

PHENIICS FEST 2023

Impact of irradiation on the chemical durability of UO₂, $U_{0,9}Th_{0,1}O_2$ et $U_{0,9}Nd_{0,1}O_2$ sintered pellets

Mathis Hitier Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France

E&E Energie & Environnement Energy & Environment

NEEDS : Nucléaire : Energie, Environnement, Déchets, Société

1st Axis of the R3C project : Radiochimie et Chimie du Cycle du Combustible

Team 3 : IJCLab CNRS – IN2P3, Univ. Paris-Saclay

Supervision

Frederico GARRIDO Irradiation of materials

Claire LE NAOUR Radiochemistry, Dissolution

Team 1 : ICSM UMR 5257, CNRS – INC, CEA, Univ. Montpellier, ENSCM Team 4 : IP2I UMR 5822, CNRS – IN2P3, Univ. de Lyon 1

Nicolas DACHEUX Dissolution

Stéphanie SZENKNECT Dissolution Nathalie MONCOFFRE *Irradiation of materials*

Clotilde GAILLARD Raman Spectroscopy

Melody MALOUBIER Radiochemistry, Dissolution

Doctoral school PHENIICS

Harsh reprocessing conditions (nitric acid 3 to 6 mol/L - T > 90°C)

... to optimize the PUREX process and extend it to MOX Fuel and new thorium-based nuclear fuels

Preparation of the sintered pellets

i

Preparation of the sintered pellets

MEB / EDX Characterisation

RBS Characterisation

RBS spectra for each sample composition

Expected composition achieved

Parametric study of irradiation-induced damage

Nuclear stopping The projectile is slowed down by atomic collision. Cascades of collision are observed. Stopping power Electronic stopping Nuclear stopping Electronic stopping Projectile velocity The projectile has a high velocity. It is slowed down by interaction with the

Two kinds of interactions : two distinct effects

Au 1; 2 and 7MeV

Gold projectiles simulates the radiation damage induced by atomic collisions from fission fragments (close to their range).

electron clouds of the atoms of the target.

Xe and Pb 1GeV

Xenon is an accessible fission fragment with the highest stopping power ($37 keV. nm^{-1}$). Lead is used to maximise the effect of the electronic stopping due to its high atomic number $(55 keV. nm^{-1})$.

12/05/2023

Irradiation simulations – comparison between nuclear and electronic stopping

Simulation results

Optimization of the gold irradiation conditions

Choice of irradiation energies

- Maximizing of the penetration depth
- Maximizing of dpa to achieve the formation of

a dislocation network.

Irradiation experiments – atomic collision

Gold implantation

Irradiation

 $\begin{cases} \phi_{7MeV,Au} = 1,3.10^{15} \, cm^{-2} \\ \phi_{2MeV,Au} = 3,2.10^{14} \, cm^{-2} \\ \phi_{1MeV,Au} = 2.10^{14} \, cm^{-2} \end{cases}$

Synthesis & Charact

- A mask is placed on half the surface to determine the effect of surface irradiation.
- About 4 hours of irradiation

	Implentation
	beam line
2 MV ARAMIS	190 kV
CALP	
erization using ion AcceLerators for Pluridisciplinary research	JANNuS-

Pellet code	Composition	Irradiation
P2S39	UO2	100%
P4S39	UO2	100%
P5S39	UO2	50,62%
P6S39	UO2	70,85%
P1S40	UTh10%O2	59,45%
P2S40	UTh10%O2	100%
P4S40	UTh10%O2	65,63%
P5S40	UTh10%O2	100%
P4S41	UNd10%O2	65,96%
P5S41	UNd10%O2	100%
P6S41	UNd10%O2	100%
P8S41	UNd10%O2	52,52%

12/05/2023

i

Irradiation experiments – atomic collision

Gold implantation $\begin{cases} \phi_{7MeV,Au} = 1,3.10^{15} \, cm^{-2} \\ \phi_{2MeV,Au} = 3,2.10^{14} \, cm^{-2} \\ \phi_{1MeV,Au} = 2.10^{14} \, cm^{-2} \end{cases}$ Irradiation

Imaging the surface

Images are taken by optical microscopy

 Hugin & Gimp are used to obtain a complete mesure of the surface (px and μm).

