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Introduction to Energy-Based Models

<>

e Probabilistic modeling:
o  x represents any high-dimensional data point
o  Model the probability of each occurrence p(x)

e Energy-based models (EBMs) p(x) = w
o  Popular generative modeling method before deep learning (e.g., Restricted Boltzmann

Machine)

o Inspired by Gibbs distribution in statistical physics

o Flexibility in the energy function: any scalar could serve as the energy, since exp(-E) gives a
non-negative un-normalized probability

o  Bottom-up approach for generation (does not need a generator or a well-designed
reconstruction error)



Introduction to Energy-Based Models

<>

e Xx: the state of a system or an input configuration
e E(x): energy function, can be parameterized by modern deep neural networks
e /: partition function or normalizing constant

Z = [p(x)dx = [exp(—FEy(x))dx



Training EBMs | Contrastive Divergence

<>

Training of EBMs can be achieved with Maximum Likelihood Estimation.

logp(x) = —E(x) — 10g

VG‘C(G) = _]EPD(X) [VG 10gp0 (X)]
= IE:pD(x) [VeEo(X+)] = ]Epg(x) [VHE(?(X_)] )

The negative phase

Estimated with Markov Chain Monte

Carlo

Usually takes the form of contrasting energies of positive samples and negative samples

p(x)

The positive phase
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[Figure from the Deep Learning Book by Goodfellow et al.]

A = Pmodel (1)
e o pdata(m)

p(x)

/




Gradient-based MCMC

<>

Negative phase: MCMC samples q(x) to estimate the model distribution p(x)

Langevin Dynamics (Welling & Teh, 2011) initializing from random noises. At each MCMC
step:
)\2
X1 =X — TVXEQ(X;,) + A€, withe ~ N(0,1)

Gradient Diffusion
descent term



Kullback-Leibler Divergence-Improved Training (Optional)

<>

KL-improved training (Du et al, 2020): include the KL divergence between the model
distribution and the MCMC estimation

 0gp(x) ODk1(g0(x)||pe(x))
a0 Jge(x)

VG‘C(G) = ]EpD(x) [VGEG(x+)] - qu(x)[VGEG(x_)]

L = Lcp + Lxr, with Lk, = Eyx) [E5(X)] + Egq (x)[log(gs(x))]



Kullback-Leibler Divergence-Improved Training (Optional)

<>

KL-improved training (Du et al, 2020): include the KL divergence between the model
distribution and the MCMC estimation

dq6(x) 0DxL(q0(x)||pe(x))
a0 Jge(x)

VoL(0) = Epp(x) [VoEo(x)] — Egyx) [VoEo(x7)] [~

L = Lcp + Lxu, with Lk = Eq(x)[E5(%)] + Eq, (x) [log(g0(x))]

Entropy term, difficult to estimate



Kullback-Leibler Divergence-Improved Training (Optional)

<>

KL-improved training (Du et al, 2020): include the KL divergence between the model
distribution and the MCMC estimation

dq9(x) 0Dk (ge(x)||pe(x))
a0 Jge(x)

VoL(0) = Epp(x) [VoEo(x)] — Egyx) [VoEo(x7)] [~

£ = ECD + »CKLa with Lk, = ]Eq(x) [Eé (X)] i E‘]G X))]

In our work, we ignore the entropy term and thus optimize the upper-bound of the KL term



EBMs for High Energy Physics: A Framework

<>

Modelling high-dimensional data distribution directly

Physics inductive biases or incorporate sophisticated architectures
Multiple use-cases

High performance and less spurious correlation

Topic Practice
Generative modeling Parameterized event generation
OOD detection Model-independent new physics search

Hybrid modeling Classifier combined with EBMs
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Setup

e We work on simulated jets produced from 13 TeV
LHC pp collision.

e Inputs from particle-flow objects: {(pz, 7, ¢)};'

® p(x): train on large-radius (R=1.0) QCD jets or
QCD/W/Top jets (for hybrid modelling)

e Note: fewer MCMC steps (24) in training,
more steps in validation

Data
input features {(log(pr),n, #)i} N,
input length N=40 with zero-padding
Energy Function
Number of layers 8
Model dimension 128
Number of heads 16
Feed-forward dimension 1024
Dropout rate 0.1
Normalization None
MCMC
Number of steps 24
Step size 0.1
Buffer size 10000
Resample rate 0.05
Noise e = 0.005
Regularization
L2 Regularization | 0.1
Training

Optimizer
Learning rate

Adam (3, = 0.0, 32 = 0.999)
le-4 (decay rate v = 0.98)
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Schematic
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Energy function: maps

high-dimensional inputs to a scalar (X,

y)->E

Flexibility in the energy function: can

be modelling with sophisticated
architectures (here we use a
transformer) without bothering
designing an explicit generation or
effective reconstruction error (as in
VAE?s)

Low-level inputs with or w/o labels
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Applications | Generative Modelling

<>

Once we have a well-trained energy function E(x), we have

e Implicit generation: . /\;vx Bo(xz) + A -, withe ~ A(0, 1)
o Sample from noises — Gradient-based Langevin Dynamics —realistic samples
e Flexibility at test-time generation, as long as the energy function is well trained, we can
use different sampling strategies (step size, dynamic sampling, other sampling
strategies, etc.).
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Applications | Generative Modelling

