}_{ij}^{t+1} = f_e^{t+1} (\mathbf{h}_i^t \bigoplus \mathbf{h}_j^t)$ $\mathbf{h}_v^{t+1} = f_n^{t+1} (\mathbf{h}_i^t \bigoplus \sum_{j \in J} \mathbf{m}_{ij}^{t+1})$

 $\times T$

RK et al., NeurIPS 2021

• We develop a GAN with a fully-connected message-passing (MP) generator and discriminator

MP Generator Initial Noise Generated Particle Cloud Final Features

 $\times T$

 $\mathbf{m}_{ij}^{t+1} = f_e^{t+1}(\mathbf{h}_i^t \oplus \mathbf{h}_j^t)$ $\mathbf{h}_{v}^{t+1} = f_{n}^{t+1}(\mathbf{h}_{i}^{t} \bigoplus \sum \mathbf{m}_{ij}^{t+1})$ $j \in J$

MP Discriminator

RK et al., NeurIPS 2021

• We develop a GAN with a fully-connected message-passing (MP) generator and discriminator

 $\mathbf{m}_{ij}^{t+1} = f_e^{t+1}(\mathbf{h}_i^t \oplus \mathbf{h}_j^t)$ $\mathbf{h}_{v}^{t+1} = f_{n}^{t+1}(\mathbf{h}_{i}^{t} \bigoplus \sum \mathbf{m}_{ij}^{t+1})$ $j \in J$

MP Discriminator

RK et al., NeurIPS 2021

• We develop a GAN with a fully-connected message-passing (MP) generator and discriminator

 $\mathbf{m}_{ij}^{t+1} = f_e^{t+1}(\mathbf{h}_i^t \oplus \mathbf{h}_j^t)$ $\mathbf{h}_{v}^{t+1} = f_{n}^{t+1}(\mathbf{h}_{i}^{t} \bigoplus \sum \mathbf{m}_{ij}^{t+1})$ $j \in J$

MP Discriminator

Generative Transformers and How to Evaluate Them

RK et al., NeurIPS 2021

• We develop a GAN with a fully-connected message-passing (MP) generator and discriminator

 $\mathbf{m}_{ij}^{t+1} = f_e^{t+1}(\mathbf{h}_i^t \oplus \mathbf{h}_j^t)$ $\mathbf{h}_{v}^{t+1} = f_{n}^{t+1}(\mathbf{h}_{i}^{t} \bigoplus \sum \mathbf{m}_{ij}^{t+1})$ $j \in J$

MP Discriminator

Generative Transformers and How to Evaluate Them

Real or

RK et al., NeurIPS 2021

MPGAN: RESULTS

Raghav Kansal

Generative Transformers and How to Evaluate Them

Raghav Kahsal

• MPGAN (blue) learns real (red) distributions well

Raghav Kahsal

Generative Transformers and How to Evaluate Them

- MPGAN (blue) learns real (red) distributions well
- Ourperforms all existing point cloud GAN (metrics in backup)

Raghav Kahsal

Generative Transformers and How to Evaluate Them

<u>RK et al., 2022</u>

APPROACH 2: GAPT

<u>RK et al., 2022</u>

APPROACH 2: GAPT

Retain key ideas of MPGAN

- Retain key ideas of MPGAN
 - Particle cloud data, fully connected particle interactions

- Retain key ideas of MPGAN
 - Particle cloud data, fully connected particle interactions

- Retain key ideas of MPGAN
 - Particle cloud data, fully connected particle interactions

RK et al., 2022

O

Ο

Ο

0

0

- Retain key ideas of MPGAN
 - Particle cloud data, fully connected particle interactions

RK et al., 2022

O

Ο

Ο

0

0

- Retain key ideas of MPGAN
 - Particle cloud data, fully connected particle interactions

RK et al., 2022

0

Ο

Ο

0

0

0

- Retain key ideas of MPGAN
 - Particle cloud data, fully connected particle interactions

RK et al., 2022

0

Ο

Ο

 \bigcirc

0

0

0

- Retain key ideas of MPGAN
 - Particle cloud data, fully connected particle interactions

RK et al., 2022

0

Ο

Ο

0

0

0

0

0

- Retain key ideas of MPGAN
 - Particle cloud data, fully connected particle interactions

RK et al., 2022

0

Ο

Ο

0

0

 \bigcirc

0

0

- Retain key ideas of MPGAN
 - Particle cloud data, fully connected particle interactions

RK et al., 2022

0

Ο

0

0

0

- Retain key ideas of MPGAN
 - Particle cloud data, fully connected particle interactions

RK et al., 2022

0

Ο

0

0

0

0

0

0

- Retain key ideas of MPGAN
 - Particle cloud data, fully connected particle interactions

• Based on GAST (<u>Stelzner et al. 2020</u>), "Generative adversarial particle transformer" (GAPT)

RK et al., 2022

()

O

 \bigcirc

- Retain key ideas of MPGAN
 - Particle cloud data, fully connected particle interactions

- Based on GAST (<u>Stelzner et al. 2020</u>), "Generative adversarial particle transformer" (GAPT)
- 5-15x faster than MPGAN

RK et al., 2022

()

