Study of the Bose-Einstein Correlations in pp interactions at 0.9 and 7 TeV

J. Kulchitsky and <u>E. Plotnikova</u> (JINR, Dubna/Minsk) S.Tokar , T. Zenis, R.Astalos (Comenius Univ. , Bratislava)

27.01.2011

Theoretical background

BEC effect correspond to an enhancement in two identical boson correlation function when the two particles are near in momentum space space-time characteristics of hadronization region

$$C_{2}(q) = \frac{P(p_{1}, p_{2})}{P(p_{1})P(p_{2})}$$

Plane wave approach (incoherent sum): For Gaussian source emission probability

 $C_2(Q) = 1 + \lambda e^{-Q^2 R^2}$

- *R* is the source radius
- λ is the *incoherence factor (0,1)* introduced empirically

 $Q^2 = -q^2 = (p_1 - p_2)^2$ = the four momentum difference

Quantum optical approach (taken from optics):

- based on squeezed coherent states
- leads to: $C_2(Q) = 1 + 2p(1-p)e^{-R^2Q^2} + p^2e^{-2R^2Q^2}$

p is the chaoticity: =0 (=1) for purely coherent (chaotic) sources

Other approaches

Quantum Field Approach (Q.field theory at finite temperature):

$$C_{2}(Q) = \xi(N) \cdot \left[1 + \frac{2\alpha}{(1+\alpha)^{2}} \sqrt{\tilde{\Omega}(Q)} + \frac{1}{(1+\alpha)^{2}} \tilde{\Omega}(Q)\right] \cdot F(Q, \Delta x)$$

$$\frac{\langle N(N-1) \rangle}{\langle N \rangle^{2}} F(Q, \Delta x) = \frac{f(Q, \Delta x)}{f(p_{1}) \cdot f(p_{2})} = 1 + r_{f}Q + \dots$$

$$\tilde{\Omega}(Q) = \Omega(Q) \cdot \gamma(v) \cdot \frac{\tilde{\Omega}(Q)}{\Omega(Q)} = \exp\left(\left[-(q_{0}^{2}R_{0}^{2} + q_{L}^{2}R_{L}^{2} + q_{T}^{2}R_{T}^{2})\right]\right)$$

 C_2 taken as a function of $\ Q^2 = -(p_1 - p_2)^2 \rightarrow \ {\rm dependence} \ {\rm on} \ \ p_1 + p_2$ not considered !

Two-dimensional approach to BEC correlations!

C2 function: experimental approach

- For each track pair we reconstruct the quantity $Q = \sqrt{(E_1 - E_2)^2 - (\vec{p}_1 - \vec{p}_2)^2}$

The Q++, Q--, Q+-,Q-+ are the quantities for pairs of the like/unlike sign particles.

The C2 correlation function is a ratio of the like sign particle (track) pairs Q distributions' sum (signal distributions N(Q)(with BEC)) and the unlike sign particle (track) pairs Q distribution (reference distribution Nref(Q) (without BEC,but contain all other correlations.))

We construct the C2 correlation function

$$C_2(Q) = \frac{N(Q)}{N^{ref}(Q)} + + a$$
It is a problem!!!

++ and -- track pair combinations

+- track pair combinations

N(Q) = two particles Q distribution - identical particles used

4

Reference function – two basic possibilities:

- non-identical track pairs taken from the same event (N+-(Q)).
- Event mixing reference function: the same particle type track pairs created from different events ($N \in M + + --(Q)$)
- Opposite hemisphere technique (inversion of the 2nd track direction)

Parametrization functions

We used 6 fitting parametrization functions:

C2_1
$$C_{2-1} = C_0 (1 + \lambda e^{-R^2 Q^2}) (1 + Q \varepsilon)$$

C2_2 $C_{2-2} = C_0 (1 + \lambda e^{-RQ}) (1 + Q \varepsilon)$

C2_3
$$C_{2-3} = C_0 (1+2p(1-p)e^{-R^2Q^2} + p^2e^{-2R^2Q^2})(1+Q\epsilon)$$

C2_4
$$C_{2-4} = C_0 (1+2p(1-p)e^{-RQ}+p^2e^{-2RQ})(1+Q\epsilon)$$

C2_5 (Kozlov fitting function)

$$C_{2-5} = \chi(N)(1+2\frac{\alpha}{(1+\alpha)^2}e^{\frac{-R^2Q^2}{2}} + \frac{1}{(1+\alpha)^2}e^{-R^2Q^2})$$

C2_6 (Kozlov fitting function)

$$C_{2-6} = \chi(N) (1 + 2\frac{\alpha}{(1+\alpha)^2} e^{\frac{-R^2 Q^2}{2}} + \frac{1}{(1+\alpha)^2} e^{-R^2 Q^2}) (1 + Qr_f)$$

Coulomb correction*

The measured N(Q) distribution for the like or unlike signed particle (track) pairs in presence of the Coulomb interaction is given by:

 $N_{meas}(Q) = G(Q) N(Q)$

where Nmeas(Q) is the measured distribution, N(Q) is the distribution free of Coulomb correlations.

Gamow penetration G(Q) factor

$$G(Q) = \frac{2\pi\eta}{\mathrm{e}^{2\pi\eta} - 1}$$

Sommerfeld parameter n

Efficiency correction

Corrections on some efficiencies (functions of η and pt):

- * «reconstruction track efficiency»
- * «trigger efficiency»
- * «vertex reconstruction efficiency»

Correction Data on MC:

$$C_2^{Corr} = \frac{C_2^{DATA}(Q)}{C_2^{MC}(Q)}$$

Data samples

Official MinBias D3PD samples for Experimental data and MC are used

900 GeV data samples:

- Experimental data samples:
 - Number of selected events = 357,523
- MC data sample: (non-diffractive) Number of selected events = 975,742

7 TeV data samples:

- Experimental data samples:
 - Number of selected events = about 10 millions
- MC data sample: (non-diffractive) Number of selected events = 14 millions
- 7 TeV Data sample with the high multiplicity trigger
- Experimental data samples:

Number of selected events = 13,985

Event/ track selections (MinBias 2.0 analysis)

Trigger:

* L1_MBTS_1 | L1_MBTS_2 | L1_MBTS_1_1 trigger * good run/lumiblocks

Vertex Selection:

- * Pile-up Removal cut
- * >=1 vertex
- * >=2 "selected" track (as vertex requires 2 tracks)

Track Selection:

- * Pt > 100. MeV
- * abs(eta) < 2.5
- * |d0| < 1.5 mm
- * |z0 sin(theta)| < 1.5 mm
- * b-layer hit if one expected
- * >=1 pixel hit
- * >= 2,4,6 SCT hits for pt > 100,200,300 MeV
- * Chi2 prob > 0.01 for pt > 10 GeV (to remove the mismeasured tracks).

