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Model-agnostic searches & ML
• Are we leaving stones unturned? Can we answer this question only via direct searches?


•Anomaly searches: define background from the data and find “anomalous” events

• looking for group anomalies


• robust anomaly detection tool


• level of agnosticism


• performing analysis (bump hunt, ABCD, …)

a known problem in Machine Learning (or not?) 

Already many interesting challenges/applications of ML techniques



Two big families:
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Model-agnostic searches & ML

Autoencoders (AE) Classification without labels (CWOLA)

f(x) g( f(x))

Encoder Decoder

x x′ 

ℝdx ℝdxLatent



Autoencoders for Jet tagging

•Auto-Encoders can easily tag complex signals;


• the opposite is not generally true  ‘complexity bias’→

Robustness test: inverse training 
• take a background and a signal signature


• train an AE on the direct and inverse task

Example: QCD tagging
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Scores not invariant to data preprocessing 
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Finding the right observables
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How to choose the best representation?

Examples:

Reconstructed objects Jet constituents

QCD input

bkg

top input

bkg



A common solution?
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A common approach to these problems is Contrastive Learning (CLR):


• phrase the objective loss as a contrastive loss with 


• positive samples 

• negative samples 

• shape a non-degenerate energy landscape 

QCD

top

Normalized Auto-Encoders JetCLR AnomalyCLR
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Normalized Auto-Encoders

f(x) g( f(x))

Building a NAE: 

• define two neural networks like an usual Auto-Encoder;


• encode features in a low-dimensional latent space;


• set the latent space to a spherical hyper-surface ;


• use the reconstruction error as anomaly score, .

𝕊dz

MSE(x, x′ )

Encoder Decoder𝕊dz

x x′ 

ℝdx ℝdx
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Define a Boltzmann probability distribution and use the MSE as energy function: pθ (x) =
e−Eθ(x)

Ω

Ω = ∫x
e−Eθ (x) dx Eθ (x, x′ ) = ∥x − x′ ∥2

ℒ = − log pθ (x) = Eθ (x) − log Ω

we can train by minimizing the negative log-likelihood of the probability distribution:

We need to explore the anomaly score space during training  looking for a normalized distribution→
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[Autoencoding under normalization constraints, Yoon S. et al. arXiv:2105.05735]

[A Normalized Autoencoder for LHC triggers, Dillon B. et al. arXiv:2206.14225]

Training a NAE



Training a NAE

Minimizes the usual AE reconstruction error; Can be rewritten as: ∇θ Eθ (x) , x ∼ pθ (x)

Consider the gradients of the loss function:

∇θ ℒ = ∇θ Eθ (x) ∇θ log Ω−

    ∇θ ℒ = 𝔼 [ ∇Eθ (x) ] x∼pdata − 𝔼 [ ∇Eθ (x) ] x∼pθ

Rewriting the gradient of the loss function:

•positive energy: gradient descent step

• negative energy: gradient ascent step

at equilibrium:   pθ (x) = pdata (x)
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Normalization

 high-dimensional space      approx. high dimensional integralΩ →

Everything is really general…  

… but why does this work?

Input space is high dimensional      sampling from ?→ pθ
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xt+1 = xt + λt ∇x log pθ (x) + σt ϵ ϵ ∼ 𝒩(0,1)

Sampling is done via two Langevin Markov chains: 
• latent space: using the energy ;

• input space: through the distribution .

Hθ = Eθ(g(z), f(g(z)))
pθ (x)

* small number of steps , constrained into low energy regions by taking 𝒪(100) λ > σ

Sampling from pθ
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We can study what happens during training:

•decoder manifold for tops is more complex;
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• 2D projection of the latent space;

Auto-Encoder
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• after training both QCD and top jets are 
mapped in high reconstruction regions of 
the decoder manifold;

• inducing an underlying metric via ;
log Ω

Normalized Auto-Encoder
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Results: decoder manifold



Results: QCD vs top tagging
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•AE trained on jet images fails at tagging QCD jets;


• an AE is able to interpolate the simpler QCD features;

•NAE explicitly penalizes well-reconstructed regions not 
in the training dataset;


• nice performance on both tasks, symmetric training.
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better
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Self-supervision

•Neural Networks are not invariant to physical symmetries in data


• Typically solved through “pre-processing”

Our goal: control the training to ensure we learn physical quantities


What the representations should have: invariance to certain transformations of the jets/events 

•CLR: map raw data to a new representation/observables


• Self-supervision: during training we use pseudo-labels, not truth labels
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JetCLR
Dataset: mixture of top and QCD jets

Contrastive Learning paradigm:


