

Analysis of pp→WH(bb) process with Neural Net

<u>F. Ahmadov</u>, A. Cheplakov, N. Javadov (Dubna), R. StDenis, S. Thompson (Glasgow)

Physics and Computing in ATLAS 27-28 January 2011

Outline

Introduction

Relevant Variables

Present situation

Results from MC

Next steps

Higgs decay branching ratio (I), production channels at 14 TeV (II) and 7 TeV (III)

Physics & Computing in ATLAS

Background processes

- W+jets,
- WW,
- WZ,
- ttbar
- and single top

Distribution of the invariant mass of the Higgs candidate (ATL-PHYS-PUB-2009-088)

Physics & Computing in ATLAS

Neural Network architecture

Physics & Computing in ATLAS

Event selection and datasets

ATLFAST, cut-based analyses:

- Isolated (trigger) lepton & Two b-jets & Jet veto ($|\eta| < 5$)
- Loose cuts for NN:
 - other jets are allowed
 - the highest pT lepton is selected
 - b-jets selected with highest b-weight
- Datasets for signal and backgrounds were those used for the "fat jets" analysis (high jet pT cut of 200 GeV/c)

List of variables

From the new study:

- **cosθ**_b^{*} b-jet direction in H rest frame relative to H direction in c.m.s. of WH
- $\cos\theta_{H(W)}^*$ H(W) direction in c.m.s. of WH
- \sqrt{s} sum of energies of W+H ($E_v + E_l + E_b + E_b$)

From our old (atlfast) paper:

- θ_{jj} openning angle between two b-jets
- **E**_{*jj*} sum of b-jet energies

From CDF:

- ΔR distance between two b-jets in (η , ϕ)
- w_b, p_T^{jet} b-weight and pT for each b-jet
- m_{jj} invariant mass of two b-jets
- η_{l} lepton pseudorapidity
- p_T^{l} lepton pT
- E^{miss}_T- missing energy (MET_Calib)
- P^{WH}_T vector sum of W and H pT's
- N _{light jets} number of light (non-b) jets

Using cuts in NN

For electrons:

For muons:

Only one elec. Pt > 20 GeV $|\eta| < 2.5$ $\Delta R(e-jet) > 0.4$ Only one muon Pt > 20 GeV $|\eta| < 2.5$ $\Delta R(jet-\mu) > 0.4$ For jets:

Two b-jet tagged Pt > 25 GeV $w_{IP3DSV1} > 4$ for two b-jets $w_{IP3DSV1} < 4$ for light jets $\Delta Mjj = 25$ GeV

MET > 30 GeV

A "new" angular variables

Spin effects: angular correlations
WH:

CompHep for WZ, WH, all bkgr's (1)

Plots of $cos\theta_e^*$ for processes: WZ(µµ) all diagrams WZ(bB) all diagrams WH(bB) all diagrams and

WbB (without Higgs)

Physics & Computing in ATLAS

F. Ahmadov

 \sqrt{s}

27/28 Jan. 2011

CompHep for WZ, WH, all bkgr's (2)

Plots of $cos\theta_{b}^{*}$ for processes:

WZ(µµ) all diagrams WZ(bB) all diagrams WH(bB) all diagrams and WbB (without Higgs)

NN variables

Cosine of angle between the directions of b-quark (in the rest frame of H-boson) and H-boson (in the WH c.m.s) for signal (left) and for bck. (right).

Physics & Computing in ATLAS

NN variables

Cosine of angle between the directions of H-boson and initial quark in the c.m.s for signal (left) and for bck. (right).

Physics & Computing in ATLAS

NN training output

NN output for signal (first) and some background processes (the next three).

Physics & Computing in ATLAS

NN training (trees)

Physics & Computing in ATLAS

NN training output

Physics & Computing in ATLAS

NN training (efficiency - backg)

Physics & Computing in ATLAS

NN training (efficiency – signal)

Physics & Computing in ATLAS

NN training (systematics)

Parameter	Process			
	W+jet	WW	WZ	WH
Combine:Lumi	± 0.06	±0.06	± 0.06	± 0.06
Combine:Trig	± 0.015	±0.014	±0.013	± 0.015
Combine:LepID	± 0.003	±0.003	±0.003	± 0.006
Met	± 0.01	±0.01	±0.01	± 0.01
nloAccep	± 0.055	±0.10	±0.10	±0.10
x-sec	±0.10	±0.10	±0.10	±0.10
PDF	±0.019	±0.027	±0.027	±0.022

NN training output (summary)

Physics & Computing in ATLAS

Next steps

- Complete "fat jets" datasets analysis (document)
- Try another datasets with lower cut on jet pT (still small statistics for W+jets)
- Look around for other useful variables
 - (e.g. from the top spin study)
- Try ATLAS data

