it it PICOSEC Micromegas univers

PARIS-SACLAY

www.cea.fr

DE LA RECHERCHE À L'INDUSTRIE

PHENIICS FEST 2023

Thursday, 11th May 2023

R&D for Picosecond Timing with Novel Micromegas

Detectors

Alexandra Kallitsopoulou PhD Student CEA, IRFU, Université Paris – Saclay

Outline

What is our motivation?

The PICOSEC Micromegas Technology

Detector Testing

PICOSEC Signal Processing

Fresh Results

Concluding Remarks

PICOSEC Micromegas

What is our motivation?

Timing with a few 10's of Picosecond

- High Luminosity LHC:
- On average 140 p-p interactions per bunch crossing
- Necessary timing resolution ~20ps
- Clean reconstruction of the events
- Reduction of mixing different events due to pile-up
- 3D tracking is not enough for association with the correct vertex PID techniques: Alternatives to RICH methods, J. Vavra, accepted in NIMA 876, 2017, https://dx.doi.org/10.1016/j.nima.2017.02.075 Gas
- Timing can be an extra parameter

Large area coverage

Solid State OR Gaseous Detectors

Solid state detectors

- Avalanche PhotoDiodes: (σ_t ~ 20 ps for single cells)
- Low Gain Avalanche Diodes ($\sigma_t \sim 30 \text{ ps}$)
- HV/HR CMOS ($\sigma_t \sim 80 \text{ ps}$)

Gaseous detectors

- Resistive Plate Chambers (RPCs): ($\sigma_t \sim 30 \text{ ps}$)
- Micro-Pattern Gaseous Detectors (σ_t ~ 1 ns)

<u>BUT</u>

- Extra detector requirements:
- Large area coverage
- Resistance to aging effects
- Multi-pad readout tracking

Development of new Instrumentation Technology

Get to know with PICOSEC MM Detector

Y. Giomataris, P. Rebourgeard, J.P. Robert and G. Charpak, "Micromegas: A high-granularity position sensitive gaseous detector for high particle-flux environments", Nuc. Instrum. Meth. A 376 (1996) 29

J.Bortfeldt, et al., "PICOSEC: Charged particle timing at sub-25 picosecond precision with a Micromegas based detector", https://doi.org/10.1016/j.nima.2018.04.033

- Limitations of the Micromegas Timing Potential
 - Stochastic nature of ionization
 - Randomness of last ionization
 - Time jitter of a few ns
- The PICOSEC Concept
 - Timing with tens of picosecond precision
- Modifications in MM Geometry
 - Smaller Drift Gap (up to 200µm)
 - Elimination of the stochastic nature of ionization
 - Higher applied Drift Voltage \rightarrow Pre-avalanche
 - Additional Components in MM geometry
 - Cherenkov radiator +
 - Photocathode (CsI, B4C, Diamond, DLC)
 Prompt photoelectrons

Detector Prototype Evolution

- Single Pad Prototypes (ø 1cm)
 - Proof of concept
 - Resistive and non-resistive prototypes

- Photocathodes & Crystals:
 - MgF2 / Sapphire crystal +
 - Metallic (Cr, Al)
 - Metallic substrate + Csl
 - Metallic substrate + polycrystalline diamond
 - DLC
 - B4C, Metallic substrate +B4C
- Gas: 80% Ne 10% CF₄-10%C₂H₆

- Multi-Pad Prototypes
 - Hexagonal pads ø 1cm
 - Resistive and non resistive prototypes

Detector Testing

Detector Testing

• Pulsed 120fs UV Laser (IRAMIS/CEA)

- Detector response on controllable
 number of photoelectrons
- Timing single photoelectrons
- Understanding the physics
 dynamics on the detector
- Independent measurements of the photocathode material

Timing resolution improves with higher drift field & smaller gap(<50ps for 120µm for single pe)

J.Borteldt, et al. "PICOSEC: Charged particle timing at sub-25 picosecond precision with a Micromegas based detector", Nuc. Instrum. Meth. A (2021)<u>https://doi.org/10.1016/j.nima.2018.04.033</u>

