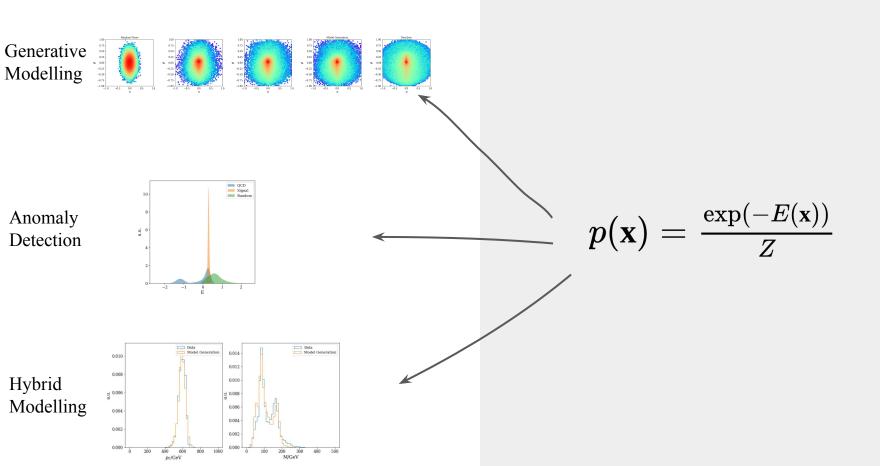
Versatile Energy-Based Models for High Energy Physics

Taoli Cheng

Joint work with Aaron Courville (Mila, University of Montreal)

Partially based on <u>arXiv</u>: 2302.00695

Feb. 14, 2023 @ IML, CERN



Introduction to Energy-Based Models

- Probabilistic modeling:
 - x represents any high-dimensional data point
 - \circ Model the probability of each occurrence p(x)
- Energy-based models (EBMs) $p(\mathbf{x}) = \frac{\exp(-E(\mathbf{x}))}{Z}$
 - Popular generative modeling method before deep learning (e.g., Restricted Boltzmann Machine)
 - Inspired by Gibbs distribution in statistical physics
 - Flexibility in the energy function: any scalar could serve as the energy, since **exp(-E)** gives a non-negative un-normalized probability
 - Bottom-up approach for generation (does not need a generator or a well-designed reconstruction error)

Introduction to Energy-Based Models

$$p(\mathbf{x}) = \frac{\exp(-E(\mathbf{x}))}{Z}$$

- x: the state of a system or an input configuration
- \bullet E(x): energy function, can be parameterized by modern deep neural networks
- Z: partition function or normalizing constant

$$Z = \int \tilde{p}(\mathbf{x}) d\mathbf{x} = \int \exp(-E_{\theta}(\mathbf{x})) d\mathbf{x}$$

Training EBMs | Contrastive Divergence

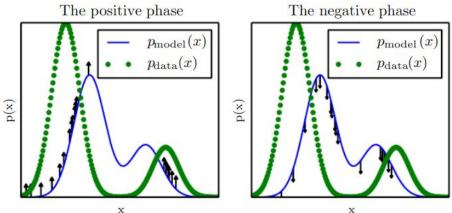
Training of EBMs can be achieved with Maximum Likelihood Estimation.

$$\log p(\mathbf{x}) = -E(\mathbf{x}) - \log Z$$
 intractable

$$\nabla_{\theta} \mathcal{L}(\theta) = -\mathbb{E}_{p_D(\mathbf{x})} [\nabla_{\theta} \log p_{\theta}(\mathbf{x})]$$

$$\simeq \mathbb{E}_{p_D(\mathbf{x})} [\nabla_{\theta} E_{\theta}(\mathbf{x}^+)] - \mathbb{E}_{p_{\theta}(\mathbf{x})} [\nabla_{\theta} E_{\theta}(\mathbf{x}^-)], \qquad \text{Estimated with Markov Chain Monte}$$
Carlo

Usually takes the form of contrasting energies of positive samples and negative samples



Gradient-based MCMC

Negative phase: MCMC samples q(x) to estimate the model distribution p(x)

