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LISA: Laser Interferometer Space Antenna

m 3 space-craft constellation separated by 2.5 million km

20°
T’\,——fﬁ,,,"

: ’; /2.5 x 100 km

[

m Emitted laser ~ 2 W — received
laser~ 300 pW

m 6 links response

m The combination of links allows for
multiple interferometers
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Motivation

= SMBHB sources with high SNR — Test General Relativity
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credit: LISA consortium proposal 20172

2P, AMARO-SEOANE et al., arXiv e-prints, arXiv:1702.00786 (fév. 2017).
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Compact Object Binary Waveform

h(t,E,@,(p) = Z hlm(taE) —ZYlm(07§0)

m
Inspiral Merger Ringdown
e Y = —
A s =
— 22
— (@D
— (33)
— (32
— (44)
— (43)

Post-Newtonian . .. Perturbation Theory
e Numerical Relativity
vie (NR)

Chantal Pitte CEA-IRFU-DPhP



LISA Detectability of modes Results Conclusions
oo [e]e] 1o} oo [¢]

Are we able to disentangle modes?

3

Lisabeta software® — Introduce LISA response to the waveform

= IMR (Inspiral-Merger-Ringdown) Phenomenological waveforms in
frequency domain

m Pass the waveform through LISA — LISA response can be integrated as a
transfer function in Fourier’s domain for each harmonic

,H{m (fva@) = 7I£1 (f,@) hlm(fvE)

where T} (f,©) includes:

m Orbits of the constellation
m Delays with respect to SSB’s frame and to LISA’s CoM frame
m TDI (Time delay interferometry)

Signal:

= Inject a signal with PhenomtM? (IMR waveform) with 6 harmonics:
(Ilm) = (2, 2), (2, 1), (3, 3), (8, 2), (4, 4), (4, 3)

® Random source with a SNR ~ 748

3S. MARSAT et al., Physical Review D 103 (2021).
4L. LONDON et al., Physical Review Letters 120 (2018).
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Signal and Bayesian analysis

Compare different models M;(l,m) with different number of modes with a
Bayesian analysis.
= Dynesty® : nested sampler — estimate model evidence
Z:
Z= / L(0)7(0)dd — Bayes factor: B= ="
e Zj
15 TDI signal

1025 = = = !
107 10 10° 107 10

Frequency (Hz)

5J. S. SPEAGLE, Monthly Notices of the Royal Astronomical Society 493, 3132-3158 (avr. 2020).




LISA Detectability of modes

(e]e] [e]e]e]e]

Results with noise

Results Conclusions
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Parameter estimation with different models M;(l, m)

2,2 M; 2,2,3.3),4 9,21 M,
(2. 2), (3, 3) M, || 2.2, (3. 3), 4 4,2 1), 3, 2 Me
(2,2),(3,3),4,4) | M3 (2,2),(3,3),(4,4),(2,1),(3,2),4,3) | Mg
Mzi: 1 mode )
M:: 3 modes Parameter ‘ True value I\}ist;mate'd value
: 4 modes 6 in noisy data
: x:: 6 modes log Me (M) 5.93302 5.93304tg:ggg?g
S q 2.759 2.759+0.013
= X1 -0.549 054815071
" s = X2 0.232 0.231+0.0%7
2

Bayes factor — log B

log(Z1/Z6) | 6873
IOg[Zz/ZG] -1015
log(Zg/ZGJ -259
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Modelling error

Using an incorrect
template results in a

systematic modelling 10°] Me =
error (A#;). If the 10"
statistical error 0
(o9, SNR ) is g E 107"
smaller than the g o
modelling error, the ! ‘
bias in the parameters \ 0’ _ ﬁ:tzg
becomes relevant. *® &3 § g S¥ A¥ 8 £ — nemy
SNR SNR . newy
10! X1 X2 AB(Ms)
T6,; Iy ! 10° ° -
OH
AG; = zjr (G 10 -
& &
10 7 |
OH OH S \ 10
Ty = ( ) , where 0
00;° 96; S8 vs e E %5 & 2 E
a b* SNR SNR
(alb) :4Re/ Mdf
0 Sn (f)
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Conclusions

m We are able to discriminate waveform models and therefore their modes
with a Bayesian analysis.

m We see how the use of an incorrect template of modes causes bias in the
source parameter estimation.

m This bias can lead to misinterpretation in GR tests.

m Given a certain SNR we can constrain the number of modes needed to
estimate the parameters without significant bias, in the case of a
waveform with 6 modes.