900 GeV: Q distributions, C2 functions, Ntracks Cuts Coul. & eff. corrections, Pt > 100 MeV, Q > 10 MeV

900 GeV: Q distributions, C2 functions, Pt Cuts Coul. & eff. corrections, Q > 10 MeV, Ntracks cut > 20 tracks

7 TeV: C2 functions, Pt & Ntracks Cuts Coul. & eff. corrections, Q > 10 MeV, Ntracks cut > 20 tracks

900 GeV : Q distributions, C2 functions

With/without Tracks and Events correction efficiencies Pt> 200 MeV, Q > 10 MeV, Ntracks > 20 tracks

900 GeV: Q distributions, C2 functions With/ without Coulomb correction Pt> 200 MeV, Q > 10 MeV, Ntracks > 20 tracks

14

7 TeV: Q distributions, C2 functions

With/ without Coulomb correction Pt> 100 MeV, Q > 20 MeV, Ntracks > 20 tracks

15

900 GeV: MC data & Collisions data: Q distributions, C2 functions

Coul. & eff. corrs, Pt> 200 MeV, Q > 10 MeV, Ntracks > 20 tracks

7 TeV: MC data & Collisions data: Q distributions, C2 functions

Coul. & eff. corrs, Pt> 500 MeV, Q > 10 MeV, Ntracks > 20 tracks

900 GeV : Collisions data : C2 function fitting Coul. & eff. corrections, Pt> 200 MeV, Q > 10 MeV, Ntracks > 20 tracks, full fitting interval

7 TeV : Collisions data : C2 function fitting Coul. & eff. corrections, Pt> 100 MeV, Q > 10 MeV, Ntracks > 20 tracks, full fitting interval

900 GeV : Collisions data : C2 function fitting Coul. & eff. corrections, Pt> 200 MeV, Q > 10 MeV, Ntracks > 20 tracks, excluded region (200-800MeV)

20

900 GeV : Data and Data corr. MC: C2 function fitting Coul. & eff. corrections, Pt > 200 MeV, Q > 20 MeV, Ntracks > 20 tracks, excluded interval (200-800)MeV from fit, first 4 fitting functions C2_1 - C2_4

7 TeV : Data and Data corr. MC: C2 function fitting Coul. & eff. corrections, Pt > 200 MeV, Q > 20 MeV, Ntracks > 20 tracks, first 4 fitting functions C2_1 - C2_4

Data and Data corr. MC : C2 function fitting Coul. & eff. corrections, Pt > 200 MeV, Q > 20 MeV, Ntracks > 20 tracks, excluded interval (200-800)MeV from fit, 4 fitting functions C2_1, C2_3, C2_5, C2_6

900 GeV : Collisions data : Hadronisation Radius vs Multiplicity R(N)

Diffr.corrections, Pt cuts = {100, 200} MeV, Q > 10 MeV, Multipl.Cuts = {2, 10, 20, 30, 40} tracks, excluded region (200-800MeV)

Preliminary look!

Very chaotic R(n)s' behaviour for full fitting interval. We have better fit and fitting parameters for the case with bay's interval exclusion (200-800)MeV. $R(C2_1), R(C2_3) = 1.0 \div 1.3$ for N ={2,...40} tracks, exc.range

 $R(C2_2), R(C2_4) = 1.5 \div 2.0$ for N ={2,..40} tracks, exc.range

7 TeV: Q distributions, C2 functions,

Event mixing reference sample Coul. & eff. corrections, Q > 10 MeV, Pt> 100 MeV, Ntracks cut > 20, 100 tracks

7 TeV: C2 functions,

Data +- ref. sample vs Event mixing reference sample Coul. & eff. corrections, Q > 10 MeV, Pt> 100 MeV, Ntracks cut > 20 tracks

7 TeV: A look at Monte Carlo

7 TeV: Q-ratio: data vs MC + resonance correction

Coul. & eff. corrections, Q > 10 MeV, Pt> 100 MeV, Ntracks cut > 20 tracks

Resonance correction function: $Corr = N_{+-}^{all}(Q) / N_{+-}^{non-res}(Q)$

The idea was to express two pair track N(Q) as a superposition of resonant, non-resonant and jet parts – to understand the role of tracks from resonances and jets (Bratislava group's investigation).

Summary

•First round of Bose-Einstein correlations for ATLAS carried out

- Hadronization radius (R) and incoherence factor (λ,p) extracted for different reference functions:
 - Same events +- track combinations
 - Event mixing ++-- track combinations
 - Opposite hemisphere technique with ++-- track combinations
 - the first version of BEC document are created
 - Todo list
 - BEC studies with a restricted $\cos \theta$
- BEC studies using particle identification (waiting for Rel16 samples)
 - Two-dimensional C2 correlation studies
 - study of events with the high multiplicity trigger.

Thank You For Your Attention!

Backup slides

900 GeV Data: Hadronisation Radius —

Different parametrizations of the C2 function

Selections: Qcut =20 MeV, Coulomb & efficiciency corrections

Fit for full interval and except (200-800MeV) interval - «excluded range»

