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1. Introduction 
1.1. Scientific context

In nuclear physics:
- Diversity and complexity of the 

phenomena.
- No unified theory but only specific 

models. 

  Phenomenon Model/Theory

ɑ-decay Gamow theory

β-decay Fermi gas model

Fission Liquid drop model

ɣ-deexcitation Nuclear shell 
model
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1.1. Scientific context

Shell model and ɣ radioactivity:

- The shell model was motivated by the observation of extra 
stability for isotopes with a special number of N and/or Z 
(magic numbers) like inert gases in atomic physics. 
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Shell model and ɣ radioactivity:

- The shell model was motivated by the observation of extra 
stability for isotopes with a magic number of N and/or Z. 

- ɣ radioactivity: Deexcitation of a nucleus due to the 
transition of a nucleon from a higher to a lower energy 
state. 
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1. Introduction 
1.1. Scientific context

Shell model and ɣ radioactivity:

Challenges:
- Evolution of shell gaps and magic 

numbers (far from the stability valley).
- Possibility of inverting the order of the 

states (depending on Z and N). 
          Necessary to study exotic nuclei 
having a large N/Z asymmetry.
         Candidate: 78Ni (Z=28, N=50) 
        through the study of 79Cu



1. Introduction 
1.2. Current state of knowledge 

First spectroscopy of 79Cu (2014 
SEASTAR campaign at RIKEN):

- Beam of 238U (at 𝛽 ~ 0.6) .
- Induced in-flight fission at a primary 

9Be production target (F0).
- Selection of 80Zn isotopes 

(BigRIPS).
-  Collision on a secondary target 

(liquid hydrogen) at F8 and 
knock-out of a proton 
80Zn(p,2p)79Cu

-  Detection of the emitted ɣ-rays 
using scintillators.
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Results:
+ 11 transitions were observed. 
+ A proposed level scheme up to 4.6 MeV 

of excitation energy.
- Some transitions are to be confirmed 

(weak statistics and bad energy 
resolution of the scintillators)



1. Introduction 
1.2. Current state of knowledge 

Results:
+ 11 transitions were observed. 
+ A proposed level scheme up to 4.6 MeV 

of excitation energy. 
- Some transitions are to be confirmed 

(weak statistics and bad energy 
resolution of the scintillators)

New measurement proposed (HiCARI 
April 2021):

+ Availability of more intense beams.
+ Use of HiCARI (High-resolution Cluster 

Array at RIBF) Ge array instead of 
scintillators

- Secondary beam of 9Be. 
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Thank you for listening 
to the first part 



2. Data analysis 
2.1. Particle Identification of the beam nuclei

We need: 
80Zn( 9Be, X) 79Cu reaction 
channel
i.e:
- Gate on 80Zn in BigRIPS 

(before the target)
- Gate on 79Cu in ZeroDegree 

(after the target)
- Look at the corresponding 

ɣ-spectrum in coincidence



2. Data analysis 
2.1. Particle Identification of the beam nuclei

We need: 80Zn( 9Be, X) 79Cu
- The atomic number Z.
- The mass number A (or equivalently 

A/Q ). 

Example in BigRIPS separator



2. Data analysis 
2.1. Particle Identification of the beam nuclei

Result:

rr



2. Data analysis 
2.2. Energy calibration of HiCARI Ge array

Purpose:
Find the linear relation between the 
voltage of the collected current and the 
energy deposit of the γ-ray.
E(keV) =  a* E(ADC) + b 

We used sources of 60Co, 152Eu, 88Y 
and 133Ba. 
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2. Data analysis
2.3. Velocity determination 

79Cu nuclei have relativistic velocities:
- We need to correct for the Doppler 

shift. 

Eo : Energy of the γ-ray in the rest 
frame of the emitting nucleus.
Eɣ : Energy of the γ-ray in the 
laboratory frame. 
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2. Data analysis
2.3. Velocity determination 

79Cu nuclei have relativistic velocities:
- We estimate the velocity at the target 

center using LISE++ simulation.  

β[F3-F7]
DATA

β at center
LISE++
simulation

β (F8-F11)
LISE++
simulation

β[F8-F11]
DATA

difference

0.6284 0.6027 0.5806 0.5796 0.0010  
(0.18%)



2. Data analysis
2.4. Preliminary Doppler-corrected gamma-spectra 

- In the HiCARI 
Ge array:

+ 4 Miniballs
+ 4 Clovers
+ 1 P3
+ 1 QUAD

They do not have 
the same 
efficiencies and 
energy resolutions.
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2. Data analysis
2.4. Preliminary Doppler-corrected gamma-spectra 

Example with 
SuperClovers:
+ We can see some 

of the peaks from 
the previous 
SEASTAR 
campaign. 



2. Data analysis
2.4. Preliminary Doppler-corrected gamma-spectra 

Looking at the mean 
and width of the 
peaks:
Example with Miniball
E= 649 ± 1 keV
Almost in agreement 
with the SEASTAR 
result: 
E = 656 ± 5 keV



2. Data analysis
2.4. Preliminary Doppler-corrected gamma-spectra 

Main issue:
We get different mean 
values depending on 
the detector type

Detector(s) E (keV) Error (keV)

Miniballs 649 1

SuperClovers 656 2

P3 656 3

QUAD 644 1



2. Data analysis
2.4. Preliminary Doppler-corrected gamma-spectra 

Possible reasons for the energy 
shifts: 
- Wrong angle in the doppler 

correction due to the geometry 
(positions of detectors and/or 
target).



2. Data analysis
2.4. Preliminary Doppler-corrected gamma-spectra 

Possible reasons for the energy 
shifts: 
- Wrong angle in the doppler 

correction due to the geometry 
(positions of detectors and/or 
target).

- Lifetime effect:

     θ  < θreal

     Eo < Eo (real)



3. Conclusion and outlook

- Solve the energy shifts issue: 
Shift the target position until 
finding the best agreement 
between the energies.

- Run GEANT4 simulations to 
check for the possible lifetime 
effects. 

- Apply ɣɣ coïncidences 
    



Thank you for your 
attention



     

1- Relation between pnA and pps:
ɸ(pps) * ( 1.6 e ) =  ɸ’ (pA)
ɸ(pps) * ( 1.6 e ) * 10⁹ =  ɸ’’ (pnA) 
Beam intensity (238U) = 90 pnA =  5.625 * 1011pps
Total beam intensity at F7 = 4 * 10⁴ pps

2- Energy resolutions comparison from simulation

  Annexes  



2. Data analysis 
2.1. Particle Identification of the beam nuclei

Removal of background 
events:

Example:
Time/charge correlation in 
the plastic scintillators:
TR -TL = A log(qL/qR)
at F3, F7, F8 and F11. 



2. Data analysis 
2.1. Particle Identification of the beam nuclei

Optical corrections:
Cancel the A/Q dependency 
on position and angular 
variables, in order to achieve 
a better resolution for the 
A/Q. 

Example: A/Q vs the 
angular variable “a” at focal 
plane 5. 



2. Data analysis 
2.1. Particle Identification of the beam nuclei

Optical corrections:
Cancel the A/Q dependency 
on position and angular 
variables, in order to achieve 
a better resolution for the 
A/Q. 

Example: A/Q vs the 
angular variable “a” at focal 
plane 5. 



Detector(s) E (keV) Error (keV)

Miniball_0 651 3

Miniball_2 646 4

Miniball_4 651 1

Miniball_5 650 1