• positive pairs:  where  is an augmented version of 


• negative pairs:  for 

{(xi, x′ i)} x′ i xi

{(xi, xj) ∪ (xi, x′ j)} i ≠ j

Augmentation: any transformation (e.g. rotation) of the original jet

Train a Transformer-encoder network to map the data to a new repr. space,   f : ℐ → ℛ

Loss function: 
ℒ = − log

exp(s(zi, z′ j)/τ)
∑x∈batch 𝙸i≠j[exp(s(zi, zj)/τ) + exp(s(zi, z′ j)/τ)]

[Symmetries, safety, and self-supervision, Dillon B. et al. arXiv:2108.04253]
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Invariances

ℒ = − log
exp(s(zi, z′ i)/τ)

∑x∈batch 𝙸i≠j[exp(s(zi, zj)/τ) + exp(s(zi, z′ j)/τ)]

s(zi, zj) =
zi ⋅ zj

|zi | |zj |
, zi = f(xi)

Similarity measure:

Applied augmentations:


• rotations


• translations


• collinear splittings


• low  smearingpT

rotation in [0,2π] translation in (η, ϕ)

pT,a + pT,b = pT

ηa = ηb = η

ϕa = ϕb = ϕ

random split of constituents

η′ ∼ 𝒩(η,
Λsoft

pT
)

ϕ′ ∼ 𝒩(ϕ,
Λsoft

pT
)

re-sampling of (η, ϕ)
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Are we learning invariances?
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Linear Classifier test
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AnomalyCLR on events

Dataset: mixture of SM events

   (59.2%)

     (6.7%)


 production  (0.3%)

QCD multijet (33.8 %)

W → lν
Z → ll

tt̄

BSM benchmarks








A → 4l
LQ → bν
h0 → ττ
h+ → τν

The events are represented in format: (19, 3) entries

• 19 particles: MET, 4 electrons, 4 muons, and 10 jets

• 3 observables: , , 

•  for  respectively 

pT η ϕ
|η | < [3, 2.1, 4] e, μ, j

[Anomalies, representations, and self-supervision, Dillon B. et al. arXiv:2301.04660]
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Enhancing discriminative features

unsupervised training  no signals available during training⟶

Representations may not be sensitive to BSM features:


• physical augmentations: alignment between positive pairs


• anomalous augmentations: discriminative power of possible BSM features

Anom. augmentations are motivated by non-SM features  model-agnosticism is preserved⟶

Physical augmentations:

• azimuthal rotations

•  smearing

• energy smearing

η, ϕ

pT ∼ 𝒩(pT, f(pT)), f(pT) = 0.052p2
T + 1.502p2

T

η′ ∼ 𝒩(η, σ(pT))
ϕ′ ∼ 𝒩(ϕ, σ(pT))
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Anomalous augmentations

Loss function: 

ℒAnomCLR+ = − log e[s(zi,z′ i)−s(zi,z*i )]/τ =
s(zi, z*i ) − s(zi, zi)

τ
Anomalous augmentations:


•multiplicity shifts:

- add a random number of particles, update MET


- split existing particles, keeping total   and MET fixed


•  and MET shifts

pT

pT

Each augmentation increase sensitivity to BSM-like features
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Results: improved sensitivity



Conclusions/Outlook
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Auto-Encoders can be used for robust OOD detection

energy-based models are versatile tools used to learn prob. distributions 


 Normalized Auto-Encoders (NAE)⟶

They can be paraphrased as Contrastive Learning (CLR) models 

Self-supervision is a powerful tool to build representations

JetCLR and AnomalyCLR  invariances, and high discriminative power ⟶

• Combine them for improved discriminative power

• NAE for trigger applications

• Contrastive learning for semi visible jets

• …what about non-contrastive learning techniques?

Next steps



Thanks for your attention!



Backup
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zt+1 = zt + λt ∇z log qθ (z) + σt ϵ ϵ ∼ 𝒩(0,1)

Sampling from the model

On-Manifold Initialization  use latent space information 

Latent space chains are defined by On-Manifold distribution and On-Manifold energy:

→

• Sampling is done via Metropolis-Adjusted Langevin* (MALA) Markov chains;

• given the dimensionality of the input space the initialization of the MCMC do matter:

qθ (z) =
eHθ (z)

Ψ

Hθ (z) = Eθ (g(z))

On-manifold distribution:

On-manifold energy:
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JetCLR performance

Augmentation AUC

none 15 0.905

rotations 19 0.916

translations 21 0.930

soft + collinear 89 0.970

all combined 181 0.980

ϵ−1
B (ϵS = 0.5)
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Results: SIC CURVES
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