	QCUT	N cut	R 1 ± errors	R 2 ± errors	R 3 ± errors	R 4 ± errors	R 5 ± errors	R 6 ± errors		
	Full range for fit									
100	20	2	0.69463 ± 0.03083	1.0287 ± 0.12546	0.8688 ± 0.0348	0.89309 ± 0.10757	2.00548 ± 0.22064	1.30889 ± 0.05683		
100	20	10	0.83625 ± 0.02953	1.51568 ± 0.16176	0.96696 ± 0.03436	1.30523 ± 0.07893	2.14772 ± 0.26208	1.43486 ± 0.05626		
100	20	20	0.93068 ± 0.05867	0.86185 ± 0.25401	1.20162 ± 0.0949	1.03843 ± 0.14619	2.24345 ± 0.21108	1.86355 ± 0.14633		
100	20	30	1.19067 ± 0.09603	2.36075 ± 0.24987	1.3465 ± 0.06798	1.37777 ± 0.20302	2.42893 ± 0.29269	2.02786 ± 0.10662		
100	20	40	1.32255 ± 0.20647	2.90782 ± 0.41517	1.41997 ± 0.1252	1.10409 ± 0.08766	2.53995 ± 0.45761	2.11745 ± 0.18141		
200	20	2	0.7614 ± 0.03954	0.79672 ± 0.27276	0.95019 ± 0.04884	0.67198 ± 0.22278	1.70293 ± 0.10749	1.44267 ± 0.07976		
200	20	10	0.843 ± 0.0319	1.33584 ± 0.19776	0.99239 ± 0.04965	1.22876 ± 0.12795	1.81672 ± 0.11269	1.51501 ± 0.09175		
200	20	20	1.01842 ± 0.04382	0.8697 ± 0.28514	1.19932 ± 0.05357	1.47777 ± 0.25259	1.97626 ± 0.1432	1.77971 ± 0.08278		
200	20	30	1.21279 ± 0.10826	2.5811 ± 0.37537	1.35991 ± 0.07401	1.64546 ± 0.2637	2.19205 ± 0.18614	2.00170 ± 0.11375		
200	20	40	1.28159 ± 0.09313	1.87083 ± 0.79792	1.48993 ± 0.11121	1.80868 ± 0.3869	2.52752 ± 0.25113	2.21039 ± 0.17146		
300	20	2	0.46462 ± 0.01918	0.5375 ± 0.01233	1.13533 ± 0.07515	0.2151 ± 0.02364	1.97251 ± 0.1655	1.69871 ± 0.11103		
300	20	10	0.93499 ± 0.07803	0.49139 ± 0.013	1.20344 ± 0.07759	0.24285 ± 0.02563	2.12015 ± 0.17948	1.79341 ± 0.11617		
300	20	20	1.1629 ± 0.05843	0.41147 ± 0.01331	1.3044 ± 0.06369	1.59395 ± 0.21918	2.49856 ± 0.24425	1.91170 ± 0.09805		
300	20	30	1.47383 ± 0.14425	3.30235 ± 0.60597	1.55876 ± 0.09787	1.88823 ± 0.31771	2.58578 ± 0.27827	2.27839 ± 0.15079		
300	20	40	1.69959 ± 0.32689	3.8301 ± 1.0868	1.82322 ± 0.18803	2.06635 ± 0.49418	2.85041 ± 0.36848	2.67596 ± 0.27806		
				Dong	 (200_0.00) MaX/ availus 	L . I.C				
				Rang	e (200-800) Mev exclu	led from fit				
100	20	2	1.22726 ± 0.11633	1.83465 ± 0.25897	1.24911 ± 0.05734	1.48523 ± 0.10761	2.36059 ± 0.12773	1.88969 ± 0.08153		
100 100	20 20	2 10	1.22726 ± 0.11633 1.35019 ± 0.13289	1.83465 ± 0.25897 2.01118 ± 0.31095	1.24911 ± 0.05734 1.37996 ± 0.06343	1.48523 ± 0.10761 1.69331 ± 0.16619	2.36059 ± 0.12773 2.38236 ± 0.13666	1.88969 ± 0.08153 2.06586 ± 0.09028		
100 100 100	20 20 20	2 10 20	1.22726 ± 0.11633 1.35019 ± 0.13289 1.25273 ± 0.22786	1.83465 ± 0.25897 2.01118 ± 0.31095 1.94795 ± 0.54421	1.24911 ± 0.05734 1.37996 ± 0.06343 1.28621 ± 0.10085	1.48523 ± 0.10761 1.69331 ± 0.16619 1.56681 ± 0.17993	2.36059 ± 0.12773 2.38236 ± 0.13666 2.43528 ± 0.15443	1.88969 ± 0.08153 2.06586 ± 0.09028 1.92753 ± 0.1379		
100 100 100 100	20 20 20 20	2 10 20 30	1.22726 ± 0.11633 1.35019 ± 0.13289 1.25273 ± 0.22786 1.44978 ± 0.20427	Kang 1.83465 ± 0.25897 2.01118 ± 0.31095 1.94795 ± 0.54421 2.26059 ± 0.49421	1.24911 ± 0.05734 1.37996 ± 0.06343 1.28621 ± 0.10085 1.53437 ± 0.11972	1.48523 ± 0.10761 1.69331 ± 0.16619 1.56681 ± 0.17993 1.92418 ± 0.26952	2.36059 ± 0.12773 2.38236 ± 0.13666 2.43528 ± 0.15443 2.63092 ± 0.16301	1.88969 ± 0.08153 2.06586 ± 0.09028 1.92753 ± 0.1379 2.30263 ± 0.17148		
100 100 100 100 100	20 20 20 20 20	2 10 20 30 40	1.22726 ± 0.11633 1.35019 ± 0.13289 1.25273 ± 0.22786 1.44978 ± 0.20427 1.40933 ± 0.23738	1.83465 ± 0.25897 2.01118 ± 0.31095 1.94795 ± 0.54421 2.26059 ± 0.49421 2.0548 ± 0.58197	1.24911 ± 0.05734 1.37996 ± 0.06343 1.28621 ± 0.10085 1.53437 ± 0.11972 1.50294 ± 0.18222	1.48523 ± 0.10761 1.69331 ± 0.16619 1.56681 ± 0.17993 1.92418 ± 0.26952 1.85254 ± 0.47932	2.36059 ± 0.12773 2.38236 ± 0.13666 2.43528 ± 0.15443 2.63092 ± 0.16301 2.59818 ± 0.20819	1.88969 ± 0.08153 2.06586 ± 0.09028 1.92753 ± 0.1379 2.30263 ± 0.17148 2.20982 ± 0.26016		
100 100 100 100 100 200	20 20 20 20 20 20 20	2 10 20 30 40 2	1.22726 ± 0.11633 1.35019 ± 0.13289 1.25273 ± 0.22786 1.44978 ± 0.20427 1.40933 ± 0.23738 1.13477 ± 0.05066	Kang 1.83465 ± 0.25897 2.01118 ± 0.31095 1.94795 ± 0.54421 2.26059 ± 0.49421 2.0548 ± 0.58197 1.68254 ± 0.12269	1.24911 ± 0.05734 1.37996 ± 0.06343 1.28621 ± 0.10085 1.53437 ± 0.11972 1.50294 ± 0.18222 1.10952 ± 0.04306	Indiana Indiana 1.48523 ± 0.10761 1.69331 ± 0.16619 1.56681 ± 0.17993 1.92418 ± 0.26952 1.85254 ± 0.47932 1.32897 ± 0.07602	2.36059 ± 0.12773 2.38236 ± 0.13666 2.43528 ± 0.15443 2.63092 ± 0.16301 2.59818 ± 0.20819 2.23919 ± 0.07432	1.88969 ± 0.08153 2.06586 ± 0.09028 1.92753 ± 0.1379 2.30263 ± 0.17148 2.20982 ± 0.26016 1.62227 ± 0.06765		