Langevin Dynamics (Welling & Teh, 2011) initializing from random noises. At each MCMC step:

$$\begin{aligned} \mathbf{x}_{k+1}^{-} &= \mathbf{x}_{k}^{-} - \frac{\lambda^{2}}{2} \nabla_{\mathbf{x}} E_{\theta}(\mathbf{x}_{k}^{-}) + \lambda \cdot \epsilon, \text{ with } \epsilon \sim \mathcal{N}(0, 1) \\ & \text{Gradient} & \text{Diffusion} \\ & \text{descent} & \text{term} \end{aligned}$$

Kullback-Leibler Divergence-Improved Training (Optional)

KL-improved training (Du et al, 2020): include the KL divergence between the model distribution and the MCMC estimation

$$\nabla_{\theta} \mathcal{L}(\theta) = \mathbb{E}_{p_D(\mathbf{x})} [\nabla_{\theta} E_{\theta}(\mathbf{x}^+)] - \mathbb{E}_{q_{\theta}(\mathbf{x})} [\nabla_{\theta} E_{\theta}(\mathbf{x}^-)] - \frac{\partial q_{\theta}(\mathbf{x})}{\partial \theta} \frac{\partial D_{\mathrm{KL}}(q_{\theta}(\mathbf{x})||p_{\theta}(\mathbf{x}))}{\partial q_{\theta}(\mathbf{x})}$$

$$\mathcal{L} = \mathcal{L}_{CD} + \mathcal{L}_{KL}$$
, with $\mathcal{L}_{KL} = \mathbb{E}_{q(\mathbf{x})}[E_{\hat{\theta}}(\mathbf{x})] + \mathbb{E}_{q_{\theta}(\mathbf{x})}[\log(q_{\theta}(\mathbf{x}))]$

Kullback-Leibler Divergence-Improved Training (Optional)

KL-improved training (Du et al, 2020): include the KL divergence between the model distribution and the MCMC estimation

$$\nabla_{\theta} \mathcal{L}(\theta) = \mathbb{E}_{p_D(\mathbf{x})} [\nabla_{\theta} E_{\theta}(\mathbf{x}^+)] - \mathbb{E}_{q_{\theta}(\mathbf{x})} [\nabla_{\theta} E_{\theta}(\mathbf{x}^-)] - \frac{\partial q_{\theta}(\mathbf{x})}{\partial \theta} \frac{\partial D_{\mathrm{KL}}(q_{\theta}(\mathbf{x})||p_{\theta}(\mathbf{x}))}{\partial q_{\theta}(\mathbf{x})}$$

$$\mathcal{L} = \mathcal{L}_{CD} + \mathcal{L}_{KL}, \text{ with } \mathcal{L}_{KL} = \mathbb{E}_{q(\mathbf{x})}[E_{\hat{\theta}}(\mathbf{x})] + \mathbb{E}_{q_{\theta}(\mathbf{x})}[\log(q_{\theta}(\mathbf{x}))]$$

Entropy term, difficult to estimate

Kullback-Leibler Divergence-Improved Training (Optional)

KL-improved training (Du et al, 2020): include the KL divergence between the model distribution and the MCMC estimation

$$\nabla_{\theta} \mathcal{L}(\theta) = \mathbb{E}_{p_D(\mathbf{x})} [\nabla_{\theta} E_{\theta}(\mathbf{x}^+)] - \mathbb{E}_{q_{\theta}(\mathbf{x})} [\nabla_{\theta} E_{\theta}(\mathbf{x}^-)] - \frac{\partial q_{\theta}(\mathbf{x})}{\partial \theta} \frac{\partial D_{\mathrm{KL}}(q_{\theta}(\mathbf{x})||p_{\theta}(\mathbf{x}))}{\partial q_{\theta}(\mathbf{x})}$$

$$\mathcal{L} = \mathcal{L}_{\mathrm{CD}} + \mathcal{L}_{\mathrm{KL}}, \text{ with } \mathcal{L}_{\mathrm{KL}} = \mathbb{E}_{q(\mathbf{x})}[E_{\hat{\theta}}(\mathbf{x})] + \mathbb{E}_{q_{\theta}(\mathbf{x})}[\log(q_{\theta}(\mathbf{x}))]$$