Detector Testing – Particle Beams

- Particle Beams @ CERN SPS H4 Beamline
 - Muons 80-150 GeV
 - Photocathode studies (robustness and efficiency)

- The Setup
- Use GEMs for tracking
- Use MCP PMTs as timing reference devices and for triggering
- Electronics: CIVIDEC preamp. / Customade electronics + LeCroy scopes

J.Borteldt, et al. "PICOSEC: Charged particle timing at sub-25 picosecond precision with a Micromegas based detector", Nuc. Instrum. Meth. A (2021)<u>https://doi.org/10.1016/j.nima.2018.04.033</u>

Detector Testing – Particle Beams

- Particle Beams @ CERN SPS H4 Beamline
 - Electrons 30-80 GeV

Signal Processing for Timing

Standard Waveform Analysis

- The Standard CDF Technique
 - Adjust a curve to the experimental data
 - Fitting the leading edge of the waveform with a logistic function $f(x; p_0, p_1, p_2, p_3) = V(t) = p_3 + \frac{p_0}{1 + e^{-(x-p_1)p_2}}$
 - Timing at 20% of peak amplitude for all signals (SAT – Signal Arrival Time)
 - Subtract the PICOSEC signal from the reference signal
 - Create calibration curves
 - Correct for dynamical errors
 - Timing resotution ~ RMS of the SAT distribution

Correcting for Dynamical Errors

- Constant Threshold Timing suffers from Time Walk Effect
 - Realistic case
 - Higher pulses arrive earlier
 - Dependence between timing and amplitude size
 - The effect can be corrected by the offline analysis

Walter Blum, Werner Riegler, and Luigi Rolandi. Particle Detection with Drift Chambers. Springer-Verlag Berlin Heidelberg, 2008

- In principle, CFD method DOES NOT suffer from time walk effects
 - However we observe dependence on signal amplitude
 - Its origin has nothing to do with offline analysis procedure BUT
 - Results from the microscopic behavior of the avalanche
 - Photoelectrons drift with different velocities than the total avalanche

• Calibration curve
$$g(x; a, b, w) = a + \frac{b}{w}$$

Corrected SAT = SAT -
$$\frac{a}{(Pulse Amplitude)^b} + c$$

PHENIICS Fest 2023 - 11-12/05/2023

Alternative Timing Techniques

- Constant Threshold
 - SAT defined @ 100mV
 - Parameterization using peak amplitude

- Charge above Threshold
 - Constant threshold+ Using multiple higher thresholds
 - Alternative method of peak size estimation

Artificial Neural Networks

- SAT defined @ 100mV
- Using the digitized wavefor to feed an ANN

- Different resistivity values (10 MO, 200kO)
- Different resistivity layer architecture (capacitive sharing)
- Voltage scans \rightarrow Stable operation voltage at a high rate
- Timing runs on individual pads
- Long scan for uniformity map on amplitude and timing
- Signal Sharing
- Tilted detector relative to beam direction in 45 and 35 degrees

x-strips (mm)

strips (mm)

Concluding Remarks

Ongoing Development

- <u>Robustness & Efficiency (LIST/USTC/CERN)</u>
 - Research on various photocathode materials (Replace CsI with B4C, DLC,...)
 - Resistive prototypes

PHENIICS Fest 2023 – 11-12/05/2023

calorimeter

•

Muon monitoring

• As a photodetector

neutrino detector

for T0 tagging at the

In the end it's all a matter of timing

Thank you!