100 100 100 100 200 200	20 20 20 20 20 20 20 20 20	2 10 20 30 40 2 10	1.22726 ± 0.11633 1.35019 ± 0.13289 1.25273 ± 0.22786 1.44978 ± 0.20427 1.40933 ± 0.23738 1.13477 ± 0.05066 1.17967 ± 0.0572	1.83465 ± 0.25897 2.01118 ± 0.31095 1.94795 ± 0.54421 2.26059 ± 0.49421 2.0548 ± 0.58197 1.68254 ± 0.12269 1.81488 ± 0.14006	1.24911 ± 0.05734 1.37996 ± 0.06343 1.28621 ± 0.10085 1.53437 ± 0.11972 1.50294 ± 0.18222 1.10952 ± 0.04306 1.18578 ± 0.05026	1.48523 \pm 0.10761 1.69331 \pm 0.16619 1.56681 \pm 0.17993 1.92418 \pm 0.26952 1.85254 \pm 0.47932 1.32897 \pm 0.07602 1.49152 \pm 0.08422	2.36059 ± 0.12773 2.38236 ± 0.13666 2.43528 ± 0.15443 2.63092 ± 0.16301 2.59818 ± 0.20819 2.23919 ± 0.07432 2.31503 ± 0.07501	1.88969 ± 0.08153 2.06586 ± 0.09028 1.92753 ± 0.1379 2.30263 ± 0.17148 2.20982 ± 0.26016 1.62227 ± 0.06765 1.73927 ± 0.0833		
100 100 100 100 200 200 200	20 20 20 20 20 20 20 20 20 20	2 10 20 30 40 2 10 20	1.22726 ± 0.11633 1.35019 ± 0.13289 1.25273 ± 0.22786 1.44978 ± 0.20427 1.40933 ± 0.23738 1.13477 ± 0.05066 1.17967 ± 0.0572 1.20492 ± 0.08204	1.83465 ± 0.25897 2.01118 ± 0.31095 1.94795 ± 0.54421 2.26059 ± 0.49421 2.0548 ± 0.58197 1.68254 ± 0.12269 1.81488 ± 0.14006 1.92864 ± 0.20843	1.24911 ± 0.05734 1.37996 ± 0.06343 1.28621 ± 0.10085 1.53437 ± 0.11972 1.50294 ± 0.18222 1.10952 ± 0.04306 1.18578 ± 0.05026 1.29147 ± 0.07439	1.48523 ± 0.10761 1.69331 ± 0.16619 1.56681 ± 0.17993 1.92418 ± 0.26952 1.85254 ± 0.47932 1.32897 ± 0.07602 1.49152 ± 0.08422 1.67777 ± 0.13508	2.36059 ± 0.12773 2.38236 ± 0.13666 2.43528 ± 0.15443 2.63092 ± 0.16301 2.59818 ± 0.20819 2.23919 ± 0.07432 2.31503 ± 0.07501 2.49101 ± 0.09704	1.88969 ± 0.08153 2.06586 ± 0.09028 1.92753 ± 0.1379 2.30263 ± 0.17148 2.20982 ± 0.26016 1.62227 ± 0.06765 1.73927 ± 0.0833 1.92088 ± 0.12591		
100 100 100 200 200 200 200 200	20 20 20 20 20 20 20 20 20 20 20	2 10 20 30 40 2 10 20 30	1.22726±0.116331.35019±0.132891.25273±0.227861.44978±0.204271.40933±0.237381.13477±0.050661.17967±0.05721.20492±0.082041.24051±0.11552	1.83465 ± 0.25897 2.01118 ± 0.31095 1.94795 ± 0.54421 2.26059 ± 0.49421 2.0548 ± 0.58197 1.68254 ± 0.12269 1.81488 ± 0.14006 1.92864 ± 0.20843 2.00546 ± 0.31164	1.24911 ± 0.05734 1.37996 ± 0.06343 1.28621 ± 0.10085 1.53437 ± 0.11972 1.50294 ± 0.18222 1.10952 ± 0.04306 1.18578 ± 0.05026 1.29147 ± 0.07439 1.37425 ± 0.10195	led from fit 1.48523 ± 0.10761 1.69331 ± 0.16619 1.56681 ± 0.17993 1.92418 ± 0.26952 1.85254 ± 0.47932 1.32897 ± 0.07602 1.49152 ± 0.08422 1.67777 ± 0.13508 1.78515 ± 0.22135	2.36059 ± 0.12773 2.38236 ± 0.13666 2.43528 ± 0.15443 2.63092 ± 0.16301 2.59818 ± 0.20819 2.23919 ± 0.07432 2.31503 ± 0.07501 2.49101 ± 0.09704 2.60686 ± 0.12888	1.88969 ± 0.08153 2.06586 ± 0.09028 1.92753 ± 0.1379 2.30263 ± 0.17148 2.20982 ± 0.26016 1.62227 ± 0.06765 1.73927 ± 0.0833 1.92088 ± 0.12591 2.05713 ± 0.16958		
100 100 100 200 200 200 200 200 200	20 20 20 20 20 20 20 20 20 20 20 20	2 10 20 30 40 2 10 20 30 40	1.22726 ± 0.11633 1.35019 ± 0.13289 1.25273 ± 0.22786 1.44978 ± 0.20427 1.40933 ± 0.23738 1.13477 ± 0.05066 1.17967 ± 0.0572 1.20492 ± 0.08204 1.24051 ± 0.11552 1.10001 ± 0.17103	1.83465 ± 0.25897 2.01118 ± 0.31095 1.94795 ± 0.54421 2.26059 ± 0.49421 2.0548 ± 0.58197 1.68254 ± 0.12269 1.81488 ± 0.14006 1.92864 ± 0.20843 2.00546 ± 0.31164 1.5648 ± 0.45728	1.24911 ± 0.05734 1.37996 ± 0.06343 1.28621 ± 0.10085 1.53437 ± 0.11972 1.50294 ± 0.18222 1.10952 ± 0.04306 1.18578 ± 0.05026 1.29147 ± 0.07439 1.37425 ± 0.10195	led from it 1.48523 ± 0.10761 1.69331 ± 0.16619 1.56681 ± 0.17993 1.92418 ± 0.26952 1.85254 ± 0.47932 1.32897 ± 0.07602 1.49152 ± 0.08422 1.67777 ± 0.13508 1.78515 ± 0.22135 1.34283 ± 0.32306	2.36059 ± 0.12773 2.38236 ± 0.13666 2.43528 ± 0.15443 2.63092 ± 0.16301 2.59818 ± 0.20819 2.23919 ± 0.07432 2.31503 ± 0.07501 2.49101 ± 0.09704 2.60686 ± 0.12888 2.68884 ± 0.26618	1.88969 ± 0.08153 2.06586 ± 0.09028 1.92753 ± 0.1379 2.30263 ± 0.17148 2.20982 ± 0.26016 1.62227 ± 0.06765 1.73927 ± 0.0833 1.92088 ± 0.12591 2.05713 ± 0.16958 1.72517 ± 0.15244		
100 100 100 200 200 200 200 200 200 300	20 20 20 20 20 20 20 20 20 20 20 20 20 2	2 10 20 30 40 2 10 20 30 40 2	1.22726 ± 0.11633 1.35019 ± 0.13289 1.25273 ± 0.22786 1.44978 ± 0.20427 1.40933 ± 0.23738 1.13477 ± 0.05066 1.17967 ± 0.0572 1.20492 ± 0.08204 1.24051 ± 0.11552 1.10001 ± 0.17103 1.11227 ± 0.08095	1.83465 ± 0.25897 2.01118 ± 0.31095 1.94795 ± 0.54421 2.26059 ± 0.49421 2.0548 ± 0.58197 1.68254 ± 0.12269 1.81488 ± 0.14006 1.92864 ± 0.20843 2.00546 ± 0.31164 1.5648 ± 0.45728 1.6319 ± 0.20661	1.24911 ± 0.05734 1.37996 ± 0.06343 1.28621 ± 0.10085 1.53437 ± 0.11972 1.50294 ± 0.18222 1.10952 ± 0.04306 1.18578 ± 0.05026 1.29147 ± 0.07439 1.37425 ± 0.10195 1.15893 ± 0.10699 1.11359 ± 0.06033	led from fit 1.48523 ± 0.10761 1.69331 ± 0.16619 1.56681 ± 0.17993 1.92418 ± 0.26952 1.85254 ± 0.47932 1.32897 ± 0.07602 1.49152 ± 0.08422 1.67777 ± 0.13508 1.78515 ± 0.22135 1.32395 ± 0.11851	2.36059 ± 0.12773 2.38236 ± 0.13666 2.43528 ± 0.15443 2.63092 ± 0.16301 2.59818 ± 0.20819 2.23919 ± 0.07432 2.31503 ± 0.07501 2.49101 ± 0.09704 2.60686 ± 0.12888 2.68884 ± 0.26618 2.35762 ± 0.11502	1.88969 ± 0.08153 2.06586 ± 0.09028 1.92753 ± 0.1379 2.30263 ± 0.17148 2.20982 ± 0.26016 1.62227 ± 0.06765 1.73927 ± 0.0833 1.92088 ± 0.12591 2.05713 ± 0.16958 1.72517 ± 0.15244 1.65153 ± 0.0895		
