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Introduction to Energy-Based Models

● Probabilistic modeling:
○ x represents any high-dimensional data point
○ Model the probability of each occurrence p(x)

● Energy-based models (EBMs)
○ Popular generative modeling method before deep learning (e.g., Restricted Boltzmann 

Machine)
○ Inspired by Gibbs distribution in statistical physics
○ Flexibility in the energy function: any scalar could serve as the energy, since exp(-E) gives a 

non-negative un-normalized probability
○ Bottom-up approach for generation (does not need a generator or a well-designed 

reconstruction error)
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Introduction to Energy-Based Models

● x: the state of a system or an input configuration
● E(x): energy function, can be parameterized by modern deep neural networks
● Z: partition function or normalizing constant
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Training EBMs | Contrastive Divergence

Training of EBMs can be achieved with Maximum Likelihood Estimation.

Usually takes the form of contrasting energies of positive samples and negative samples 
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[Figure from the Deep Learning Book by Goodfellow et al.]

intractable

Estimated with Markov Chain Monte 
Carlo



Gradient-based MCMC

Negative phase: MCMC samples q(x) to estimate the model distribution p(x)

Langevin Dynamics (Welling & Teh, 2011) initializing from random noises. At each MCMC 
step:
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Kullback-Leibler Divergence-Improved Training (Optional)

KL-improved training (Du et al, 2020): include the KL divergence between the model 
distribution and the MCMC estimation
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Kullback-Leibler Divergence-Improved Training (Optional)

KL-improved training (Du et al, 2020): include the KL divergence between the model 
distribution and the MCMC estimation
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Entropy term, difficult to estimate



Kullback-Leibler Divergence-Improved Training (Optional)

KL-improved training (Du et al, 2020): include the KL divergence between the model 
distribution and the MCMC estimation

In our work, we ignore the entropy term and thus optimize the upper-bound of the KL term
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EBMs for High Energy Physics: A Framework 

● Modelling high-dimensional data distribution directly 
● Physics inductive biases or incorporate sophisticated architectures
● Multiple use-cases
● High performance and less spurious correlation
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Setup

● We work on simulated jets produced from 13 TeV 
LHC pp collision.

● Inputs from particle-flow objects:
● p(x): train on large-radius (R=1.0) QCD jets or 

QCD/W/Top jets (for hybrid modelling)
● Note: fewer MCMC steps (24) in training, 

more steps in validation  
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● Energy function: maps 
high-dimensional inputs to a scalar (X, 
y) -> E

● Flexibility in the energy function: can 
be modelling with sophisticated 
architectures (here we use a 
transformer) without bothering 
designing an explicit generation or 
effective reconstruction error (as in 
VAEs)

● Low-level inputs with or w/o labels
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Schematic



Applications | Generative Modelling

Once we have a well-trained energy function E(x), we have

● Implicit generation:
○ Sample from noises → Gradient-based Langevin Dynamics →realistic samples

● Flexibility at test-time generation, as long as the energy function is well trained, we can 
use different sampling strategies (step size, dynamic sampling, other sampling 
strategies, etc.).
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Applications | Generative Modelling

Random Noises → Gradient-based MCMC → Data distribution 

14● Use a colder model (lower temperature ~ small MCMC step size) at test-time generation 
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Applications | Model-Independent New Physics Searches

Method: model p(x) of QCD jets → (thresholding p(x) < s: E(x) > e) →  detect non-QCD 
signal jets with higher energies
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Applications | Model-Independent New Physics Searches

● Mass correlation in anomalous jet tagging
○ (Vatiational) Autoencoder (reconstruction 

error-based):  jet constituent numbers, jet 
complexity

○ Jet Classifier: in-distribution jet masses
● Underlying reason for EBMs not presenting 

mass correlation: larger mass modes already be 
covered during the negative sampling process

16

[arXiv:2007.01850]

[arXiv:2201.07199]
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Here shows MCMC samples from an early stage model



Applications | Model-Independent New Physics Searches

● Free of mass correlation → readily 
effective in general resonance 
searches such as bump-hunt

● Without other auxiliary tasks (and 
trained on a relatively smaller 
dataset), the EBM already  performs 
very well

17

(H→hh→bbbb)



Applications | Classification Augmented with Density Estimation

Hybrid Modelling: joint probability p(x, y)

Can be used for semi-supervised learning, OOD detection, etc.
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Applications | Classification Augmented with Density Estimation

Hybrid Modelling: joint probability p(x, y)
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Re-interpret classifiers: see logits as negative energies                           , to re-interpret 
[Grathwohl et al, 2020]



Applications | Classification Augmented with Density Estimation

Hybrid Modelling: joint probability p(x, y)
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Re-interpret classifiers: see logits as negative energies                           , to re-interpret 

Optimization: Cross entropyContrastive divergence with

[Grathwohl et al, 2020]



Applications | Classification Augmented with Density Estimation

Hybrid Modelling: joint probability p(x, y)
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Applications | Classification Augmented with Density Estimation

Hybrid Modelling: joint probability p(x, y)
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Generative model Discriminative model

 ClassifiersEvent simulation

EBM-CLF trained on a smaller dataset is already performing classification tasks on par with dedicated 
jet classifier.



Applications | Classification Augmented with Density Estimation

OOD detection: QCD/Signal

● Now we have a generative 
model and a discriminative 
model at the same time
○ p(x) → E(x)
○ Softmax probability p(y=0|x)
○ Logit of the classifier g(x) ~ E(x, y)

● Again E(x) displays mass 
decorrelation
○ However, anomaly scores from the 

discriminative part usually remain 
mass correlated
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Summary

● Energy-based probabilistic modelling framework for High Energy Physics events
● Improved training stability (upper-bounded KL-improved training)
● Excellent generation quality with the energy function estimated via a 

self-attention-based transformer
● Elegantly adapted to different application use-cases:

○ Parameterized event simulation
○ Anomaly detection
○ Classification augmented with density estimation

● Paves for more advanced multi-tasking deep learning models for HEP
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Thanks!
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