Next steps:

= Repeat this analysis using only the ringdown to study sensitivity to the
remnant’s quasi-normal modes .
= Issues:

= start of the ringdown

® connection of the amplitude with the progenitors
= mixing of the modes

= non-linearity

= Addition of glitches

Chantal Pitte CEA-IRFU-DPhP
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Conclusions

m We are able to discriminate waveform models and therefore their modes
with a Bayesian analysis.

m We see how the use of an incorrect template of modes causes bias in the
source parameter estimation.

m This bias can lead to misinterpretation in GR tests.

m Given a certain SNR we can constrain the number of modes needed to
estimate the parameters without significant bias, in the case of a
waveform with 6 modes.

Next steps:

= Repeat this analysis using only the ringdown to study sensitivity to the
remnant’s quasi-normal modes .
= Issues:

start of the ringdown
connection of the amplitude with the progenitors

mixing of the modes K
non-linearity Than

= Addition of glitches
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Testing GR consistency
[ Jelele]ole}

Ringdown model

Emission of GW’s from a perturbed BH as a sum of QNM’s:
Rimn(£.5) = A (2)e™ "7 cos(wimnt + $umn ()

h(t,Z,0,p) = Z Rimn (6,E) 72Slnm(j‘:’lmn79:4/’)

Imn
Wimn =wWimn+  U/Timn > O = Oymn (M, J)
—~— ~—~— N——
complex freq freq damping time
1e-17
1.5
h — (2,2,0)
\ — 21,0
— (3,3,0)
— @40
--- all modes

h strain

750 1000 1250 1500 1750 2000
time (s)

Mass =5 x 10® Mg, D. = 1 Gpc
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Testing GR

Comparing final mass and spin derived from parameters from models M; with
ringdown parameters from &y, (M, J)

0.28 —
@,
0.27
026 Derived My, ar with ?(Ml)
ar Derived My, ar with 6(M3)
0.25

o Derived My, ar with é(Ms)
0.24 +  True value | &

7

0231 g

2.14 2.16 2.18 2.20 2.22
Mr(Mo) 16
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Testing No-hair theorem with QNM

Knowing values of &;,;, one can find the mass and spin through a

parametrization®:7 :
Mo = fi + (1 )" Wi R = wimn (1 + 6wimn)
Q=q1+ QZ(l _j)q3 T[’,:L,ngR = 7'lmn(l + 67—lmn)
Qunn = WlmnTlmn/2
(10°My, 0.26) (10°M,,026)
1010
1.005
5
=
1.000 | =
g
2
0995,
09924 025 026 027 028 09953 024 026 028
Dimensionless BH spin Dimensionless BH spin
Mass = 10% Mg, j = 0.26 Mass =108 Mg, j = 0.26

SE. BERTI et al., Physical Review D 73 (2006).
7S. GOSSAN et al., Physical Review D 85 (2012).
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Modes and quasi-normal modes

We can write the GW emission from a rotating BH’s ringdown as:

1 Lo~
h(t,0,¢) = ; Z hlmn(t)—ZSlanf Otmn,0,%)
l,m,n
72Slmn(07§0) =em? —2Sim (]:f&lmnvcos 9)
—2Yin(0,p) = e™m? —2Y1,(0)

m Press and Teukolsky noted:
P 3 - ¥enrin + Oy
A

where ¢y, are related to Clebsch-Gordan coefficients
= The modes on NR can be written in terms of spherical harmonics _3 Yy,
which is a complete and orthogonal set.