100 100 100 200 200 200 200 200 300 300	20 20 20 20 20 20 20 20 20 20 20 20 20 2	2 10 20 30 40 2 10 20 30 40 2 10	1.22726 ± 0.11633 1.35019 ± 0.13289 1.25273 ± 0.22786 1.44978 ± 0.20427 1.40933 ± 0.23738 1.13477 ± 0.05066 1.17967 ± 0.0572 1.20492 ± 0.08204 1.24051 ± 0.11552 1.10001 ± 0.17103 1.11227 ± 0.08095 1.14772 ± 0.09171	1.83465 ± 0.25897 2.01118 ± 0.31095 1.94795 ± 0.54421 2.26059 ± 0.49421 2.0548 ± 0.58197 1.68254 ± 0.12269 1.81488 ± 0.14006 1.92864 ± 0.20843 2.00546 ± 0.31164 1.5648 ± 0.45728 1.6319 ± 0.20661 1.73921 ± 0.23586	1.24911 ± 0.05734 1.37996 ± 0.06343 1.28621 ± 0.10085 1.53437 ± 0.11972 1.50294 ± 0.18222 1.10952 ± 0.04306 1.18578 ± 0.05026 1.29147 ± 0.07439 1.37425 ± 0.10195 1.15893 ± 0.10699 1.11359 ± 0.06033 1.17145 ± 0.06929	led from fit 1.48523 ± 0.10761 1.69331 ± 0.16619 1.56681 ± 0.17993 1.92418 ± 0.26952 1.85254 ± 0.47932 1.32897 ± 0.07602 1.49152 ± 0.08422 1.67777 ± 0.13508 1.78515 ± 0.22135 1.34283 ± 0.32306 1.43948 ± 0.13377	2.36059 ± 0.12773 2.38236 ± 0.13666 2.43528 ± 0.15443 2.63092 ± 0.16301 2.59818 ± 0.20819 2.23919 ± 0.07432 2.31503 ± 0.07501 2.49101 ± 0.09704 2.60686 ± 0.12888 2.68884 ± 0.26618 2.35762 ± 0.11502 2.47774 ± 0.126	1.88969 ± 0.08153 2.06586 ± 0.09028 1.92753 ± 0.1379 2.30263 ± 0.17148 2.20982 ± 0.26016 1.62227 ± 0.06765 1.73927 ± 0.0833 1.92088 ± 0.12591 2.05713 ± 0.16958 1.72517 ± 0.1895 1.65153 ± 0.0895 1.73607 ± 0.1044		
100 100 100 200 200 200 200 200 200 300 300 300	20 20 20 20 20 20 20 20 20 20 20 20 20 2	2 10 20 30 40 2 10 20 30 40 2 10 20	1.22726 ± 0.11633 1.35019 ± 0.13289 1.25273 ± 0.22786 1.44978 ± 0.20427 1.40933 ± 0.23738 1.13477 ± 0.05066 1.17967 ± 0.0572 1.20492 ± 0.08204 1.24051 ± 0.11552 1.10001 ± 0.17103 1.11227 ± 0.08095 1.14772 ± 0.09171 1.16733 ± 0.10571	1.83465 ± 0.25897 2.01118 ± 0.31095 1.94795 ± 0.54421 2.26059 ± 0.49421 2.0548 ± 0.58197 1.68254 ± 0.12269 1.81488 ± 0.14006 1.92864 ± 0.20843 2.00546 ± 0.31164 1.5648 ± 0.45728 1.6319 ± 0.20661 1.73921 ± 0.23586 1.83842 ± 0.27125	1.24911 ± 0.05734 1.37996 ± 0.06343 1.28621 ± 0.10085 1.53437 ± 0.11972 1.50294 ± 0.18222 1.10952 ± 0.04306 1.18578 ± 0.05026 1.29147 ± 0.07439 1.37425 ± 0.10195 1.15893 ± 0.10699 1.11359 ± 0.06033 1.17145 ± 0.06929	led from it 1.48523 ± 0.10761 1.69331 ± 0.16619 1.56681 ± 0.17993 1.92418 ± 0.26952 1.85254 ± 0.47932 1.32897 ± 0.07602 1.49152 ± 0.08422 1.67777 ± 0.13508 1.78515 ± 0.22135 1.32395 ± 0.32306 1.32395 ± 0.11851 1.43948 ± 0.13377 1.55796 ± 0.1453	2.36059 ± 0.12773 2.38236 ± 0.13666 2.43528 ± 0.15443 2.63092 ± 0.16301 2.59818 ± 0.20819 2.23919 ± 0.07432 2.31503 ± 0.07501 2.49101 ± 0.09704 2.60686 ± 0.12888 2.68884 ± 0.26618 2.35762 ± 0.11502 2.47774 ± 0.126	1.88969 ± 0.08153 2.06586 ± 0.09028 1.92753 ± 0.1379 2.30263 ± 0.17148 2.20982 ± 0.26016 1.62227 ± 0.06765 1.73927 ± 0.0833 1.92088 ± 0.12591 2.05713 ± 0.16958 1.72517 ± 0.15244 1.65153 ± 0.0895 1.73607 ± 0.1044 1.83842 ± 0.11881		
100 100 100 200 200 200 200 200 200 300 300 300 3	20 20 20 20 20 20 20 20 20 20 20 20 20 2	2 10 20 30 40 2 10 20 30 40 2 10 20 30 30	1.22726 ± 0.11633 1.35019 ± 0.13289 1.25273 ± 0.22786 1.44978 ± 0.20427 1.40933 ± 0.203738 1.13477 ± 0.05066 1.17967 ± 0.0572 1.20492 ± 0.08204 1.24051 ± 0.11552 1.10001 ± 0.17103 1.11227 ± 0.08095 1.14772 ± 0.09171 1.16733 ± 0.10571 1.10239 ± 0.18449	1.83465 ± 0.25897 2.01118 ± 0.31095 1.94795 ± 0.54421 2.26059 ± 0.49421 2.0548 ± 0.58197 1.68254 ± 0.12269 1.81488 ± 0.14006 1.92864 ± 0.20843 2.00546 ± 0.31164 1.5648 ± 0.45728 1.6319 ± 0.20661 1.73921 ± 0.23586 1.83842 ± 0.27125 1.6926 ± 0.49251	1.24911 ± 0.05734 1.37996 ± 0.06343 1.28621 ± 0.10085 1.53437 ± 0.11972 1.50294 ± 0.18222 1.10952 ± 0.04306 1.18578 ± 0.07439 1.37425 ± 0.10195 1.15893 ± 0.10699 1.11359 ± 0.06033 1.17145 ± 0.06929 1.23518 ± 0.12007	led from it 1.48523 ± 0.10761 1.69331 ± 0.16619 1.56681 ± 0.17993 1.92418 ± 0.26952 1.85254 ± 0.47932 1.32897 ± 0.07602 1.49152 ± 0.08422 1.67777 ± 0.13508 1.78515 ± 0.22135 1.32395 ± 0.32306 1.32395 ± 0.11851 1.43948 ± 0.13377 1.55796 ± 0.2409	2.36059 ± 0.12773 2.38236 ± 0.13666 2.43528 ± 0.15443 2.63092 ± 0.16301 2.59818 ± 0.20819 2.23919 ± 0.07432 2.31503 ± 0.07501 2.49101 ± 0.09704 2.60686 ± 0.12888 2.68884 ± 0.26618 2.35762 ± 0.11502 2.47774 ± 0.126 2.71503 ± 0.16568 2.8274 ± 0.2857	1.88969 ± 0.08153 2.06586 ± 0.09028 1.92753 ± 0.1379 2.30263 ± 0.17148 2.20982 ± 0.26016 1.62227 ± 0.06765 1.73927 ± 0.0833 1.92088 ± 0.12591 2.05713 ± 0.16958 1.72517 ± 0.1895 1.73607 ± 0.1044 1.83842 ± 0.11881 1.7223 ± 0.17098		