In our work, we ignore the entropy term and thus optimize the upper-bound of the KL term

EBMs for High Energy Physics: A Framework

- Modelling high-dimensional data distribution directly
- Physics inductive biases or incorporate sophisticated architectures
- Multiple use-cases
- High performance and less spurious correlation

Topic	Practice	
Generative modeling	Parameterized event generation	
OOD detection	Model-independent new physics search	
Hybrid modeling	Classifier combined with EBMs	

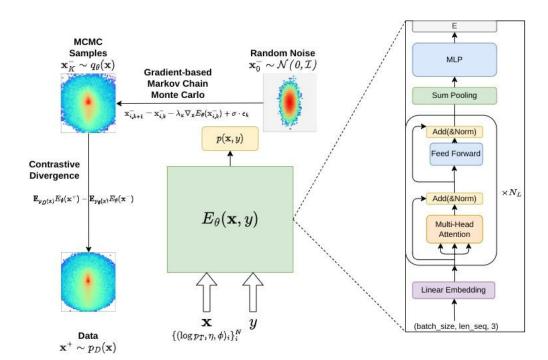
Setup

- We work on simulated jets produced from 13 TeV LHC pp collision.
- Inputs from particle-flow objects: $\{(p_T, \eta, \phi)\}_i^N$
- p(x): train on large-radius (R=1.0) QCD jets or QCD/W/Top jets (for hybrid modelling)
- Note: fewer MCMC steps (24) in training, more steps in validation

	Data			
input features	$\{(\log(p_T), \eta, \phi)_i\}_{i=1}^N$			
input length	N=40 with zero-padding			
Energ	gy Function			
Number of layers	8			
Model dimension	128			
Number of heads	16			
Feed-forward dimension	1024			
Dropout rate	0.1			
Normalization	None			
N	MCMC			
Number of steps	24			
Step size	0.1			
Buffer size	10000			
Resample rate	0.05			
Noise	$\epsilon = 0.005$			
Regularization				
L2 Regularization	0.1			
Т	raining			
Optimizer	Adam ($\beta_1 = 0.0, \beta_2 = 0.999$)			
Learning rate	1e-4 (decay rate $\gamma = 0.98$)			

Schematic

- Energy function: maps
 high-dimensional inputs to a scalar (X, y) -> E
- Flexibility in the energy function: can be modelling with sophisticated architectures (here we use a transformer) without bothering designing an explicit generation or effective reconstruction error (as in VAEs)
- Low-level inputs with or w/o labels



Applications | Generative Modelling

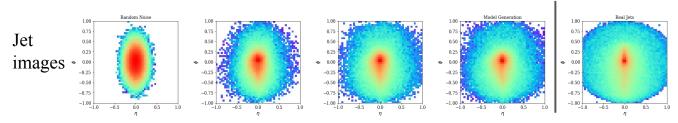
Once we have a well-trained energy function E(x), we have

- Implicit generation: $\mathbf{x}_{k+1}^- = \mathbf{x}_k^- \frac{\lambda^2}{2} \nabla_{\mathbf{x}} E_{\theta}(\mathbf{x}_k^-) + \lambda \cdot \epsilon, \text{ with } \epsilon \sim \mathcal{N}(0,1)$
 - ∘ Sample from noises → Gradient-based Langevin Dynamics → realistic samples
- Flexibility at test-time generation, as long as the energy function is well trained, we can use different sampling strategies (step size, dynamic sampling, other sampling strategies, etc.).