TR (1) =D Apnoymne' it

Ln
where8
Ul'lmn=/Q—zslm(]'f@lnma07s0)—271/m(9,<ﬁ)d9

8L. LONDON et al., Physical Review D 90 (2014).
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Ringdown model

A perturbation of a Schwarzschild BH? :
U (x) 4+ (w? — V)¥(x) =0

T(w,x) ~ e  as x = —oo, V(w,x)~e ¥ as x = oo

Im(s)
—

T, _ > —st
W(s,x) _/0 e St (tx)dt
U (s,%) + (—s% — V(x))¥(s,x) = I(s,x)

oo
U(s,x) :/ G(s,%,x")I(s,x")dx’
Re(s)

G(sx,x') = ﬁ U (8,%min) ¥4 (S,Xmax)

QNM'S — @i = Wimn + I/ Timn

L >

We can write the solution as:
credit: H-P. Nollert

\Ijlmn(t) = Aymne” imn

9H.-P. NOLLERT, Classical and Quantum Gravity 16, R159-R216 (1999).

Chantal Pitte CEA-IRFU-DPhP



Testing GR consistency SNR ayes Phenomenological models
[¢] [¢]

00000e

Parametrized deviations

The waveform of a compact binary in frequency domain is represented as
h(f) = A(f) eV

where A(f) denotes amplitude and ¢(f) the phase in the inspiral regime.
While the amplitude is unperturbed, the phase could present fractional
deviations in the form of

$i(f) = (1 + o) o i=N"/2

If GR is correct, ¢;(f) would vanishes for N PN order.
In the post-merger and ringdown regime deviations are denoted by {«;,3;}

—1PN 0PN 0.5 PN 1PN 1.5 PN 2PN 25PN 3PN 3PN 35PN
0.010r—L L L L L L
0.4
2
0.005
005 0.2 L
£ oom 00 # ¢ o ¢ ¢ #
. -1
~0.]
~0.005
-2
—0.4
-0, T T T T T ~3b— T T T T
P2 o w1 P2 3 Pa sl o Pat wr

credits LVK Collaboration®

10R. ABBOTT et al., Phys. Rev. D 103, 122002 (juin 2021).
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Testing GR consistency

000000
SNR
The SNR builds up in time and frequency:
P = ZZZ‘LR-%/%%’@#,
Im U'm’ ch
L )

Im|U/'m') = 4Re/—df.
(imi'm') =3 S
Then the squared SNR can be written as

P2 = (mUm).

Im Um/

) =hun(p) - V2D 04 ) (TG + TG -

T - 2T T = 20TR0)]
() =hm(f) - ‘ffe‘i# (1= 20T () + T () +
@+ 2T = THW) + (L +2200)TE ) - T3 ()]

where z(f) = e2"/L

12/05/2023
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Bayes factor

— Bayesian method:
likelihood prior

m—N ——
(D|©,M) P(O|M)

P
P(©|D,M) =
P(D|M)
N——
evidence
— Focus on estimating the evidence
1
z— [ PDM)de = / L(©)m(©)d6 = / L(X) dX
Qo Qo 0 =~
iso—lich
where
-1 d@ne)ieTi@-he)),

\/det(27C)

In£ = (d/(6)) ~ 5 (WO)[h(O)) ~ 1 (dla),

Bayes factor:
i 21 Jng £1(©)mrOTdO
"% fy, 2O mt7de
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IMR Phenomenological waveform

Fllm(f’@) = A(f,@)67 i6(/.6)

10°
1 Region | Region Il
MR = [ao—s-oqf—oczf’l I :
Region llai  Region Ilb
4 — 1000 {
+7a3f3/4 + O‘4tan71 m 2 Inspiral
3 fdamp 100
10
_1 Bs -3
it = (ﬁ o+ ff + Falogf — 5 e o —
mr
1000
¢Ins :¢TF2 (Mf7@) . Region | Region Il
1 3 3 1 i i
+ - (oo +ouf + Joaf* 4 o0+ 5mj2) “ ol
n = b Inspiral
1  Intermediate
d1re =27f e — pc — /4 o k?x;"
7
3 —5/3 i/3
+ ﬁ(wf M) / Z ¢i(®)(7rfM)l/ oot 0.005 0010 " 0.050 0.100
i=0
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