900 GeV : Data corr. on MC: Hadronisation Radius —

Different parametrizations of the C2 function

Selections: Qcut =20 MeV, Coulomb & efficiciency corrections Fit for full interval and except (200-800MeV) interval - «excluded range»

Pt cut	Qcut	N cut	R 1 ± errors	R 2 ± errors	R 3 ± errors	R 4 ± errors	R 5 ± errors	R 6 ± errors	
	Full range for fit								
100	20	2	0.81167 ± 0.02292	1.50526 ± 0.21228	0.89892 ± 0.02822	1.46017 ± 0.1724	1.31404 ± 0.0451	1.31404 ± 0.04528	
100	20	10	0.8732 ± 0.04082	2.05297 ± 0.27343	0.96027 ± 0.04802	1.03443 ± 0.13817	1.40264 ± 0.07553	1.40264 ± 0.07588	
100	20	20	0.97207 ± 0.05846	1.68342 ± 0.49727	1.12598 ± 0.08144	1.40769 ± 0.22761	1.67245 ± 0.13031	1.67245 ± 0.13089	
100	20	30	0.97346 ± 0.0355	2.1326 ± 0.34856	1.03978 ± 0.03861	2.00601 ± 0.13041	1.4998 ± 0.05768	1.4998 ± 0.05787	
100	20	40	0.99678 ± 0.07755	1.53374 ± 0.25607	1.31498 ± 0.09764	1.5508 ± 0.11993	1.98541 ± 0.14405	1.98541 ± 0.14471	
200	20	2	0.76371 ± 0.04921	1.7021 ± 0.26002	0.80615 ± 0.03831	0.68804 ± 0.05676	1.33192 ± 0.06029	1.17058 ± 0.05843	
200	20	10	0.87916 ± 0.07105	2.24907 ± 0.34843	0.9404 ± 0.06167	0.82569 ± 0.07282	1.51414 ± 0.10866	1.37799 ± 0.09575	
200	20	20	0.90897 ± 0.03855	1.86071 ± 0.29198	1.03343 ± 0.04423	1.67438 ± 0.10033	1.51348 ± 0.06502	1.51348 ± 0.06515	
200	20	30	1.00173 ± 0.0456	2.21531 ± 0.336	1.1159 ± 0.04877	1.88161 ± 0.13322	1.62491 ± 0.07081	1.62491 ± 0.07118	
200	20	40	1.22697 ± 0.07521	2.8365 ± 0.33177	1.21591 ± 0.03864	1.17973 ± 0.125	1.75774 ± 0.05402	1.75774 ± 0.05441	
300	20	2	0.80322 ± 0.02418	1.50656 ± 0.17798	0.9253 ± 0.02978	1.41824 ± 0.1064	1.3612 ± 0.04478	1.3612 ± 0.04501	
300	20	10	0.85738 ± 0.0241	1.62747 ± 0.21373	0.97001 ± 0.02599	1.18555 ± 0.21071	1.41639 ± 0.03778	1.41639 ± 0.03795	
300	20	20	0.88021 ± 0.03301	1.59041 ± 0.25462	1.01038 ± 0.03788	1.51976 ± 0.19476	1.48356 ± 0.05597	1.48356 ± 0.05591	
300	20	30	0.8553 ± 0.03965	0.96075 ± 0.0514	1.03779 ± 0.04907	1.23165 ± 0.05663	1.54221 ± 0.07353	1.54221 ± 0.07381	
300	20	40	1.06418 ± 0.03344	1.92914 ± 0.4153	1.16161 ± 0.03491	1.72913 ± 0.73781	1.68327 ± 0.05139	1.68327 ± 0.05162	
				Range	(200-800) MeV exclud	led from fit			
100	20	2	1.08519 ± 0.47772	0.25581 ± 0.04544	1.30521 ± 0.1426	0.19477 ± 0.03211	1.97296 ± 0.19208	1.97296 ± 0.1949	
100	20	10	1.1549 ± 0.53048	0.34884 ± 0.05347	1.3428 ± 0.15248	0.24217 ± 0.03653	2.0191 ± 0.20491	2.0191 ± 0.20816	
100	20	20	1.131 ± 0.44141	0.43724 ± 0.07321	1.40757 ± 0.15794	0.83819 ± 0.09828	2.12186 ± 0.21806	2.12186 ± 0.22111	
100	20	30	1.27255 ± 0.33327	0.35487 ± 0.07868	1.48442 ± 0.16557	0.23994 ± 0.04757	2.25735 ± 0.23924	2.25735 ± 0.24129	
100	20	40	1.02619 ± 0.09222	0.68395 ± 1.0667	1.34326 ± 0.08795	1.39207 ± 0.15223	2.01677 ± 0.1287	2.01677 ± 0.12963	
200	20	2	1.0531 ± 0.19099	0.39061 ± 0.07577	1.18919 ± 0.07032	0.90637 ± 0.13828	1.78833 ± 0.09804	1.78833 ± 0.09895	
200	20	10	1.06671 ± 0.22806	0.34218 ± 0.08241	1.21472 ± 0.08268	0.91338 ± 0.17640	1.82291 ± 0.11425	1.82291 ± 0.11556	
200	20	20	1.0475 ± 0.35258	0.35994 ± 0.08261	1.2629 ± 0.12052	0.24004 ± 0.05085	1.89111 ± 0.16639	1.89111 ± 0.16886	
200	20	30	1.12899 ± 0.27574	0.55688 ± 0.23892	1.35872 ± 0.09902	1.39981 ± 0.19417	2.0237 ± 0.13896	2.0237 ± 0.13354	
200	20	40	1.26071 ± 0.1026	1.24287 ± 0.21872	1.4948 ± 0.09312	1.77903 ± 0.19987	2.19957 ± 0.13067	2.19957 ± 0.13206	
300	20	2	0.9075 ± 0.35888	0.27845 ± 0.06572	1.18853 ± 0.10386	0.22649 ± 0.07534	1.79191 ± 0.14286	1.79191 ± 0.14488	
300	20	10	0.94215 ± 0.33829	0.35769 ± 6.77261	1.23039 ± 0.1022	0.25061 ± 11.1899	1.84803 ± 0.14114	1.84803 ± 0.14276	
300	20	20	1.01156 ± 0.11396	0.36385 ± 0.09582	1.30439 ± 0.09503	1.23736 ± 0.18594	1.9473 ± 0.13188	1.9473 ± 0.1334	
300	20	30	1.09664 ± 0.12704	0.41853 ± 0.15318	1.36839 ± 0.10901	1.42084 ± 0.22277	2.03056 ± 0.15084	2.03056 ± 0.14407	
300	20	40	1.02325 ± 0.24873	0.54973 ± 0.12225	1.37671 ± 0.23035	1.37861 ± 0.46796	2.20624 ± 0.20467	2.08309 ± 0.32724	

