

International Conference on Nuclear Decommissioning Addressing the Past and Ensuring the Future

3D reconstruction and localization of radioactive sources using a single gamma camera

Kamel BENMAHI¹, Vincent SCHOEPFF¹, Guillaume AMOYAL¹, Frédérick CARREL¹.

(1) Université Paris-Saclay, CEA, List, F-91120 Palaiseau, France.

Introduction, context, purposes

Localization of radiological hot spots

- Superimposing a gamma image on a visible image
- 2. Respecting ALARA* principle

Applications:

- Nuclear decommissioning
- 2. Radiation protection
- 3. Accidental situations
- 4. Nuclear waste management applications

(a): Hot spot reconstruction using the coded-aperture method via Nanopix. (b): Superimposition of a gamma image on a visible image to locate the hot spot.

Gamma imagers pictures (a) Nuvision. (b) POLARIS. (c) IPIX.

* As Low As Reasonably Achievable

Introduction, context, purposes

- Localization in our current compact imaging systems:
 - 1. Stationary measurements;
 - 2. Two distinct **2D** localization techniques.
 - Coded-aperture;
 - Compton scattering.

Extracted from: http://www.univearths.fr/

- Development of a new generation of gamma imager:
 - Moving system

2. 3D localization

Table of contents

- I. Coded aperture imaging technique
- II. Technological systems: Nanopix
- III. 3D localization of hotspot by triangulation
- IV. 3D radiological mapping
- V. Conclusion and outlooks

Coded aperture imaging technique

Coded aperture imaging technique

Coded-aperture imaging:

- Spatial modulation of the incoming flux of γ-rays and x-rays
- 2. Masks: multi-holes collimators
- 3. Projection on the pixelated detector
- 4. Decoding the pattern of the projected shadow
- 5. Superimposing on a visible image

Extracted from: M. J. Cieślak, "Coded-aperture imaging systems: Past, present and future development – A review," Radiat. Meas.

Decoding

Technological systems: Nanopix

12/05/2023

Technological systems: Nanopix

The operating gamma imager:

Gamma Imager	Imaging technique	Integrated counting chip
Nanopix	Coded mask	Timepix + 1 mm CdTe

10 × 7 × 5,5 cm³ 413 g Fied of view: 50°

Nanopix © CEA List

Nanopix embedded on a drone- 50 m TERRIFFIC H2020 project

Technological systems: Nanopix

Gamma Imager	Imaging technique	Integrated counting chip
Nanopix	Coded mask	Timepix + 1 mm CdTe

- Counting (Medipix) mode each incident event above the threshold increments the counter.
- Time over Threshold (ToT) mode the energy of the incident photons can be obtained from ToT counts.
- Time of Arrival (ToA)
 the counter works as a timer and measures the arrival time of the event.

Medipix2 © Jakubek, 2009

Extracted from: Platkevič, Michal (2014). "Signal processing and Data Read-out from Position Sensitive Pixel Detectors".

3D localization of hotspot by triangulation

- Triangulation method using a single detector
 - Moving the detector to different positions
 - Recording the coordinates of each position of the detector
 - 3. Performing several gamma images
 - 4. Calculating the director vectors
 - Defining and characterizing the region of uncertainty

Experimental study performed with Nanopix

- Use of an Am-241 radioactive source of 74 MBq.
- The measurement time of each projection = 10 seconds in mask and 10 seconds in anti-mask mode

3D localization of hotspot by triangulation

Experimental study performed with Nanopix

- Use of an <u>Am-241</u> radioactive source of 74 MBq.
- The measurement time of each projection = 10 seconds in mask and 10 seconds in anti-mask mode

Monte-Carlo simulation study using the MCNP6.2 calculation code

- Uncertainty:
- Improvement
 - Displacement step
 - Global angular resolution

Monte-Carlo simulation study using the MCNP6.2 calculation code

- Uncertainty:
- Improvement
 - Displacement step
 - Global angular resolution
- Increased
 - Long measuring distance
 - Statistical deterioration (transparency of the mask)

3D radiological mapping

3D radiological mapping

- 3D reconstruction of the point source

3D radiological mapping

- 3D reconstruction of the point source

- 3D reconstruction of the point source
 - The source is placed in the reference according to its estimated coordinates
 - Reconstruction of the point source in 3D in spherical form
 - (the diameter of the sphere corresponds to the average FWHM)

3D radiological mapping

- 3D radiological mapping on experimental data
 - Superimposition of a gamma image of a radioactive hot spot measured with Nanopix camera on a contextual scene recorded with a LIDAR system.

Conclusion and outlooks

Conclusion & outlooks

- 3D gamma imaging system
- ✓ Use of a single detector
- ✓ Adaptation of triangulation method for 3D localization of radiaoctive hot spot
- ✓ Volumetric 3D reconstruction of the hot spot
- ✓ Radiological mapping in 3D: superimposition of the 3D point source on a 3D contextual scene

Conclusion & outlooks

- > Implementation of **volumetric** reconstruction to **extended** radioactive sources
- > 3D localization using gamma Compton imaging technique

Thank you for your attention

Kamel.benmahi@cea.fr