<>

Random Noises — Gradient-based MCMC — Data distribution

)\2
Ky =% — 7V,(Eg(x,:) + A€, withe ~ N(0,1)
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e Use a colder model (lower temperature ~ small MCMC step size) at test-time generation



Applications | Model-Independent New Physics Searches

<>

Method: model p(x) of QCD jets — (thresholding p(x) <s: E(x) > e) — detect non-QCD
signal jets with higher energies

QCD QCD
Signal il Signal

101 Random Random

100 200 300 400



Applications | Model-Independent New Physics Searches

<>

e  Mass correlation in anomalous jet tagging
o  (Vatiational) Autoencoder (reconstruction
error-based): jet constituent numbers, jet
complexity
o Jet Classifier: in-distribution jet masses
e Underlying reason for EBMs not presenting
mass correlation: larger mass modes already be

covered during the negative sampling process
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Here shows MCMC samples from an early stage model
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FCN VAE(Din=80, Dhidden=10)
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Mass Correlation of QCD/W/T Classifier-based Softmax Probability
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Applications | Model-Independent New Physics Searches

<>
(H—hh—bbbb)
e Free of mass correlation — readily Model | AUC (Top) | AUC (00D H)
: . DisCo-VAE (x = 1000) (Cheng et al/,[2023) 0.593 0.481
effeCtIVC n general resonance KL-OE-VAE (Cheng et al|,[2023) 0.744 0.625
EBM (E(x)) 0.682 £0.004 | 0.770 £ 0.054

searches such as bump-hunt

e Without other auxiliary tasks (and

[ QCD [e=1.0]
1 QCD [¢=0.5]

1072 A

trained on a relatively smaller
dataset), the EBM already performs
very well

1 QCD[e=0.2]
[ QCD [e=0.1]
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Applications | Classification Augmented with Density Estimation
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Hybrid Modelling: joint probability p(x, y)

log p(x,y) = log p(x) + log p(y|x) .

Generative model Discriminative model

Event simulation Classifiers

Can be used for semi-supervised learning, OOD detection, etc.
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Applications | Classification Augmented with Density Estimation

Hybrid Modelling: joint probability p(x, y)

log p(x,y) = log p(x) + log p(y|x) -

Generative model Discriminative model

Event simulation Classifiers

Re-interpret classifiers: see logits as negative energies 9(x), = —E(x,3), to re-interpret p(y|x) = softmax(g(x),)
[Grathwohl et al, 2020]

exp(g(x),)
p(x,y) = ng p(y[x) = exp(g(x),)
— Y, exp(g(x),
>, exp(g(x),)
p(X) = —F E(x) = —log Zy exp(g(x)y)
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Applications | Classification Augmented with Density Estimation

Hybrid Modelling: joint probability p(x, y)

log p(x,y) = logp(x) + klog p(y|x)

Optimization: Contrastive divergence with Cross entropy
E(x) = —log Ey exp(g(x)y)

Re-interpret classifiers: see logits as negative energies 9(x), = —E(x,3), to re-interpret p(y|x) = softmax(g(x),)
[Grathwohl et al, 2020]

exp(g(x),)
p(x,y) = — (gl = 2
- >, exp(9(x),
>, exp(g(x),)
p(X) = —F E(x) = —log Zy exp(g(x)y)
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Applications | Classification Augmented with Density Estimation

Hybrid Modelling: joint probability p(x, y)

log p(x,y) = log p(x) + klog p(y|x)
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Applications | Classification Augmented with Density Estimation

Hybrid Modelling: joint probability p(x, y)

log p(x,y) = log p(x) + xlog p(y|x)

Model | Top-1 Accuracy | Top-2 Accuracy Discriminative model
EBM-CLF (k = 1.0) 0.848 0.969 .
ParticleNet 0.871 0.976 Classifiers

EBM-CLF trained on a smaller dataset is already performing classification tasks on par with dedicated
jet classifier.



Applications | Classification Augmented with Density Estimation

<>

OOD detection: QCD/Signal

e Now we have a generative
model and a discriminative

model at the same time
°o  p(x) = E(x)
o Softmax probability p(y=0|x)
o  Logit of the classifier g(x) ~ E(x, y)
e Again E(x) displays mass
decorrelation

o However, anomaly scores from the
discriminative part usually remain
mass correlated

Model

DisCo-VAE (x = 1000) (Cheng et al!, 2023)
KL-OE-VAE (Cheng et al|, 2023)
EBM-CLF (E(x))

EBM-CLF (g(x),)

EBM-CLF (p(y|x))

(H—hh—bbbb)

| AUC (Top) | AUC (OOD H)
0.593 0.481
0.744 0.625
= 0.817
0.922 0.877
0.929 0.870
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Summary

<>

e Energy-based probabilistic modelling framework for High Energy Physics events

e [mproved training stability (upper-bounded KL-improved training)

e Excellent generation quality with the energy function estimated via a
self-attention-based transformer

e Elegantly adapted to different application use-cases:

o  Parameterized event simulation
o Anomaly detection
o  Classification augmented with density estimation

e Paves for more advanced multi-tasking deep learning models for HEP
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