O

 \bigcirc

- Retain key ideas of MPGAN
 - Particle cloud data, fully connected particle interactions

- Based on GAST (<u>Stelzner et al. 2020</u>), "Generative adversarial particle transformer" (GAPT)
- 5-15x faster than MPGAN
- MPGAN and naive GAPT scale as $O(N^2)$ with # of nodes

RK et al., 2022

()

 \mathbf{O}

- Retain key ideas of MPGAN
 - Particle cloud data, fully connected particle interactions

- Based on GAST (Stelzner et al. 2020), "Generative adversarial particle transformer" (GAPT)
- 5-15x faster than MPGAN
- MPGAN and naive GAPT scale as $O(N^2)$ with # of nodes
- But linear scaling with induced self-attention blocks (ISAB)

Raghav Kansal

Generative Transformers and How to Evaluate Them

RK et al., 2022

()

 \bigcirc

<u>RK et al., 2022</u>

MPGANVS GAPT

• Both well performing, difficult to discern visually

• Both well performing, difficult to discern visually

*On an A6000

Generative Transformers and How to Evaluate Them

- Both well performing, difficult to discern visually
- FPD necessary to differentiate performance MPGAN samples are higher quality

*On an A6000

Generative Transformers and How to Evaluate Them

- Both well performing, difficult to discern visually
- FPD necessary to differentiate performance MPGAN samples are higher quality
- FPD and WI-M show MPGAN isn't perfectly compatible with true jets yet

*On an A6000

- Both well performing, difficult to discern visually
- FPD necessary to differentiate performance MPGAN samples are higher quality
- FPD and WI-M show MPGAN isn't perfectly compatible with true jets yet
- GAPT is significantly faster, both $O(10^4)$ faster than FullSim

Raghav Kansal

Generative Transformers and How to Evaluate Them

*On an A6000

• Propose Fréchet and kernel physics distances (FPD and KPD) for evaluating generative models in HEP

- Propose Fréchet and kernel physics distances (FPD and KPD) for evaluating generative models in HEP
- Developed two particle cloud simulators: graph-based MPGAN, attention-based GAPT

- Propose Fréchet and kernel physics distances (FPD and KPD) for evaluating generative models in HEP
- Developed two particle cloud simulators: graph-based MPGAN, attention-based GAPT
- Both very high performing, MPGAN has the edge currently

- Propose Fréchet and kernel physics distances (FPD and KPD) for evaluating generative models in HEP
- Developed two particle cloud simulators: graph-based MPGAN, attention-based GAPT
- Both very high performing, MPGAN has the edge currently
- GAPT significantly faster, promising avenue for scaling to large clouds

- Propose Fréchet and kernel physics distances (FPD and KPD) for evaluating generative models in HEP
- Developed two particle cloud simulators: graph-based MPGAN, attention-based GAPT
- Both very high performing, MPGAN has the edge currently
- GAPT significantly faster, promising avenue for scaling to large clouds
- Next steps:

- Propose Fréchet and kernel physics distances (FPD and KPD) for evaluating generative models in HEP
- Developed two particle cloud simulators: graph-based MPGAN, attention-based GAPT
- Both very high performing, MPGAN has the edge currently
- GAPT significantly faster, promising avenue for scaling to large clouds
- Next steps:
 - Discuss metrics with FastSim community

- Propose Fréchet and kernel physics distances (FPD and KPD) for evaluating generative models in HEP
- Developed two particle cloud simulators: graph-based MPGAN, attention-based GAPT
- Both very high performing, MPGAN has the edge currently
- GAPT significantly faster, promising avenue for scaling to large clouds
- Next steps:
 - Discuss metrics with FastSim community
 - FPD and KPD will be added to <u>JetNet</u> for easy, standard use

- Propose Fréchet and kernel physics distances (FPD and KPD) for evaluating generative models in HEP
- Developed two particle cloud simulators: graph-based MPGAN, attention-based GAPT
- Both very high performing, MPGAN has the edge currently
- GAPT significantly faster, promising avenue for scaling to large clouds
- Next steps:
 - Discuss metrics with FastSim community
 - FPD and KPD will be added to <u>JetNet</u> for easy, standard use
 - Extend GAPT to larger clouds, more datasets (esp. calorimeter showers)

• Want model $p_{\theta}(\mathbf{x})$ for underlying data distribution $p(\mathbf{x})$

• Want model $p_{\theta}(\mathbf{x})$ for underlying data distribution $p(\mathbf{x})$

- Want model $p_{\theta}(\mathbf{x})$ for underlying data distribution $p(\mathbf{x})$
- Rich area in machine learning: deep generative models

- Want model $p_{\theta}(\mathbf{x})$ for underlying data distribution $p(\mathbf{x})$
- Rich area in machine learning: deep generative models
 - Deep neural networks are flexible and expressive

- Want model $p_{\theta}(\mathbf{x})$ for underlying data distribution $p(\mathbf{x})$
- Rich area in machine learning: deep generative models
 - Deep neural networks are flexible and expressive
 - $p_{\theta}(\mathbf{x})$ typically modelled with high-capacity DNNs