AUTH (Greece) K. Kordas, C. Lampoudis¹, I. Maniatis⁶, I. Manthos⁵, K. Paraschou, D. Sampsonidis, A. Tsiamis¹, S. E. Tzamarias

CEA - IRFU, LIST, LIDYL (France) S. Aune, D. Desforge, I. Giomataris, T. Gustavsson, F.J. Iguaz, A. Kallitsopoulou, M. Kebbiri, P. Legou, T. Papaevangelou, M. Pomorski, E. Scorsonne, L. Sohl

CERN (Switzerland) J. Bortfeldt², F. Brunbauer, C. David, M. Lupberger², M. Lisowska, H. Müller³, E. Oliveri, F. Resnati, L. Ropelewski, L. Scharenberg, T. Schneider, A. Utrobicic, M. van Stenis, R. Veenhof⁴, S. White

HIP (Finland) F. García

LIP (Portugal) M. Gallinaro

NCSR Demokritos, (Greece) G. Fanourakis

NTUA (Greece) Y. Tsipolitis

USTC (Hefei, China) J. Liu, B. Qi, X. Wang, Z. Zhang, Y. Zhou

10 institutes from 6 countries

44 collaborators

(1) Also Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki 57001, Greece.

(2) Now at University of Bonn, D-53115 Bonn, Germany.

(3) Also University of Bonn, D-53115 Bonn, Germany

(4) Also at National Research Nuclear University MEPhI, Kashirskoe Highway 31, Moscow, Russia; and Department of Physics, Uluda University, 16059 Bursa, Turke

(5) Now at University of Birmingham

alexandra.kallitsopoulou@cea.fr (

(6) Now at CERN

PHENIICS Fest 2023 - 11-12/05/2023

Backup-slides

Detector Prototype Evolution

UNIVERSITĖ PARIS-SACLAY

- Single Pad Prototypes / Microbulk (ø 1cm)
 - Proof of concept
 - Resistive and non resistive prototy

- Multi-Pad Prototypes
 - Hexagonal pads ø 1cm
 - Resistive and non resistive protot

- Photocathodes:
 - MoF2 / Sapphire crystal +

te + Csl te + polycrystalline diamond

ıbstrate +B4C

```
\mathrm{CF_4}\text{--}10\%\mathrm{C_2H_6}
```


Prototype Scalability

- Tree possible approaches for modular prototypes with 10x10cm² active zone :
- Rigid, ceramic-core PCB for the MM readout
 - Crystal coupled to the PCB with spacers
 - MgF2 crystal & MM board will be decoupled from the chamber
 - Second PCB will be used for signals towards the amplifiers

Drawback: Increased detector material \rightarrow timing layers

- Pillars on MM bulk readout
- Pressing against the marble table
- Backwards with a glued honeycomb layer

- Advantage:
 - Low material budget on the detector
 - Allow the fabrication of large flat boards

• Longer pillars MM module:

Pressed against Cherenkov radiator

Physics

- Synchronous Cherenkov photons
- Synchronous Photoelectrons from the photocathode
- Photoelectron conversion(Townset Coeff)
- Preamplification Avalanche
- Transport through the mesh
- Amplification Avalanches

Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment Volume 993, 21 March 2021, 165049

A RETURNED A RETURNED BERNARD BERNAD

universite

PARIS-SACLAY

Modeling the timing characteristics of the PICOSEC Micromegas detector

J. Bortfeldt ^{b, 1}, F. Brunbauer ^{b, 1}, C. David ^{b, 1}, D. Desforge ^{a, 1}, G. Fanourakis ^{c, 1}, M. Gallinaro ^{g, 1}, F. García ^{k, 1}, I. Giomataris ^{a, 1}, T. Gustavsson ^{1, 1}, F.J. Iguaz ^{a, 1}, M. Kebbiri ^{a, 1}, K. Kordas ^{d, 1}, C. Lampoudis ^{d, 1}, P. Legou ^{a, 1}, M. Lisowska ^{b, 1}, J. Liu ^{c, 1}, M. Lupberger ^{b, 1, 2}, O. Maillard ^{a, 1}, I. Manthos ^{d, 1}, H. Müller ^{b, 1}, V. Niaouris ^{d, 1}, E. Oliveri ^{b, 1}, T. Papaevangelou ^{a, 1}, K. Paraschou ^{d, 1}, M. Pomorski ^{j, 1}, B. Qi ^{c, 1}, F. Resnati ^{b, 1}, L. Ropelewski ^{b, 1}, D. Sampsonidis ^{d, 1}, L. Scharenberg ^{b, 1}, T. Schneider ^{b, 1}, L. Sohl ^{a, 1}, M. van Stenis ^{b, 1}, Y. Tsipolitis ^{f, 1}, S.E. Tzamarias ^{d, Q, 1}⊠, A. Utrobicic ^{b, 1}, R. Veenhof ^{h, 1, 3}, X. Wang ^{c, 1}, S. White ^{b, 1}, Z. Zhang ^{c, 1}, Y. Zhou ^{c, 1}

