

Measurement of Nuclear Decay Data for Beta Decay and Electron Capture using Metallic Magnetic Calorimeters

Arshjot Kaur

Directeur : Martin Loidl

Encadrant : Matias Rodrigues

Motivation for the subject

Applications

- Ionizing radiation metrology
- Nuclear Industry
- Fundamental Research
- Medical care etc.

- Calorimetric energy spectrum
- European "EMPIR" projects: MetroBeta (2016 2019) MetroMMC (2018-2021) PrimA-LTD (2021-2024)

Metallic Magnetic Calorimeters (MMCs)

3

Schematic view of the MMC read out by a DC-SQUID

- Flux transformer: closed superconducting circuit formed by a readout coil and the input coil of a current sensor SQUID
- **Superconducting readout coil:** niobium thin film structure in a meander shape.
- **Thermometer:** thin (few µm) film of Au:Er or Ag:Er
- easy to scale, to match $C_{\text{thermometer}}$ to C_{absorber}

Preparation for the experiment

Optimization of detector geometry

Monte Carlo simulations (PENELOPE) to calculate the detection efficiency for optimizing absorber-source geometry.

Simulations for minimal required absorber thickness and to calculate $C_{absorber.}$

Simulated 4π source absorber geometry.

Source Preparation techniques

• Manual drop deposition:

• Micro-drop dispenser:

Electrodeposition

- Deposition of droplet volumes
 ≥ 50 pL
- Volume accuracy $\pm 2\%$
- Placement accuracy ~ $100 \,\mu m$

7

Fractional Electron Capture Probabilities

between.

•

Electron capture

- Electron capture on K, L, M, N... shells; probabilities P_K, P_L, P_M, P_N...
 - Atomic rearrangement → Binding energy of the captured electron liberated in a cascade of X-ray and/or Auger electron emissions.
- Integrate sum energy of the cascade \rightarrow line spectrum with one single line per shell.

Measurement of fractional electron capture probabilities for ¹²⁵I

- $^{125}_{53}I + ^{0}_{-1}e \rightarrow ^{125}_{52}Te + \bigvee_{e} \longrightarrow escapes$
- Daughter nucleus in excited state \rightarrow gamma deexcitation
- 4π detection geometry \rightarrow integration of Auger electrons/X-rays / gamma energy \rightarrow one line for each electron shell in energy spectrum

Decay Scheme I-125

The $AgNO_3$ solution containing I-125 solution was drop deposited on silver foil resulting in the formation of AgI.

Autoradiographic image of source having 19.2 kBq activity.

Detector Assembling

Complete absorber (after diffusion welding) on M size MMC chip i.e. optimized for $C_{abs} = 0.11 \text{ nJ/K} @ 20 \text{ mK}.$

Source placed on one half of absorber.

Detector characteristics:

- Embedded source activity ~ 4 Bq
- Gold absorber dimensions= 620×620×149 μm³
- Source dimensions= $260 \times 260 \times 6 \ \mu m^3$

Two absorber halves with the source in the middle.

Detector Holder with complete MMC chip.

Cez

Total emission spectrum of ¹²⁵**I**

Energy (keV)

Fractional EC ratios	Experimental	Beta Shape	Literature
$P_{\rm L}/P_{\rm K}$	0.2388 (26)	0.19470 (29)	0.23(0.03)
$P_{\rm M}/P_{\rm K}$	0.0570 (16)	0.04467 (22)	-
$P_{\rm N}/P_{\rm K}$	0.0157 (21)	0.01012 (10)	-

11

Beta Spectrometry with MMCs

Basic setup

Additional external X-ray / gamma source

→ Energy calibration
→ Check linearity

Measurement of beta spectrum of ¹⁴C

- **Source preparation-** drop deposition from a carrier-free solution on 25 μm thick Au foil.
- ¹⁴C bound in an organic molecule (1,3- thiazole)
 - volatile
 - no diffusion welding; foil only folded over

Drop deposition on the 25 μ m thick Au foil.

After drying, barely visible deposit, means thin, homogeneous deposit.

Decay scheme ¹⁴C

Detector characteristics

Detector setup

Calibration Source - ⁵⁷Co (2.5 kBq)

A. Kaur -- PHENIICS Fest 2023

Beta spectrum of ¹⁴C

- 2022 measurement: spectral artefact at low *E* due to bad detector performance (2019) disappeared.
- Spectral Resolution (K $_{\alpha}$ peak) (2022 measurement) = 155 eV (FWHM) (2019 measurement) = 200 eV (FWHM)
- The discrete lines are X-ray and gamma ray lines from the external energy calibration source.
- External energy calibration source (2022 measurement) ⁵⁷Co (2019 measurement) - ⁵⁵Fe + ¹⁰⁹Cd

Perspectives

• Upgraded spectrometer setup for measuring multiple detectors simultaneously to get statistics of the order 10⁸ counts.

Thank you for your attention. Questions?

Email- arshjot.kaur@cea.fr

LNHB-MA, CEA Paris-Saclay