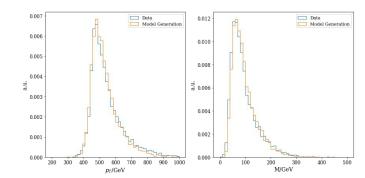
Applications | Generative Modelling

Random Noises → Gradient-based MCMC → Data distribution

$$\mathbf{x}_{k+1}^{-} = \mathbf{x}_{k}^{-} - \frac{\lambda^{2}}{2} \nabla_{\mathbf{x}} E_{\theta}(\mathbf{x}_{k}^{-}) + \lambda \cdot \epsilon, \text{ with } \epsilon \sim \mathcal{N}(0, 1)$$



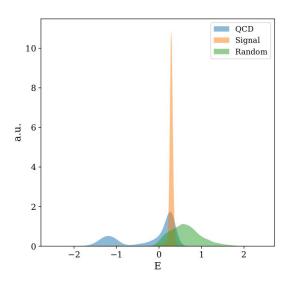
High-level observables

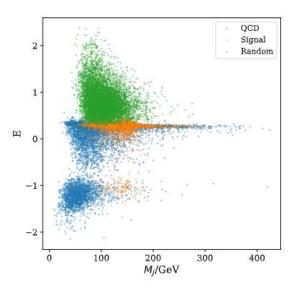


• Use a colder model (lower temperature ~ small MCMC step size) at test-time generation

Applications | Model-Independent New Physics Searches

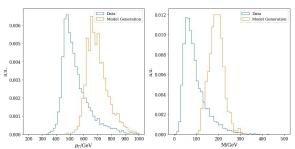
Method: model p(x) of QCD jets \rightarrow (thresholding p(x) < s: E(x) > e) \rightarrow detect non-QCD signal jets with higher energies



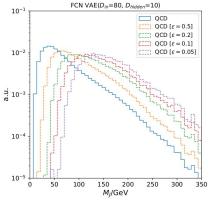


Applications | Model-Independent New Physics Searches

- Mass correlation in anomalous jet tagging
 - (Vatiational) Autoencoder (reconstruction error-based): jet constituent numbers, jet complexity
 - Jet Classifier: in-distribution jet masses
- Underlying reason for EBMs not presenting mass correlation: larger mass modes already be covered during the negative sampling process

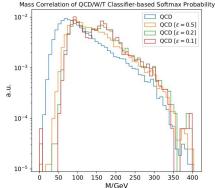


Here shows MCMC samples from an early stage model



Variational Autoencoder

[arXiv:2007.01850]



Multiclass SM Jet Classifier

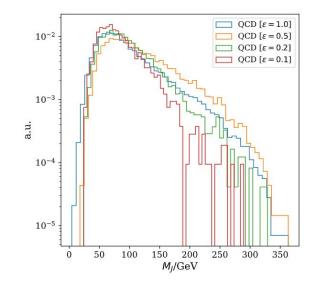
[arXiv:2201.07199]

Applications | Model-Independent New Physics Searches

- Free of mass correlation → readily effective in general resonance searches such as bump-hunt
- Without other auxiliary tasks (and trained on a relatively smaller dataset), the EBM already performs very well

 $(H\rightarrow hh\rightarrow bbbb)$

Model	AUC (Top)	AUC (OOD H)
DisCo-VAE ($\kappa = 1000$) (Cheng et al., 2023)	0.593	0.481
KL-OE-VAE (Cheng et al., 2023)	0.744	0.625
$EBM(E(\mathbf{x}))$	0.682 ± 0.004	0.770 ± 0.054



Hybrid Modelling: joint probability p(x, y)

$$\log p(\mathbf{x}, y) = \log p(\mathbf{x}) + \log p(y|\mathbf{x}).$$

Generative model Discriminative model

Event simulation Classifiers

Can be used for semi-supervised learning, OOD detection, etc.

Hybrid Modelling: joint probability p(x, y)

$$\log p(\mathbf{x}, y) = \log p(\mathbf{x}) + \log p(y|\mathbf{x}).$$

Generative model

Discriminative model

Event simulation

Classifiers

Re-interpret classifiers: see logits as negative energies $g(\mathbf{x})_y = -E(\mathbf{x}, y)$, to re-interpret $p(y|\mathbf{x}) = \operatorname{softmax}(g(\mathbf{x})_y)$

