

irfu

R&D for Picosecond Timing with Novel Micromegas Detectors

Alexandra Kallitsopoulou (<u>alexandra.kallitsopoulou@cea.fr</u>) Commissariat à l'énergie atomique et aux énergies alternatives (CEA),

Institut de recherche sur les lois fondamentales de l'univers (Irfu), Université Paris-Saclay, France

May 2023, Paris, France

Motivation

The motivation is to achieve timing with a picosecond level accuracy. The idea arises from the need for high-rate experiments to deal with pile-up phenomena which makes event reconstruction more complex. The new 4D tracking era can include timing as an extra parameter for triggering or event selection.

Detector Concept

The PICOSEC Micromegas Detector has the potential for precise timing at the picosecond level [1].

3. Waveform Analysis

Time relative to a reference device with resolution < 5ps

II. Standard Signal Processing technique

- **Constant Fraction Discrimination** (CFD) at 20% of the peak maximum
- Adjust a sigmoid function on the leading edge of the peak waveform

2. Detector Testing

Pulsed Laser Beam (IRAMIS/CEA)

- Detector response on controllable Micromegas. number of photoelectrons laser beam
- Independent measurements from light attenuator photocathode material

II. Muon Beam (CERN/SPS H4 Beam Line)

Sample Time (n Subtract SAT values of PICOSEC • from the reference device **Timing Resolution:** 500 $24.0 \pm 0.3 \, \text{ps}$ 300 200 100 -60 -40 -20 0 20 40 60 80 \AT (ps) Timing Resolution \rightarrow RMS of SAT distribution

4. The Future

Scalable detector

Single pad (\emptyset 1cm) \rightarrow 7-pad (\emptyset 1cm) \rightarrow 100-pad (\Box 1cm)

Robustness & Efficiency

- Robust photocathode materials
- Resistive Micromegas prototypes

Pixelated Detector II.

Scalability of electronics (digitizers & custom-made amplifiers)

III. Applications

• Neutrino physics – ENUBET Experiment [2] Detect individual particles (leptons) (as T0 layer) Detect EM showers (embed in EM calorimeter) \bullet

- Energy 80-150 GeV
- Multi-photoelectron response
- High-rate environment

III. Electron Beam (CERN /SPS H4 Beam Line)

Energy 30-80 GeV

PICOSEC MM VETO scintillators Absorber Pb (2.5cm) Frigger Scintillator MCP time reference device

[1] J.Bortfeldt, et al., "PICOSEC: Charged particle timing at sub-25 picosecond precision with a Micromegas based detector", https://doi.org/10.1016/j.nima.2018.04.033 [2] F. Terranova*, et.al "The ENUBET experiment ", https://doi.org/10.22323/1.390.0182 [3] A.Kallitsopoulou -Master Theses- "Development of a Simulation model and Precise Timing Techniques for PICOSEC-Micromegas Detectors" https://arxiv.org/pdf/2112.14113.pdf