7TeV : C2 fit vs Ntracks cuts

Qmin =20 MeV, (0,0)- full fitted interval, (0.2,0.8) GeV - the interval not included

trkpTcut=100MeV			f1(Q)	f2(Q)	f3(Q)	f4(Q)
NtrkCut from to			R	R	R	R
0	0	0	1.305 ± 0.0015	2.470 ± 0.004	1.275 ± 0.001	1.210 ± 0.002
0	0.2	0.8	1.589 ± 0.0022	2.782 ± 0.006	1.542 ± 0.002	1.974 ± 0.009
20	0	0	1.413 ± 0.0019	2.696 ± 0.005	1.380 ± 0.002	1.316 ± 0.003
20	0.2	0.8	1.670 ± 0.0026	2.992 ± 0.007	1.622 ± 0.002	1.960 ± 0.012
50	0	0	1.574 ± 0.0037	3.029 ± 0.009	1.539 ± 0.003	1.550 ± 0.007
50	0.2	0.8	1.804 ± 0.0046	3.335 ± 0.012	1.756 ± 0.004	1.958 ± 0.017
100	0	0	1.744 ± 0.0201	3.368 ± 0.046	1.708 ± 0.019	1.881 ± 0.050
100	0.2	0.8	1.938 ± 0.0236	3.613 ± 0.060	1.890 ± 0.022	2.168 ± 0.079
TrkpTcu	t=2001	leV	f1(Q)	f2(Q)	f3(Q)	f4(Q)
TrkpTcu NtrkCut 1	t=200 M from t	1eV	f1(Q) R	f2(Q) R	f3(Q) R	f4(Q) R
TrkpTcu NtrkQut 1 0	t=200 M from t	1eV :0 0	f1(Q) R 1.319 ± 0.0021	f2(Q) R 2.463 ± 0.005	f3(Q) R 1.288 ± 0.002	f4(Q) R 1.231 ± 0.004
TrkpTcu NtrkQut 1 0 0	t=200 from t 0 0.2	1eV :0 0.8	f1(Q) R 1.319 ± 0.0021 1.607 ± 0.0030	f2(Q) R 2.463 ± 0.005 2.799 ± 0.008	f3(Q) R 1.288 ± 0.002 1.562 ± 0.003	f4(Q) R 1.231 ± 0.004 2.229 ± 0.005
Trk pTcu NtrkQut 1 0 20	t=200 from t 0 0.2 0	1eV 0 0.8 0	$\begin{array}{c} f1(Q) \\ R \\ 1.319 \pm 0.0021 \\ 1.607 \pm 0.0030 \\ 1.467 \pm 0.0027 \end{array}$	f2(Q)R2.463±0.0052.799±0.0082.794±0.006	f3(Q) R 1.288 ± 0.002 1.562 ± 0.003 1.434 ± 0.003	f4(Q)R1.231±0.0042.229±0.0051.303±0.004
Trk pTcu NtrkQut 1 0 20 20	t=200 from t 0 0.2 0 0.2	1e∨ ⊙ 0.8 0.8 0.8	$\begin{array}{c c} f1(Q) \\ R \\ \hline 1.319 \pm 0.0021 \\ 1.607 \pm 0.0030 \\ \hline 1.467 \pm 0.0027 \\ \hline 1.727 \pm 0.0038 \end{array}$	f2(Q)R2.463±0.0052.799±0.0082.794±0.0063.106±0.010	$\begin{array}{c c} f3(Q) \\ R \\ \hline 1.288 \pm 0.002 \\ \hline 1.562 \pm 0.003 \\ \hline 1.434 \pm 0.003 \\ \hline 1.682 \pm 0.004 \end{array}$	f4(Q)R1.231±0.0042.229±0.0051.303±0.0042.374±0.013
Trk pTcu NtrkQut 1 0 20 20 50	t=200 M from t 0 0 0.2 0 0 0.2 0 0	1e∨ ⊙ 0.8 0 0.8 0.8	$\begin{array}{c} f1(Q) \\ R \\ 1.319 \pm 0.0021 \\ 1.607 \pm 0.0030 \\ 1.467 \pm 0.0027 \\ 1.727 \pm 0.0038 \\ 1.668 \pm 0.0056 \end{array}$	f2(Q)R2.463±0.0052.799±0.0082.794±0.0063.106±0.0103.240±0.013	$\begin{array}{c c} f3(Q) \\ R \\ \hline 1.288 & \pm & 0.002 \\ 1.562 & \pm & 0.003 \\ 1.434 & \pm & 0.003 \\ \hline 1.682 & \pm & 0.004 \\ \hline 1.631 & \pm & 0.005 \end{array}$	f4(Q)R1.231±0.0042.229±0.0051.303±0.0042.374±0.0131.473±0.007
Trk pTcu NtrkQut 1 0 0 20 20 50 50	t=200 from t 0.2 0.2 0.2 0.2 0.2	Ae∨ ⊙ 0.8 0 0.8 0.8 0.8	$\begin{array}{c c} f1(Q) \\ R \\ \hline 1.319 \pm 0.0021 \\ 1.607 \pm 0.0030 \\ \hline 1.467 \pm 0.0027 \\ \hline 1.727 \pm 0.0038 \\ \hline 1.668 \pm 0.0056 \\ \hline 1.904 \pm 0.0072 \end{array}$	f2(Q)R2.463±0.0052.799±0.0082.794±0.0063.106±0.0103.240±0.0133.545±0.019	$\begin{array}{c c} f3(Q) \\ R \\ \hline 1.288 & \pm & 0.002 \\ 1.562 & \pm & 0.003 \\ 1.434 & \pm & 0.003 \\ 1.682 & \pm & 0.004 \\ 1.631 & \pm & 0.005 \\ 1.857 & \pm & 0.007 \end{array}$	f4(Q)R1.231±0.0042.229±0.0051.303±0.0042.374±0.0131.473±0.0072.160±0.033
Trk pTcu NtrkCut 1 0 0 20 20 20 50 50 100	t=200 from t 0.2 0.2 0.2 0.2 0.2 0.2	1e∨ 0 0.8 0 0.8 0 0.8 0 0.8 0	$\begin{array}{c} f1(Q) \\ R \\ \hline 1.319 \pm 0.0021 \\ 1.607 \pm 0.0030 \\ \hline 1.467 \pm 0.0027 \\ \hline 1.727 \pm 0.0038 \\ \hline 1.668 \pm 0.0056 \\ \hline 1.904 \pm 0.0072 \\ \hline 1.872 \pm 0.0371 \end{array}$	f2(Q)R2.463 \pm 0.0052.799 \pm 0.0082.794 \pm 0.0063.106 \pm 0.0103.240 \pm 0.0133.545 \pm 0.0193.700 \pm 0.087	$\begin{array}{r} f3(Q)\\ R\\ \hline R\\ 1.288 \pm 0.002\\ 1.562 \pm 0.003\\ 1.434 \pm 0.003\\ 1.682 \pm 0.004\\ 1.631 \pm 0.005\\ 1.857 \pm 0.007\\ 1.834 \pm 0.035\\ \end{array}$	$\begin{array}{c c} f4(Q) \\ \hline R \\ \hline 1.231 & \pm & 0.004 \\ 2.229 & \pm & 0.005 \\ \hline 1.303 & \pm & 0.004 \\ \hline 2.374 & \pm & 0.013 \\ \hline 1.473 & \pm & 0.007 \\ \hline 2.160 & \pm & 0.033 \\ \hline 1.753 & \pm & 0.049 \end{array}$