 $\sup_{f \in \mathcal{F}} |\mathbb{E}_{x \sim p_{\text{real}}} f(x) - \mathbb{E}_{y \sim p_{\text{gen}}} f(y)|$

• Fréchet Gaussian Distance (FGD)

 $\sup_{f \in \mathcal{F}} |\mathbb{E}_{x \sim p_{\text{real}}} f(x) - \mathbb{E}_{y \sim p_{\text{gen}}} f(y)|$

- Fréchet Gaussian Distance (FGD)
 - Fréchet / W_2 distance between multivariate Gaussian fitted to observations

$$FGD = Frechet(\mathcal{N}(\mu_{r}, \Sigma_{r}), \mathcal{N}(\mu_{g}, \Sigma_{g}))$$

$$\begin{cases} \mathbf{x}_{real} \} \qquad \{\mathbf{x}_{gen}\} \end{cases}$$

 $\sup_{f \in \mathcal{F}} |\mathbb{E}_{x \sim p_{\text{real}}} f(x) - \mathbb{E}_{y \sim p_{\text{gen}}} f(y)|$

- Fréchet Gaussian Distance (FGD)
 - Fréchet / W_2 distance between multivariate Gaussian fitted to observations
 - Standard in computer vision (FID)

$$FGD = Frechet(\mathcal{N}(\mu_{r}, \Sigma_{r}), \mathcal{N}(\mu_{g}, \Sigma_{g}))$$

$$\begin{cases} \mathbf{x}_{real} \} \qquad \{\mathbf{x}_{gen} \} \end{cases}$$

 $\sup |\mathbb{E}_{x \sim p_{real}} f(x) - \mathbb{E}_{y \sim p_{gen}} f(y)|$ $f \in \mathcal{F}$

- Fréchet Gaussian Distance (FGD)
 - Fréchet / W_2 distance between multivariate Gaussian fitted to observations
 - Standard in computer vision (FID)
 - Computationally efficient

$$FGD = Frechet(\mathcal{N}(\mu_{r}, \Sigma_{r}), \mathcal{N}(\mu_{g}, \Sigma_{g}))$$

$$\begin{pmatrix} \uparrow & \uparrow \\ \{\mathbf{x}_{real}\} & \{\mathbf{x}_{gen}\} \end{pmatrix}$$

 $\sup |\mathbb{E}_{x \sim p_{real}} f(x) - \mathbb{E}_{y \sim p_{gen}} f(y)|$ $f \in \mathcal{F}$

- Fréchet Gaussian Distance (FGD)
 - Fréchet / W_2 distance between multivariate Gaussian fitted to observations
 - Standard in computer vision (FID)
 - Computationally efficient
 - Gaussian assumption

$$FGD = Frechet(\mathcal{N}(\mu_{r}, \Sigma_{r}), \mathcal{N}(\mu_{g}, \Sigma_{g}))$$

$$\begin{pmatrix} \uparrow & \uparrow \\ \{\mathbf{x}_{real}\} & \{\mathbf{x}_{gen}\} \end{pmatrix}$$

 $\sup_{f \in \mathcal{F}} |\mathbb{E}_{x \sim p_{\text{real}}} f(x) - \mathbb{E}_{y \sim p_{\text{gen}}} f(y)|$

- Fréchet Gaussian Distance (FGD)
 - Fréchet / W_2 distance between multivariate Gaussian fitted to observations
 - Standard in computer vision (FID)
 - Computationally efficient
 - Gaussian assumption

- $FGD = Frechet(\mathcal{N}(\mu_{r}, \Sigma_{r}), \mathcal{N}(\mu_{g}, \Sigma_{g}))$ $\begin{pmatrix} \uparrow & \uparrow \\ \uparrow & \uparrow \\ \{\mathbf{x}_{real}\} & \{\mathbf{x}_{gen}\} \end{pmatrix}$
- Biased $(FGD_{\infty}$ extrapolate to infinity)

 $\sup_{f \in \mathcal{F}} |\mathbb{E}_{x \sim p_{\text{real}}} f(x) - \mathbb{E}_{y \sim p_{\text{gen}}} f(y)|$

• Wasserstein p-distances (W_p) :

 $\sup |\mathbb{E}_{x \sim p_{real}} f(x) - \mathbb{E}_{y \sim p_{gen}} f(y)|$ f∈ℱ

• Wasserstein p-distances (W_p) :

• F is all K-Lipschitz functions

 $\sup_{f \in \mathcal{F}} |\mathbb{E}_{x \sim p_{\text{real}}} f(x) - \mathbb{E}_{y \sim p_{\text{gen}}} f(y)|$

- Wasserstein p-distances (W_p) :
 - F is all K-Lipschitz functions
 - "Work" needed to transport probability mass

- Wasserstein p-distances (W_p) :
 - F is all K-Lipschitz functions
 - "Work" needed to transport probability mass
 - Sensitive to quality and diversity

- Wasserstein p-distances (W_p) :
 - F is all K-Lipschitz functions
 - "Work" needed to transport probability mass
 - Sensitive to quality and diversity
 - Computationally challenging for large N, D

- Wasserstein p-distances (W_p) :
 - F is all K-Lipschitz functions
 - "Work" needed to transport probability mass
 - Sensitive to quality and diversity
 - Computationally challenging for large N, D
 - Biased estimators

