

11.05.2023 PHENIICS FEST In-beam gamma-ray spectroscopy of the exotic 79Cu

Massyl KACI

2022/2023

Outline:

1. Introduction

1.1. Scientific context

1.2. Current state of knowledge

2. Data analysis

2.1. Particle Identification of the beam nuclei

2.2. Energy calibration of HiCARI Ge array

2.3. Velocity determination

2.3. Preliminary Doppler-corrected gamma-spectra

3. Conclusion and outlook

In nuclear physics:

- Diversity and complexity of the phenomena.
- No unified theory but only specific models.

Phenomenon	Model/Theory
a-decay	Gamow theory
β-decay	Fermi gas model
Fission	Liquid drop model
y -deexcitation	Nuclear shell model

1. Introduction 1.1. Scientific context

<u>Shell model and **y** radioactivity:</u>

- The shell model was motivated by the observation of extra stability for isotopes with a special number of N and/or Z (magic numbers) like inert gases in atomic physics.

<u>Shell model and **y** radioactivity:</u>

- The shell model was motivated by the observation of extra stability for isotopes with a magic number of N and/or Z.
- y radioactivity: Deexcitation of a nucleus due to the transition of a nucleon from a higher to a lower energy state.

Shell model and **y** radioactivity:

Challenges:

- Evolution of shell gaps and magic numbers (far from the stability valley).
- Possibility of inverting the order of the states (depending on Z and N).

Shell model and **y** radioactivity:

Challenges:

- Evolution of shell gaps and magic numbers (far from the stability valley).
- Possibility of inverting the order of the states (depending on Z and N).

→ Necessary to study exotic nuclei having a large N/Z asymmetry.

Shell model and y radioactivity:

Challenges:

- Evolution of shell gaps and magic numbers (far from the stability valley).
- Possibility of inverting the order of the states (depending on Z and N).

→ Necessary to study exotic nuclei having a large N/Z asymmetry.

Candidate: ⁷⁸Ni (Z=28, N=50)

Shell model and y radioactivity:

Challenges:

- Evolution of shell gaps and magic numbers (far from the stability valley).
- Possibility of inverting the order of the states (depending on Z and N).
- → Necessary to study exotic nuclei having a large N/Z asymmetry.
- Candidate: ⁷⁸Ni (Z=28, N=50) through the study of ⁷⁹Cu

1. Introduction 1.2. Current state of knowledge

First spectroscopy of 79Cu (2014 SEASTAR campaign at RIKEN):

- Beam of 238U (at $\beta \sim 0.6$).
- Induced in-flight fission at a primary 9Be production target (F0).
- Selection of 80Zn isotopes (BigRIPS).
- Collision on a secondary target (liquid hydrogen) at F8 and knock-out of a proton
 80Zn(p,2p)79Cu
 Detection of the emitted y-rays
 - using scintillators.

1. Introduction 1.2. Current state of knowledge

Results:

- + 11 transitions were observed.
- + A proposed level scheme up to 4.6 MeV of excitation energy.
- Some transitions are to be confirmed (weak statistics and bad energy resolution of the scintillators)

1. Introduction 1.2. Current state of knowledge

<u>Results:</u>

- + 11 transitions were observed.
- + A proposed level scheme up to 4.6 MeV of excitation energy.
- Some transitions are to be confirmed (weak statistics and bad energy resolution of the scintillators)

New measurement proposed (HiCARI April 2021):

- Availability of more intense beams.
- Use of HiCARI (High-resolution Cluster Array at RIBF) Ge array instead of scintillators
- Secondary beam of 9Be. -

Thank you for listening

Thank you for listening to the first part

We need: ⁸⁰Zn(⁹Be, X) ⁷⁹Cu reaction channel i.e:

- Gate on ⁸⁰Zn in BigRIPS (before the target)
- Gate on ⁷⁹Cu in ZeroDegree (after the target)
- Look at the corresponding
 y-spectrum in coincidence

- We need: ⁸⁰Zn(⁹Be, X) ⁷⁹Cu
 - The atomic number Z.
 - The mass number A (or equivalently A/Q).

 $\begin{aligned} \frac{A}{Q} &= \frac{B\rho}{\beta\gamma} \frac{c}{m_u} \\ \frac{dE}{dx} &= \frac{4\pi e^4 Z^2}{m_e v^2} Nz \left[\ln \frac{2m_e v^2}{I} - \ln \left(1 - \beta^2 \right) - \beta^2 \right] \end{aligned}$

Example in BigRIPS separator

Result:

2. Data analysis 2.2. Energy calibration of HiCARI Ge array

Purpose:

Find the linear relation between the voltage of the collected current and the energy deposit of the γ -ray. E(keV) = a* E(ADC) + b

We used sources of 60Co, 152Eu, 88Y and 133Ba.

2. Data analysis 2.2. Energy calibration of HiCARI Ge array

Purpose:

Find the linear relation between the voltage of the collected current and the energy deposit of the γ -ray.

Example: With ⁶⁰Co source

2. Data analysis 2.2. Energy calibration of HiCARI Ge array

Purpose:

Find the linear relation between the voltage of the collected current and the energy deposit of the γ -ray.

