

Dilepton production in the proton-proton reaction at 4,5GeV with the HADES spectrometer

Rayane ABOU YASSINE

IJCLAB/ TU-Darmstadt

PHENIICS Fest 2023 11-12 May 2023

11-12 May 2023

Outline

- Motivations.
 - HADES experiment.
 - Dileptons in HADES.
 - Elementary reactions.
- Data Analysis.
 - Single lepton selection.
 - e⁺e⁻ invariant mass spectrum.
- Simulations.
- Conclusion and Outlook.

PHENIICS Fest 2023

hadronic matter and baryonic resonances role.

QCD phase diagram

- HADES explores the high baryochemical potential region at low T, with heavy ion collisions SIS18 energies.
- HADES is complementary to LHC, SPS, RHIC, etc ...

SIS18 energy range:

- A+A : 1-3A GeV.
- $\sqrt{s_{NN}}$ = 2-2,4 GeV.

Dileptons

- No strong interaction at the final state during the collision
- = informations on matter properties are **conserved**
- = reflect whole history of the collision.

- Study in-medium vector mesons properties ($J^P = 1^-$)
- \rightarrow vector meson spectral function expected to be modified due to their coupling to baryons.

meson	mass	Г	$c\tau$	main	e^+e^-	
	(MeV/c^2)	(MeV/c^2)	(fm)	decay	branching ratio	
ρ	768	152	1.3	$\pi^+\pi^-$	$4.4 \ 10^{-5}$	
ω	782	8.43	23.4	$\pi^+\pi^-\pi^0$	$7.2 \ 10^{-5}$	
ϕ	1019	4.43	44.4	K^+K^-	$3.1 \ 10^{-4}$	

HADES

Ideal probe of dense and hot phase of a heavy-ion collision

pp collisions studies with HADES

HADES collaboration

- 18 institutions from 9 European countries.
- HADES currently running on SIS18/GSI.
- HADES will be moved to FAIR (Facility for Antiproton and Ion Research) SIS100 accelerator.

HADES experimental setup

- **H**igh **A**cceptance **DiElectron Spectrometer**
- Fixed target experiment.
- Large geometrical acceptance: full azimuthal range and polar angles 18° and 85°.
- Efficient track reconstruction and momentum determination (MDC+Magnet) and particle identification (RICH, TOF, RPC and ECal).
- FWD: polar angles [0.5°-7°].

Experiments (2004-2022)

- Dense and hot hadronic matter studies: C+C(1 and 2 AGeV), Ar+KCI(1.75 AGeV), Au+Au(1.25 AGeV), **Ag+Ag**(1.65 AGeV).
- Cold matter studies: p+Nb(3.5GeV), π^-+CH2/C (0.7 GeV/c).
- Elementary reactions: p+p (1.25, 2.2, 3.5 and recently 4.5 GeV), d+p (1.25 GeV/nucleon).

Particle reconstruction and identification

RICH

- Radiator gas C_4F_{10} \rightarrow Cherenkov light only for electrons.
- RICH-MDC correlation.
- $\Delta \theta (\Delta \phi) = \theta_{\text{Track}} \theta_{\text{Ring}}$.

45

- ECAL
- Polar angle coverage between 12° and 45°.
- For pp at 4,5 GeV only 5 sectors were used.
- e^+/e^- leave all their energy in the ECal $\rightarrow (E - P) = 0$.
- Hadrons leave much less energy \rightarrow (E P) < 0.

Particle deflection in the magnetic field → Momentum.

MDCs + Magnet

- Fit 2 segments infront and behind magnetic field.
- 4th order Runge-Kutta algorithm.

- RPC : $18^{\circ} < \theta < 45^{\circ}$.
- TOF : $44^{\circ} < \theta < 88^{\circ}$.
- Time of flight measurements.
- Correlation between β and P.

1 meter

Particle reconstruction and identification

Define cuts on RICH parameters

PHENIICS Fest 2023

Define cuts on ECal parameters

e⁺e⁻ pairs

- Single e^+/e^- are combined into pairs.
- Combinatorial Background mostly due to conversion in the detector material.
- Rejection of e^+e^- pair combinations from different real or virtual photons.
- Same-event like-sign CB geometric mean.

Jan-Hendrik Otto, http://dx.doi.org/10.22029/jlupub-7207

• Reject rings with opening angle <9°.

Signal / Background

CB reduction

 Cal dependent double ring identification (cut on N_{cals}).

Cut on tracks

• Tracks with a not fitted track in the vicinity of 4° are excluded from further analysis.

e⁺e⁻ invariant mass spectrum

- Very low combinatorial background thanks to appropriate rejection of leptons from real photon conversion (S/B ~350 and ~ 150 in ω and φ region respectively).
- Vector mesons peaks are clearly seen, ω and φ .
- e^+e^- pairs are also reconstructed in the high invariant mass region ($M_{e^+e^-} > 1020 \text{ MeV/c}^2$).

$N_{+-}^{M_{ee} < 150}$	$N_{+-}^{150 < M_{ee} < M_{\omega}}$	Nω	Ν _φ	$N_{+-}^{M_{ee}>1020}$
2×10^{6}	33×10^{4}	11000	350	100

PLUTO simulations

- PLUTO, event generator developed by HADES collaboration.
- Inputs: cross sections for the different dilepton sources.
- Pass events through Geant: detector geometry+instrumental effects.
- Reconstruction similar to data analysis.
- Build "inclusive" dilepton cocktail for pp at 4.5GeV.
- Flexible tool for comparison to data.

Importance of simulations

- Efficiency, acceptance corrections.
- Study detector effects.

Transport models developed by theoretician (SMASH, UrQMD) will be also used

Conclusion and Outlook

- Dileptons are an ideal probe to describe properties of hot and dense QCD matter.
- pp at 4,5 GeV is a reference for heavy-ion collisions at SIS100 energies.
- Finalized optimization of lepton selection.

- Data will be compared to simulations (PLUTO, SMASH).
- Extraction of ω and φ cross sections.
- Study of the exclusive channel pp→ppe⁺e⁻ for selective study of baryon resonance Dalitz decay and ρ/ω decays, using missing mass.

Thank you for your attention!