 $\sup_{f \in \mathcal{F}} |\mathbb{E}_{x \sim p_{\text{real}}} f(x) - \mathbb{E}_{y \sim p_{\text{gen}}} f(y)|$

• Maximum mean discrepancy (MMD)

Raghav Kansal

Generative Transformers and How to Evaluate Them

 $\sup_{f \in \mathcal{F}} |\mathbb{E}_{x \sim p_{\text{real}}} f(x) - \mathbb{E}_{y \sim p_{\text{gen}}} f(y)|$

- Maximum mean discrepancy (MMD)
 - \mathcal{F} is reproducing Kernel Hilbert space (RKHS) for a chosen kernel k(x, y)

 $\sup |\mathbb{E}_{x \sim p_{real}} f(x) - \mathbb{E}_{y \sim p_{gen}} f(y)|$ $f \in \mathcal{F}$

- Maximum mean discrepancy (MMD)
 - \mathcal{F} is reproducing Kernel Hilbert space (RKHS) for a chosen kernel k(x, y)
 - Distance between embeddings of p_{real} and p_{gen} in ${\mathscr F}$

 $\sup |\mathbb{E}_{x \sim p_{\text{real}}} f(x) - \mathbb{E}_{y \sim p_{\text{gen}}} f(y)|$ $f \in \mathcal{F}$

- Maximum mean discrepancy (MMD)
 - \mathcal{F} is reproducing Kernel Hilbert space (RKHS) for a chosen kernel k(x, y)
 - Distance between embeddings of p_{real} and p_{gen} in ${\mathscr{F}}$
 - Proposed in computer vision (KID), 3rd order polynomial kernel

MORE ON IPMS

 $\sup |\mathbb{E}_{x \sim p_{real}} f(x) - \mathbb{E}_{y \sim p_{gen}} f(y)|$ $f \in \mathcal{F}$

- Maximum mean discrepancy (MMD)
 - \mathcal{F} is reproducing Kernel Hilbert space (RKHS) for a chosen kernel k(x, y)
 - Distance between embeddings of p_{real} and p_{gen} in ${\mathscr{F}}$
 - Proposed in computer vision (KID), 3rd order polynomial kernel
 - Unbiased estimators

Gretton 2020

MORE ON IPMS

 $\sup \left| \mathbb{E}_{x \sim p_{real}} f(x) - \mathbb{E}_{y \sim p_{gen}} f(y) \right|$ $f \in \mathcal{F}$

- Maximum mean discrepancy (MMD)
 - \mathcal{F} is reproducing Kernel Hilbert space (RKHS) for a chosen kernel k(x, y)
 - Distance between embeddings of p_{real} and p_{gen} in ${\mathscr{F}}$
 - Proposed in computer vision (KID), 3rd order polynomial kernel
 - Unbiased estimators
 - Kernel dependent

Gretton 2020

• Machine learning version of this: use classifier hidden features instead!

- Machine learning version of this: use classifier hidden features instead!
 Kansal et al., NeurIPS 2021
- Example: apply to jet generation using pre-trained ParticleNet graph classifier:

- Machine learning version of this: use classifier hidden features instead!
 Kansal et al., NeurIPS 2021
- Example: apply to jet generation using pre-trained ParticleNet graph classifier:

- Machine learning version of this: use classifier hidden features instead!
 Kansal et al., NeurIPS 2021
- Example: apply to jet generation using pre-trained ParticleNet graph classifier:

- Machine learning version of this: use classifier hidden features instead!
 Kansal et al., NeurIPS 2021
- Example: apply to jet generation using pre-trained ParticleNet graph classifier:

- Machine learning version of this: use classifier hidden features instead!
 Kansal et al., NeurIPS 2021
- Example: apply to jet generation using pre-trained ParticleNet graph classifier:

• High-performing classifier learns salient hidden features from data

- Machine learning version of this: use classifier hidden features instead!
 Kansal et al., NeurIPS 2021
- Example: apply to jet generation using pre-trained ParticleNet graph classifier:

- High-performing classifier learns salient hidden features from data
- Retain sensitivity to quality, diversity from W_1 , reproducible and efficient plus:

- Machine learning version of this: use classifier hidden features instead!
 Kansal et al., NeurIPS 2021
- Example: apply to jet generation using pre-trained ParticleNet graph classifier:

- High-performing classifier learns salient hidden features from data
- Retain sensitivity to quality, diversity from W_1 , reproducible and efficient plus:
 - Single aggregate score, correlations (Σ) between features, easy to scale

 $\sup_{f \in \mathcal{F}} \|\mathbb{E}_{x \sim p_{\text{real}}} f(x) - \mathbb{E}_{y \sim p_{\text{gen}}} f(y)\|$

 $\sup_{f \in \mathcal{F}} |\mathbb{E}_{x \sim p_{\text{real}}} f(x) - \mathbb{E}_{y \sim p_{\text{gen}}} f(y)|$

- IPM where \mathscr{F} is unit ball in the reproducing kernel Hilbert space (RKHS) for kernel k(x,y)