•

Robustness and Efficiency

alexandra.kallitsopoulou@cea.fr

PHENIICS Fest 2023 - 11-12/05/2023

Robustness & Efficiency

In the research of photocathode materials ٠

- Standard photocathode: 18nm Csl +3nm Cr ~ 10pe/mip •
- Csl sensitive to humidity/ion backflow & sparks •
- New materials under test (B4C, DLC, Diamond, •

•	Results	0.012	ļ	I			 B4 B4 B4 B4 D1 	HC 4 nr HC 8 nr HC 16 r HC 32 r LC 3 nr	n n Im Im	
		0.000	1	Į	Ŧ	Ŧ	ŧ	•	•	Ŧ
		0.004			Ŧ	÷	٠	•	•	Ŧ
		0.002	Ē	Ŧ	Ţ					
		Eur								
		125	130 135	140	145	150	155	160	165	170
				1	Wave	lengh	it (nm)		

B4C 5 times higher q.e. compared to DLC!!

alexandra.kallitsopoulou@cea.fr

	Cr +18 nm Csl	10.4 ± 0.4		
	20 nm Cr	0.66 ± 0.13	Photocathode	N _{ph.e.} / muon
	6 nm Al	1.69 ± 0.01	Csl + LiF	<1
	10 nm Al	2.20 ± 0.05	Csl + MgF ₂	3.55 ± 0.08
175	Cr + 5nm diamond	1.85		

Photocathode N_{ph.e.} / muon

DLC thickness	N _{ph.e.} / muon
2.5nm	3.7
5nm	3.4
7.5nm	2.2
10nm	1.7

Florian M. Brunbauer on https://indico.cern.ch/event/852331/contribut ions/4611230/attachments/2367111/404350 6/Picosec-TPCSymposium2021.pdf

Pixelated PICOSEC Detector

- Towards a large scale detector we need to develop appropriate frond-end & back-end electronics ~ 100channels
- Discrete current preamplifiers
 - Low noise RMS < 1mV
 - High gain >30dB
 - Bandwidth > 1GHz

- Research on possible usage of customade charge-sensitive amplifiers (Hans Muller/ CERN)
- Research on different digitization ways → SAMPIC digitizer (IRFU /CEA)

Philippe Legou

(CEA/Saclay)

PHENIICS Fest 2023 – 11-12/05/2023

- Recent development @ CERN
 - 10 ch amplifier boards

PICOSEC Mircomegas production

Anode board production

- a) Production of the ceramic substrate: embedding ceramics into FR4
 - Polishing to reach planarity below 15 um ightarrow Planarity measurements
- b) Epoxy coating and copper deposition (55 μ m) on the top and bottom side of the board.
 - Polishing \rightarrow Planarity measurements.
- c) Copper etching.
- d) Epoxy fill between the copper traces/readout pads
 - Polishing \rightarrow planarity measurements \rightarrow Mirror polishing \rightarrow Ni/Au plating
- Additional improvements:
 - Thicker Cu (70 μm) to have margin for correction with manual polishing if needed in the later steps.
 - **Residual stress reduction methods** before final polishing to ensure that ceramic is stress free and minimize the possibility of the board wrapping during long time period.
 - **Partial cutting of the board** from the frame just before bulking to reduce the possibility of board deformation during temperature cycling.
 - **Considering using FR4 material with higher T**_g to minimize the possibility of deformations due to heating processes in production

@ CERN MPT workshop

b

Spring loaded pins side 15

More info on the contribution by **Antonija Utrobicic** at the VCI2022 conference:

<u>https://indico.cern.ch/event/1044975/contributions/4663685/</u> PHENIICS Fest 2023 – 11-12/05/2023

Mesh side