Coating

Only the irradiated surface is of interest

Epoxy Resin
Coating after 2 hours
Drying : 8 hours

Static dissolution experiments

Dissolution test

Static dissolution condition

Sampling of 15% of the total volume (4.5mL)

Diluted by 2 (9mL)

Epoxy Resin
Coating after 2 hours
Drying : 8 hours

First parameters

Room temperature

> 0,1 mol/L nitric acid concentration

12/05/2023

Static dissolution experiments

- Room Temperature
- > 0,1 mol/L nitric acid concentration

 $\succ \alpha$ scintillation

Epoxy Resin
Coating after 2 hours
Drying : 8 hours

Characterisation of the solution

$$N_L(i) = \frac{m_i}{f_i \cdot S}$$

 m_i : amount of (i)in solution (g) S: Reactive surface area (m^2) f_i : mass ratio of (i) in the solid

 $\geq \alpha$ scintillation

Evolution of normalized mass losses $N_L(i)$ $(g.m^{-2})$ (left axis) and relative masses of dissolved UO_2 ($\Delta m(U,t)/m_0$ in %) (right axis) recorded during dissolution of sintered samples of formula $U_{0,g}Ln_{0,2}O_{1,9}$ at 22°C

How the first step and steady state are

modified by irradiation ?

$$R_L(i) = \frac{dN_L(i)}{dt} = \frac{1}{f_i \cdot S} \frac{dm_i}{dt}$$

 $R_L(i) \approx R_L(j)$: congruent dissolution $R_L(i) \neq R_L(j)$: incongruent dissolution

Operando study of evolving interface during dissolution

different dissolution times

Making of a video Fiji/ImageJ

Images taken by Environmental SEM (ICSM) and AFM (IJCLab)

Conclusions

- All protocols have been optimized so that results will flow in the next couple of months.
- > The first gold irradiation campain has been succesfully concluded.
- Long dissolution times means the results take time to be usable but first observations show the necessity to increase nitric acid concentration.

Perspectives

An internship student, Kevin LEBAY will start on 24th of April to conduct AFM experiments for operando study and surface characterization of samples.

Future experiments

Lead and Xenon irradiation at 1GeV

Raman spectrometry

May / June 2023

Operando study by Environmental SEM

October 2023

Acknowledgments

Stéphanie SZENKNECT Nicolas DACHEUX Paul-Henri IMBERT Renaud PODOR Frédérico GARRIDO Claire LE NAOUR Melody MALOUBIER Florian PALLIER

IP2I

Natalie MONCOFFRE Clothilde GAILLARD

The JANNuS-SCALP plateform staff

Thank you for your attention !

Goal of the PUREX process

"to recover the plutonium and uranium contained in irradiated fuel with the highest possible yields and to purify them in such a way as to allow their reuse, and to condition the various wastes in a form compatible with storage, while having the lowest possible impact on the environment".

Monographie CEA, Ed. Le Moniteur,, 2008

Main equation used to define the oxidation of uranium* :

 $UO_2(s) + NO_3^-(aq) + 4H^+(aq) \rightarrow UO_2^{2^+}(aq) + 2NO_2(aq) + 2H_2O$

Equations defining the formation of nitrous acid :

 $UO_2(s) + 2NO_2(aq) + 2H^+(aq) \rightarrow UO_2^{2^+}(aq) + 2NO(aq) + 2H_2O$

 $2NO(aq) + HNO_3(aq) + 2H_2O \rightarrow 3HNO_2(aq)$

Nom	Formule chimique	Degrés d'oxydation de l'azote	État physique à T=25°C et P = 1 atm	Remarques
Anhydride nitrique	N_2O_5	+V	gaz	
Acide nitrique	HNO_3	+V	liquide pur ou dissous	Initialement présent
Ion nitrate	NO_3^-	+V	dissous	
Ion nitronium	NO_2^+	+V	dissous	
Ion peroxynitrite	ONO_2^-	+V	dissous	
Dioxyde d'azote	NO_2	+IV	gaz	$(Teb = 21,4^{\circ}C)$
Tétroxyde d'azote	N_2O_4	+IV	gaz	(Teb = 21,4°C)
Anhydride nitreux	N_2O3	+III	gaz	
Acide nitreux	HNO_2	+III	dissous	
Ion nitrite	NO_2^-	+III	dissous	
Ion nitrosonium	NO ⁺	+111	dissous	
Ion nitroacidium	$H_2NO_2^+$	+III	dissous	
Monoxyde d'azote	NO	+II	gaz	
Acide hypoazoteux	$H_2N_2O_2$	+I	dissous	
Ion hypoazotite	NO ⁻	+I	dissous	
Ion hyponitrite	$N_2 O_2^{2-}$	+I	dissous	
Protoxyde d'azote	NO_2	+I	gaz	
Azote	N_2	0	gaz	
Hydroxylamine	NH_2OH	-I	gaz	
Imine	NH	-I	gaz ou dissous	
Ion hydroxylamonium	NH_2OH^+	-I	dissous	
Hydrazine	N_2H_4	-11	dissous	
Ion hydrazinium	$N_{2}H_{5}^{+}$	-11	gaz ou dissous	
Ammoniaque	NH_3	-111	gaz ou dissous	

Polishing by diamond disk

Structural imperfections : presence of cavities

Appendix 4 – preparation of the sintered pellets

Oxalate precipitation

Thermal conversion to oxide

Polishing

Drying (T_{amb})

Unixial pressing Ø 5 mm, 500 MPa

Appendix 5 : AFM characterization and roughness