 $\sup_{f \in \mathcal{F}} |\mathbb{E}_{x \sim p_{\text{real}}} f(x) - \mathbb{E}_{y \sim p_{\text{gen}}} f(y)|$

- IPM where \mathscr{F} is unit ball in the reproducing kernel Hilbert space (RKHS) for kernel k(x,y)
 - RKHS $\Leftrightarrow f(x) = \langle f, \varphi(x) \rangle_{\mathcal{F}}$, where $k(x, y) = \langle \varphi(x), \varphi(y) \rangle_{\mathcal{F}}$

 $\sup_{f \in \mathcal{F}} |\mathbb{E}_{x \sim p_{\text{real}}} f(x) - \mathbb{E}_{y \sim p_{\text{gen}}} f(y)|$

- IPM where \mathscr{F} is unit ball in the reproducing kernel Hilbert space (RKHS) for kernel k(x,y)
 - RKHS $\Leftrightarrow f(x) = \langle f, \varphi(x) \rangle_{\mathcal{F}}$, where $k(x, y) = \langle \varphi(x), \varphi(y) \rangle_{\mathcal{F}}$
 - $\mathbb{E}_{x \sim p} f(x) = \langle f, \mathbb{E}_{x \sim p} \varphi(x) \rangle_{\mathcal{F}} = \langle f, \mu_p \rangle_{\mathcal{F}}$

 $\sup_{f \in \mathcal{F}} |\mathbb{E}_{x \sim p_{\text{real}}} f(x) - \mathbb{E}_{y \sim p_{\text{gen}}} f(y)|$

- IPM where \mathscr{F} is unit ball in the reproducing kernel Hilbert space (RKHS) for kernel k(x,y)
 - RKHS $\Leftrightarrow f(x) = \langle f, \varphi(x) \rangle_{\mathcal{F}}$, where $k(x, y) = \langle \varphi(x), \varphi(y) \rangle_{\mathcal{F}}$
 - $\mathbb{E}_{x \sim p} f(x) = \langle f, \mathbb{E}_{x \sim p} \varphi(x) \rangle_{\mathcal{F}} = \langle f, \mu_p \rangle_{\mathcal{F}}$
 - μ_p is the embedding of distribution p in ${\mathscr F}$

 $\sup_{f \in \mathcal{F}} \|\mathbb{E}_{\mathbf{x} \sim p_{\text{real}}} f(\mathbf{x}) - \mathbb{E}_{\mathbf{y} \sim p_{\text{gen}}} f(\mathbf{y})\|$

- IPM where \mathscr{F} is unit ball in the reproducing kernel Hilbert space (RKHS) for kernel k(x,y)
 - RKHS $\Leftrightarrow f(x) = \langle f, \varphi(x) \rangle_{\mathcal{F}}$, where $k(x, y) = \langle \varphi(x), \varphi(y) \rangle_{\mathcal{F}}$
 - $\mathbb{E}_{x \sim p} f(x) = \langle f, \mathbb{E}_{x \sim p} \varphi(x) \rangle_{\mathcal{F}} = \langle f, \mu_p \rangle_{\mathcal{F}}$
 - μ_p is the embedding of distribution p in ${\mathscr F}$
 - if k is 'characteristic', e.g. Gaussian, $p \rightarrow \mu_p$ is injective (μ_p captures everything)

 $\sup_{f \in \mathcal{F}} \|\mathbb{E}_{\mathbf{x} \sim p_{\text{real}}} f(\mathbf{x}) - \mathbb{E}_{\mathbf{y} \sim p_{\text{gen}}} f(\mathbf{y})\|$

- IPM where \mathscr{F} is unit ball in the reproducing kernel Hilbert space (RKHS) for kernel k(x,y)
 - RKHS $\Leftrightarrow f(x) = \langle f, \varphi(x) \rangle_{\mathcal{F}}$, where $k(x, y) = \langle \varphi(x), \varphi(y) \rangle_{\mathcal{F}}$

•
$$\mathbb{E}_{x \sim p} f(x) = \langle f, \mathbb{E}_{x \sim p} \varphi(x) \rangle_{\mathcal{F}} = \langle f, \mu_p \rangle_{\mathcal{F}}$$

- μ_p is the embedding of distribution p in ${\mathscr F}$
- if k is 'characteristic', e.g. Gaussian, $p \rightarrow \mu_p$ is injective (μ_p captures everything)

$$\Rightarrow \sup_{f \in \mathcal{F}} |\mathbb{E}_{x \sim p_{\text{real}}} f(x) - \mathbb{E}_{y \sim p_{\text{gen}}} f(y)| = \sup_{f \in \mathcal{F}} |\langle f, \mu_{p_{\text{real}}} - \mu_{p_{\text{gen}}} \rangle_{\mathcal{F}}| = ||\mu_{p_{\text{real}}} - \mu_{p_{\text{gen}}}||$$

 $\sup_{f \in \mathcal{F}} \|\mathbb{E}_{\mathbf{x} \sim p_{\text{real}}} f(\mathbf{x}) - \mathbb{E}_{\mathbf{y} \sim p_{\text{gen}}} f(\mathbf{y})\|$