Example: With ⁶⁰Co source

- ⁷⁹Cu nuclei have relativistic velocities:
- We need to correct for the Doppler shift.

$$E_0 = E_\gamma \, \frac{1 - \beta \cos \theta}{\sqrt{1 - \beta^2}}$$

Eo : Energy of the γ -ray in the rest frame of the emitting nucleus. E_Y : Energy of the γ -ray in the laboratory frame.

- ⁷⁹Cu nuclei have relativistic velocities:
- We need to correct for the Doppler shift.

$$E_0 = E_\gamma \, \frac{1 - \beta \cos \theta}{\sqrt{1 - \beta^2}}$$

Eo : Energy of the γ -ray in the rest frame of the emitting nucleus. E_Y : Energy of the γ -ray in the laboratory frame.

- ⁷⁹Cu nuclei have relativistic velocities:
- We need to correct for the Doppler shift.

$$E_0 = E_\gamma \, \frac{1 - \beta \cos \theta}{\sqrt{1 - \beta^2}}$$

Eo : Energy of the γ -ray in the rest frame of the emitting nucleus. E_Y : Energy of the γ -ray in the laboratory frame.

- ⁷⁹Cu nuclei have relativistic velocities:
 - We estimate the velocity at the target center using LISE++ simulation.

β[F3-F7] DATA	β at center LISE++ simulation	β (F8-F11) LISE++ simulation	β[F8-F11] DATA	difference
0.6284	0.6027	0.5806	0.5796	0.0010 (0.18%)

- In the HiCARI Ge array:
- + 4 Miniballs
- + 4 Clovers
- + 1 P3
- + 1 QUAD

They do not have the same efficiencies and energy resolutions.

- In the HiCARI Ge array:
- + 4 Miniballs
- + 4 Clovers
- + 1 P3
- + 1 QUAD

They do not have the same efficiencies and energy resolutions.

- Example with SuperClovers:
- + We can see some of the peaks from the previous
 SEASTAR campaign.

⁸⁰Zn(⁹Be,X)⁷⁹Cu γ-ray spectrum with Miniballs

- Looking at the mean and width of the peaks:
- Example with Miniball $E= 649 \pm 1 \text{ keV}$
- Almost in agreement with the SEASTAR result:

 $E = 656 \pm 5 \text{ keV}$

p0 Counts/4keV **p1** p2 250 p3 p4 200 150 100 50 600 800 1000 400 1200 200

 χ^2 / ndf

Prob

47.05 / 54

145.4 ± 6.7

649.3 ± 0.7

14.66 ± 0.63

5.749 ± 0.146

 -0.002217 ± 0.000231

1400

E(keV)

0.7374

Main issue: We get different mean values depending on the detector type

Detector(s)	E (keV)	Error (keV)
Miniballs	649	1
SuperClovers	656	2
P3	656	3
QUAD	644	1

Possible reasons for the energy shifts:

$$E_0 = E_\gamma \, \frac{1 - \beta \cos \theta}{\sqrt{1 - \beta^2}}$$

- Possible reasons for the energy shifts:
 - Wrong angle in the doppler correction due to the geometry (positions of detectors and/or target).
 - Lifetime effect:
 - θ < θreal

Eo < Eo (real)

$$E_0 = E_\gamma \, \frac{1 - \beta \cos \theta}{\sqrt{1 - \beta^2}}$$

3. Conclusion and outlook

- Solve the energy shifts issue: Shift the target position until finding the best agreement between the energies.
- Run GEANT4 simulations to check for the possible lifetime effects.
- Apply yy coïncidences

Thank you for your attention

Annexes

1- Relation between pnA and pps: $\phi(pps) * (1.6 e) = \phi'(pA)$ $\phi(pps) * (1.6 e) * 10^9 = \phi''(pnA)$ Beam intensity (²³⁸U) = 90 pnA = 5.625 * 10¹¹pps Total beam intensity at F7 = 4 * 10⁴ pps

2- Energy resolutions comparison from simulation

Removal of background events:

Example:

<u>Time/charge correlation in</u> <u>the plastic scintillators:</u> $T_R-T_L = A \log(q_L/q_R)$ at F3, F7, F8 and F11.

Optical corrections:

Cancel the A/Q dependency on position and angular variables, in order to achieve a better resolution for the A/Q.

Example: A/Q vs the angular variable "a" at focal plane 5.

Optical corrections:

Cancel the A/Q dependency on position and angular variables, in order to achieve a better resolution for the A/Q.

Example: A/Q vs the angular variable "a" at focal plane 5.

Detector(s)	E (keV)	Error (keV)
Miniball_0	651	3
Miniball_2	646	4
Miniball_4	651	1
Miniball_5	650	1

Figure 1.6 – Systematics of the first $3/2^-$ and $5/2^-$ states in neutron-rich copper isotopes. The ground-state spin changes at N = 46. Data taken from references [26, 43, 46–50].

g_egamdc_Cu79_mode2_ab_total

Laboratoire de Physique des 2 Infinis

Schéma de niveaux du 79Cu

Efficacité des 4 détecteurs ABdc en fonction de l'énergie à 200mm et θ =45°