Selection of FSR photons in $Z \rightarrow II\gamma$ decay and tight ID cut efficiency definition from early data

Evgeny Yu Soldatov* *Moscow Engineering Physics Institute (MEPHI)

- Introduction
- Results of selection from data for $Z \to e e \gamma / \mu \mu \gamma$
- Tight photon ID efficiency definition
- Conclusions

Introduction: some results of preliminary MC studies

Photon sample selection using $Z \rightarrow II\gamma$ process

*II*γ selection optimisation

Z→*ll*γ event selection from collision data (no specific cuts applied)

Increase of E_T threshold give a possibility for better separation of signal from main background. However, in the same time it decrease signal statistics a lot.

Tight photon cut – "standard" cut for photon separation from jets.

We see discrepancy between its effect on data and MC. $W \in_T [GeV]$ should correct MC shower shapes!

ID efficiency study: fudge factor for MC correction

Some mean values of shower distributions (for all preselected photons)

	Data	MC
weta2	0.01198	0.01132
frac s1	0.3724	0.3339
ethad	1245	867.2
ethad1	525	372.7

Fudge Factor=<Data>-<MC>

We have some discrepancy between data and MC statistics. E_T [GeV] We should evaluate MC background from data!

FSR Photon candidates obtained after 60< m_{ee}<83 GeV & 40< m_{μμ}<82 GeV windows requirement (in 80< m_{eeγ}<94 GeV & 81< m_{μμγ}<95 GeV mass windows, no tight cut) vs E_Tcone(0.2)

FSR Photon candidates obtained after 60< m_{ee}<83 GeV & 40< m_{μμ}<82 GeV windows requirement (in 80< m_{eeγ}<94 GeV & 81< m_{μμγ}<95 GeV mass windows, no tight cut) vs η

ID efficiency study: robust tight cut efficiency

Data events: 81

	Number of events before robust tight cut	Number of events after robust tight cut	Background events	Efficiency (with background substruction)
No isolation cut on E_{T} (in cone 0.2)	81	41	8	(56±7)%
With isolation cut E _T (in cone 0.2)<5 GeV	74	40	6	(59±7)%

Expected efficiency for MC: $\sim (74\pm2)\%$

Possible reason for difference: difference of <u>background predicted from MC</u> <u>and real data</u>, <u>low statistics</u> and <u>different shower shapes</u> for Data and MC.

Need to estimate background from data!

Data driven background estimation

- 1) We take the photon candidates, which associated with the lepton pairs from narrow two-body invariant mass window around Z boson mass (91-92 GeV area 1). We can confidently say, that these photon candidates are mostly background and do not contain FSR photons.
- We assume that all photon distributions of such kind of candidates is the same as for another two-body invariant mass window (which we use in kinematic approach – 60<m(ee)<83 GeV, 40<m(μμ)<82 GeV - area 2) and number of background photons is proportional to the number of the lepton pairs.
- 3) After application of the 3 body invariant mass cut for signal selection, the background photon spectrum may change. For the moment the best way to estimate this change for the data is to use a similar information from MC. Correction coefficient from MC is found using the following method:
 - a) obtain MC background spectrum using all cuts above;
 - b) obtain MC background spectrum after application three-body invariant mass cut;
 - c) divide first spectrum to second;
 - d) Normalize data photon spectrum found in step 2 to the correction coefficient.
- 4) Due to some methodology issues we use eta photon distribution for such evaluation.

Physics&Computing in ATLAS in MEPhI 27.01.2011

Data driven background estimation gives ~ 11 events

-0.5

0.5

-2.5

-2

-1.5

2.5

η

2

1.5

ID efficiency study: robust tight cut efficiency Data events: **81**

Background events from data driven estimation: 11/6

	Number of events before robust tight cut	Number of events after robust tight cut	Efficiency (with background substruction)
No isolation cut on E _T cone(0.2)	81	41	(59±7)%
With isolation cut E _T cone(0.2)<5 GeV	74	40	(59±7)%

Efficiency from MC: $\sim (74 \pm 2)\%$

Agreement become a bit better!

Discrepancy due to: low statistics and <u>different shower shapes</u> for Data and MC. Need to improve MC shower shapes, using fudge factor from comparison with data.

Conclusions

- 1. Preliminary results for the studies of a photon selection in the processes $Z \rightarrow ee\gamma$ and $Z \rightarrow \mu\mu\gamma$ has been presented based on statistics of ~36.0 pb⁻¹.
- 2. Comparison with MC shows in general a good agreement.
- 3. A mass peak $Z \rightarrow II_{\gamma}$ peak is clearly seen after applying different type of cuts.
- 4. MC shower shapes correction and background estimation from data are necessary for tight cut efficiency evaluation.
- 5. More statistics is required for detailed studies and comparison between data and MC yet.

Backup slides

Z→*ll* γ invariant mass obtained after 60< m_{ee}<83 GeV & 40< m_{µµ}<82 GeV windows requirement (in 80< m_{ee γ}<94 GeV & 81< m_{µµ}<95 GeV mass windows, no tight cut)

FSR Photon candidates obtained after 60< m_{ee} <83 GeV & 40< $m_{\mu\mu}$ <82 GeV windows requirement (in 80< $m_{ee\gamma}$ <94 GeV & 81< $m_{\mu\mu\gamma}$ <95 GeV mass windows, no tight cut) vs E_T

Physics&Computing in ATLAS in MEPhI 27.01.2011

FSR Photon candidates obtained after 60< m_{ee}<83 GeV & 40< m_{μμ}<82 GeV windows requirement (in 80< m_{eeγ}<94 GeV & 81< m_{μμγ}<95 GeV mass windows, no tight cut) vs η