- IPM where \mathscr{F} is unit ball in the reproducing kernel Hilbert space (RKHS) for kernel k(x,y)
 - RKHS $\Leftrightarrow f(x) = \langle f, \varphi(x) \rangle_{\mathcal{F}}$, where $k(x, y) = \langle \varphi(x), \varphi(y) \rangle_{\mathcal{F}}$

•
$$\mathbb{E}_{x \sim p} f(x) = \langle f, \mathbb{E}_{x \sim p} \varphi(x) \rangle_{\mathcal{F}} = \langle f, \mu_p \rangle_{\mathcal{F}}$$

- μ_p is the embedding of distribution p in ${\mathscr F}$
- if k is 'characteristic', e.g. Gaussian, $p \rightarrow \mu_p$ is injective (μ_p captures everything)

$$\Rightarrow \sup_{f \in \mathscr{F}} |\mathbb{E}_{x \sim p_{\text{real}}} f(x) - \mathbb{E}_{y \sim p_{\text{gen}}} f(y)| = \sup_{f \in \mathscr{F}} |\langle f, \mu_{p_{\text{real}}} - \mu_{p_{\text{gen}}} \rangle_{\mathscr{F}}| = ||\mu_{p_{\text{real}}} - \mu_{p_{\text{gen}}}||$$

• MMD: distance between means in embedding space

 $\sup_{f \in \mathcal{F}} \|\mathbb{E}_{\mathbf{x} \sim p_{\text{real}}} f(\mathbf{x}) - \mathbb{E}_{\mathbf{y} \sim p_{\text{gen}}} f(\mathbf{y})\|$

- IPM where \mathscr{F} is unit ball in the reproducing kernel Hilbert space (RKHS) for kernel k(x,y)
 - RKHS $\Leftrightarrow f(x) = \langle f, \varphi(x) \rangle_{\mathcal{F}}$, where $k(x, y) = \langle \varphi(x), \varphi(y) \rangle_{\mathcal{F}}$

•
$$\mathbb{E}_{x \sim p} f(x) = \langle f, \mathbb{E}_{x \sim p} \varphi(x) \rangle_{\mathcal{F}} = \langle f, \mu_p \rangle_{\mathcal{F}}$$

- μ_p is the embedding of distribution p in ${\mathscr F}$
- if k is 'characteristic', e.g. Gaussian, $p \rightarrow \mu_p$ is injective (μ_p captures everything)

$$\Rightarrow \sup_{f \in \mathcal{F}} |\mathbb{E}_{x \sim p_{\text{real}}} f(x) - \mathbb{E}_{y \sim p_{\text{gen}}} f(y)| = \sup_{f \in \mathcal{F}} |\langle f, \mu_{p_{\text{real}}} - \mu_{p_{\text{gen}}} \rangle_{\mathcal{F}}| = ||\mu_{p_{\text{real}}} - \mu_{p_{\text{gen}}}||$$

- MMD: distance between means in embedding space
- Very powerful method for calculating distance between distributions
 Raghav Kansal
 Generative Transformers and How to Evaluate Them

• Can be valuable to disentangle these

- Can be valuable to disentangle these
- Precision & Recall (Kynkäänniemi et al 2019)

- Can be valuable to disentangle these
- Precision & Recall (Kynkäänniemi et al 2019)

• Estimate real and generated manifold using k-nearest-neighbours

- Can be valuable to disentangle these
- Precision & Recall (Kynkäänniemi et al 2019)

- Estimate real and generated manifold using k-nearest-neighbours
- Precision: fraction of generated samples lying within real manifold (quality)

- Can be valuable to disentangle these
- Precision & Recall (Kynkäänniemi et al 2019)

- Estimate real and generated manifold using k-nearest-neighbours
- Precision: fraction of generated samples lying within real manifold (quality)
- Recall: fraction of real samples which lying within gen manifold (diversity)

- Can be valuable to disentangle these
- Precision & Recall (Kynkäänniemi et al 2019)

- Estimate real and generated manifold using k-nearest-neighbours
- Precision: fraction of generated samples lying within real manifold (quality)
- Recall: fraction of real samples which lying within gen manifold (diversity)
- Density & Coverage (<u>Naeem et al 2020</u>)

- Can be valuable to disentangle these
- Precision & Recall (Kynkäänniemi et al 2019)

- Estimate real and generated manifold using k-nearest-neighbours
- Precision: fraction of generated samples lying within real manifold (quality)
- Recall: fraction of real samples which lying within gen manifold (diversity)
- Density & Coverage (<u>Naeem et al 2020</u>)
 - Like P&R, but takes into account density of real manifold

Generative Transformers and How to Evaluate Them

• We first test on toy Gaussian distributions

• We first test on toy Gaussian distributions

• We first test on toy Gaussian distributions

• We first test on toy Gaussian distributions

• We first test on toy Gaussian distributions

• We first test on toy Gaussian distributions

Tests if metrics are sensitive to correlations

Generative Transformers and How to Evaluate Them

Scores vs sample size comparing samples of the true distribution

TRUTH SCORES

Generative Transformers and How to Evaluate Them
Scores vs sample size comparing samples of the true distribution

TRUTH SCORES

- $\cdot\ FGD_\infty$ and MMD are effectively unbiased
- Wasserstein, density, and coverage very slow to converge