[Grathwohl et al, 2020]

$$p(extbf{x},y) = rac{\exp(g(extbf{x})_y)}{Z}$$

$$p(\mathbf{x}) = rac{\sum_{y} \exp(g(\mathbf{x})_y)}{Z}$$

$$egin{aligned} p(y|\mathbf{x}) &= rac{\exp(g(\mathbf{x})_y)}{\sum_y \exp(g(\mathbf{x})_y)} \ E(\mathbf{x}) &= -\log \sum_y \exp(g(\mathbf{x})_y) \end{aligned}$$

$$E(\mathbf{x}) = -\log \sum_{y} \exp(g(\mathbf{x})_{y})$$

Hybrid Modelling: joint probability p(x, y)

$$\log p(\mathbf{x}, y) = \log p(\mathbf{x}) + \kappa \log p(y|\mathbf{x})$$

Optimization:

Contrastive divergence with

Cross entropy

$$E(\mathbf{x}) = -\log \sum_{y} \exp(g(\mathbf{x})_{y})$$

Re-interpret classifiers: see logits as negative energies $g(\mathbf{x})_y = -E(\mathbf{x}, y)$, to re-interpret $p(y|\mathbf{x}) = \operatorname{softmax}(g(\mathbf{x})_y)$

$$p(extbf{x},y) = rac{\exp(g(extbf{x})_y)}{Z}$$

$$p(\mathbf{x}) = rac{\sum_{y} \exp(g(\mathbf{x})_y)}{Z}$$

$$p(y|\mathbf{x}) = rac{\exp(g(\mathbf{x})_y)}{\sum_y \exp(g(\mathbf{x})_y)} \ E(\mathbf{x}) = -\log \sum_y \exp(g(\mathbf{x})_y)$$

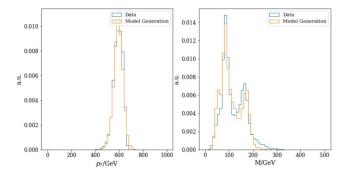
$$E(\mathbf{x}) = -\log \sum_{y} \exp(g(\mathbf{x})_{y})$$

Hybrid Modelling: joint probability p(x, y)

$$\log p(\mathbf{x}, y) = \log p(\mathbf{x}) + \kappa \log p(y|\mathbf{x})$$

Generative model

Event simulation



Hybrid Modelling: joint probability p(x, y)

$$\log p(\mathbf{x}, y) = \log p(\mathbf{x}) + \kappa \log p(y|\mathbf{x})$$

Model	Top-1 Accuracy	Top-2 Accuracy
EBM-CLF ($\kappa = 1.0$)	0.848	0.969
ParticleNet	0.871	0.976

Discriminative model

Classifiers

EBM-CLF trained on a smaller dataset is already performing classification tasks on par with dedicated jet classifier.

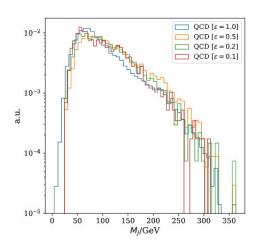
OOD detection: QCD/Signal

- Now we have a generative model and a discriminative model at the same time

 - \circ Softmax probability p(y=0|x)
 - \circ Logit of the classifier $g(x) \sim E(x, y)$
- Again E(x) displays mass decorrelation
 - However, anomaly scores from the discriminative part usually remain mass correlated

 $(H\rightarrow hh\rightarrow bbbb)$

Model	AUC (Top) AUC (OOD H)	
DisCo-VAE ($\kappa = 1000$) (Cheng et al., 2023)	0.593	0.481
KL-OE-VAE (Cheng et al., 2023)	0.744	0.625
EBM-CLF $(E(\mathbf{x}))$	_	0.817
EBM-CLF $(\mathbf{g}(\mathbf{x})_y)$	0.922	0.877
EBM-CLF $(p(y \mathbf{x}))$	0.929	0.870



Summary

- Energy-based probabilistic modelling framework for High Energy Physics events
- Improved training stability (upper-bounded KL-improved training)
- Excellent generation quality with the energy function estimated via a self-attention-based transformer
- Elegantly adapted to different application use-cases:
 - Parameterized event simulation
 - Anomaly detection
 - Classification augmented with density estimation
- Paves for more advanced multi-tasking deep learning models for HEP

Thanks!