TRUTH SCORES

Most sensitive metric per distribution in bold

Metric	Truth	Shift μ_x by 1σ	Shift μ_x by 0.1σ	Zero covariance	Multiply (co)variances by 10	Divide (co)variances by 10	Mixture of Two Gaussians 1	Mixture of Two Gaussians 2
Wasserstein	0.016 ± 0.004	1.14 ± 0.02	0.043 ± 0.008	0.077 ± 0.006	9.8 ± 0.1	0.97 ± 0.01	$\boldsymbol{0.036 \pm 0.003}$	0.191 ± 0.005
$\mathrm{FGD}_{\infty}\times 10^3$	0.08 ± 0.03	$\bf 1011 \pm 1$	11.0 ± 0.1	32.3 ± 0.2	9400 ± 8	935.1 ± 0.7	0.07 ± 0.03	0.03 ± 0.03
MMD	0.01 ± 0.02	16.4 ± 0.9	0.07 ± 0.04	0.40 ± 0.08	${\bf 19}k\pm{\bf 1}k$	4.3 ± 0.1	0.06 ± 0.02	0.35 ± 0.03
Precision	0.972 ± 0.005	0.91 ± 0.01	0.976 ± 0.004	0.969 ± 0.006	0.34 ± 0.01	1.0 ± 0.0	0.975 ± 0.003	$\begin{array}{c} 0.9976 \pm \\ 0.0007 \end{array}$
Recall	0.997 ± 0.001	0.992 ± 0.003	0.997 ± 0.001	0.9976 ± 0.0006	0.998 ± 0.001	0.58 ± 0.02	0.996 ± 0.001	$\begin{array}{c} 0.9970 \pm \\ 0.0009 \end{array}$
Density	3.23 ± 0.06	2.48 ± 0.08	3.19 ± 0.07	3.1 ± 0.1	0.60 ± 0.02	5.7 ± 0.3	2.99 ± 0.09	0.989 ± 0.009
Coverage	0.876 ± 0.002	0.780 ± 0.006	0.872 ± 0.005	0.872 ± 0.004	0.60 ± 0.01	0.406 ± 0.008	0.871 ± 0.002	0.956 ± 0.006

TRUTH SCORES

Metric	Truth	Shift μ_x by 1σ	Shift μ_x by 0.1σ	Zero covariance	Multiply (co)variances by 10	Divide (co)variances by 10	Mixture of Two Gaussians 1	Mixture of Two Gaussians 2
Wasserstein	0.016 ± 0.004	1.14 ± 0.02	0.043 ± 0.008	0.077 ± 0.006	9.8 ± 0.1	0.97 ± 0.01	$\boldsymbol{0.036\pm0.003}$	0.191 ± 0.005
$\mathrm{FGD}_{\infty}\times 10^3$	0.08 ± 0.03	$\bf 1011 \pm 1$	11.0 ± 0.1	32.3 ± 0.2	9400 ± 8	935.1 ± 0.7	0.07 ± 0.03	0.03 ± 0.03
MMD	0.01 ± 0.02	16.4 ± 0.9	0.07 ± 0.04	0.40 ± 0.08	${\bf 19}k\pm{\bf 1}k$	4.3 ± 0.1	0.06 ± 0.02	0.35 ± 0.03
Precision	0.972 ± 0.005	0.91 ± 0.01	0.976 ± 0.004	0.969 ± 0.006	0.34 ± 0.01	1.0 ± 0.0	0.975 ± 0.003	$\begin{array}{c} 0.9976 \pm \\ 0.0007 \end{array}$
Recall	0.997 ± 0.001	0.992 ± 0.003	0.997 ± 0.001	0.9976 ± 0.0006	0.998 ± 0.001	0.58 ± 0.02	0.996 ± 0.001	$\begin{array}{c} 0.9970 \pm \\ 0.0009 \end{array}$
Density	3.23 ± 0.06	2.48 ± 0.08	3.19 ± 0.07	3.1 ± 0.1	0.60 ± 0.02	5.7 ± 0.3	2.99 ± 0.09	0.989 ± 0.009
Coverage	0.876 ± 0.002	0.780 ± 0.006	0.872 ± 0.005	0.872 ± 0.004	0.60 ± 0.01	0.406 ± 0.008	0.871 ± 0.002	0.956 ± 0.006

• Wasserstein, FGD_{∞} , MMD find all alternatives discrepant, except FGD_{∞} on mixtures

- FGD_{∞} generally the most sensitive otherwise, but misses shape distortions
- Precision and recall do their job, density and coverage give unintuitive results

Raghav Kansal

• W_1^M (looking at ID mass distribution only) works somewhat, but not as sensitive

• W_1^M (looking at ID mass distribution only) works somewhat, but not as sensitive

• Wasserstein distance is biased and slow to converge

- W_1^M (looking at ID mass distribution only) works somewhat, but not as sensitive
- Wasserstein distance is biased and slow to converge
- Precision, recall work roughly useful for diagnosing failure modes but not for comparing

Raghav Kansal

• W_1^M (looking at ID mass distribution only) works somewhat, but not as sensitive

- Wasserstein distance is biased and slow to converge
- Precision, recall work roughly useful for diagnosing failure modes but not for comparing

Raghav Kansal

- FGD is the most sensitive
- MMD reasonable

PARTICLENET ACTIVATION SCORES

PARTICLENET ACTIVATION SCORES

- Same conclusions overall as for EFPs
- FGD the best, MMD reasonable, P&R are OK for diagnosing failure modes
- Raghav Kansal

Kansal et al., ML4PS @ NeurIPS 2020 Kansal et al., NeurIPS 2021

Sample feature distributions, with MPGAN compared to baseline point cloud generators

Kansal et al., ML4PS @ NeurlPS 2020 Kansal et al., NeurlPS 2021

Sample feature distributions, with MPGAN compared to baseline point cloud generators

Generative Transformers and How to Evaluate Them

Kansal et al., ML4PS @ NeurlPS 2020 Kansal et al., NeurlPS 2021

Sample feature distributions, with MPGAN compared to baseline point cloud generators

Kansal et al., ML4PS @ NeurIPS 2020 Kansal et al., NeurIPS 2021

Sample feature distributions, with MPGAN compared to baseline point cloud generators

į.

Kansal et al., ML4PS @ NeurlPS 2020 Kansal et al., NeurlPS 2021

Sample feature distributions, with MPGAN compared to baseline point cloud generators

Generative Transformers and How to Evaluate Them

Kansal et al., ML4PS @ NeurlPS 2020 Kansal et al., NeurlPS 2021

Generative Transformers and How to Evaluate Them

Kansal et al., ML4PS @ NeurlPS 2020 Kansal et al., NeurlPS 2021

Raghav Kansal

Generative Transformers and How to Evaluate Them

Jet HTS:TOP QI Jet Jet Number of Jets 3.5 × 10³ 10 3.0 - 10 2.5 - 10 10 3.0 - 10 10 3.0 - 10 10 3.0 - 10 10 3.0 - 10 10 3.0 - 10 10 3.0 - 10 10 3.0 - 10 10 3.0 - 10 10 3.0 - 10 10 3.0 - 10 10 3.0 - 10 10 3.0 - 10 10 3.0 - 10 10 3.0 - 10 10 3.0 - 10 10 3.0 - 10 10 3.0 - 10 10 5 ×10⁴ ×10³ Number of Particles Jets 3. 🔲 Real 🔲 Real Real EII FC Number of 3.0 5.5 FC FC FC CI GraphCNN **C** GraphCNN **C** GraphCNN CI MP CI MP CI MP 2.0 2.0 1.5 1.5 3 1.0 1.0 0.5 0.5 0.0 0.0 0 0.15 0.00 0.02 0.04 0.06 0.08 0.10 0.00 0.05 0.10 0.20 2 0 3 ×10⁻³ Jet EFP Particle p_T^{rel} **Relative Jet Mass** Real vs real Real vs real Real vs real $WI-P = (0.55 \pm 0.07) \times 10^{-3}$ $WI-M = (0.51 \pm 0.07) \times 10^{-3}$ $WI-EFP = (1.1 \pm 0.1) \times 10^{-5}$ WI-EFP (10-5) WI-M (10-3) Generator Discriminator $W|-\bar{P}(10^{-3})$ **FPND** 2.7 ± 0.1 7.7 ± 0.5 3.9 FC PointNet 1.6= ± GraphCNN PointNet 11.3 ± 0.9 37 ± 2 30k 30 0.6 ± 0.2 0.37 MP MP 2.3 PointNet 0.76 ± 0.08 3.7 MP AN learns perfectly the complex bimedal jet feature distributions

HTS: TOP QU/ Jet Jet $1 \quad \sup_{\Sigma} 3.5 \frac{\times 10^3}{\Sigma}$ Jet ×10⁴ ×10³ Number of Particles Jets 3. 🗖 Real 🗖 Real 🔲 Real FC FC FC FC FC Number of 3.0 2.5 ້ ວີ 3.0 CI GraphCNN **C** GraphCNN Number 5 CI GraphCNN CI MP LI MP CI MP 2.0 2.0 1.5 1.5 1.0 1.0 0.5 0.5 0.0 0.0 0 0.15 0.00 0.02 0.04 0.06 0.08 0.10 0.00 0.05 0.10 0.20 2 3 **Relative Jet Mass** Jet EFP ×10⁻³ Particle prel Real vs real Real vs real Real vs real $WI-P = (0.55 \pm 0.07) \times 10^{-3}$ $WI-M = (0.51 \pm 0.07) \times 10^{-3}$ $WI-EFP = (1.1 \pm 0.1) \times 10^{-5}$ WI-M (10-3) WI-EFP (10-5) Discriminator $WI - P(10^{-3})$ **FPND** Generator 2.7 ± 0.1 7.7 ± 0.5 3.9 FC PointNet 1.6= ± GraphCNN PointNet 11.3 ± 0.9 37 ± 2 30k 30 0.6 ± 0.2 0.37 MP MP 2.3 PointNet 0.76 ± 0.08 3.7 MP GAN learns perfectly the complex bimedal jet feature distributions • Mass and ave. EFP scores remain within error of real vs real baseline Generative Transformers and How to Evaluate Them Raghav Kansal 44