Increase of R with the cut on trk multiplicity (expected) and Pt (weak)! ³⁴

7TeV : C2 fit vs Ntracks cuts; Data corr. MC

Qmin =20 MeV, (0,0)- full fitted interval, (0.2,0.8) GeV - the interval not included

Ptcut =200MeV				f1(Q)	f2(Q)	f3(Q)	f4(Q)
NtrCut	Qmin	from	to	R	R	R	R
0	20	0	0	0.930 ± 0.002	1.665 ± 0.006	0.921 ± 0.002	1.598 ± 0.005
0	20	0.2	0.8	1.212 ± 0.004	1.733 ± 0.011	1.187 ± 0.004	1.620 ± 0.010
20	20	0	0	0.974 ± 0.003	1.724 ± 0.007	0.965 ± 0.003	1.662 ± 0.007
20	20	0.2	0.8	1.271 ± 0.005	1.896 ± 0.013	1.247 ± 0.005	1.780 ± 0.012
50	20	0	0	0.963 ± 0.008	1.617 ± 0.017	0.956 ± 0.007	1.576 ± 0.016
50	20	0.2	0.8	1.354 ± 0.011	2.133 ± 0.028	1.332 ± 0.010	2.012 ± 0.025
100	20	0	0	1.351 ± 0.194	1.748 ± 0.626	1.335 ± 0.189	1.741 ± 0.586
100	20	0.2	0.8	1.690 ± 0.170	3.343 ± 0.582	1.663 ± 0.167	3.029 ± 0.315

Fit:	C₂(Q)=1+λ	$exp(-Q^2R^2)$	$\tilde{Q}(Q) = 1 + 2p(1-p)exp(-Q^2R^2) + p^2exp(-Q^2)$		
Ν	pT>100	pT>500	pT>100	pT>500	
-	R		R		
20-Feb	0.925 ±0.003	1.116 ±0.009	0.893 ±0.003	1.079 ±0.008	
20 - 30	1.211 ±0.006	1.455 ±0.015	1.180 ± 0.006	1.413 ± 0.014	
30 - 50	1.380 ± 0.006	1.546 ±0.017	1.349 ±0.005	1.510 ±0.016	
50 - 70	1.521 ±0.009	1.656 ±0.044	1.489 ± 0.008	1.621 ±0.042	
70-∞	1.678 ± 0.014	1.617 ±0.137	1.643 ±0.013	1.591 ±0.132	

		C2 functions: hadronization radius, R, $pT > 100$						
Ν	C2_	_fit_	full	C2_fit_excl	C2_MCcor	C2_EvMix		
0-20	0.925	±	0.003	1.229 ± 0.008	0.975 ± 0.004	0.629 ± 0.002		
20 - 30	1.211	±	0.006	1.477 ± 0.010	1.082 ± 0.006	0.710 ± 0.003		
30 - 50	1.380	±	0.006	1.636 ± 0.008	1.080 ± 0.005	0.766 ± 0.003		
50 - 70	1.521	±	0.009	1.750 ± 0.011	1.033 ± 0.008	0.833 ± 0.005		
70-∞	1.678	±	0.014	$1.889~\pm~0.016$	0.974 ± 0.016	0.906 ± 0.008		

Fit:
$$C_2(Q) = 1 + \lambda e^{-Q^2 R^2}$$

900 GeV data samples

Experimental data samples:

 $\label{eq:solution} $$ * data09_900GeV.00142383.physics_MinBias.merge.ESDtoD3PD.r1093_p101_tid120524_00_r15.6.7.8Newtrk $$ * data09_900GeV.00142193.physics_MinBias.merge.ESDtoD3PD.r1093_p101_tid120485_00_r15.6.7.8Newtrk $$ * data09_900GeV.00142193.physics_MinBias.merge.ESDtoD3PD.r1093_p101_tid120419_00_r15.6.7.8Newtrk $$ * data09_900GeV.00142191.physics_MinBias.merge.ESDtoD3PD.r1093_p101_tid120365_00_r15.6.7.8Newtrk $$ * data09_900GeV.00142189.physics_MinBias.merge.ESDtoD3PD.r1093_p101_tid120305_00_r15.6.7.8Newtrk $$ * data09_900GeV.00142174.physics_MinBias.merge.ESDtoD3PD.r1093_p101_tid120272_00_r15.6.7.8Newtrk $$ * data09_900GeV.00142171.physics_MinBias.merge.ESDtoD3PD.r1093_p101_tid120239_00_r15.6.7.8Newtrk $$ * data09_900GeV.00142165.physics_MinBias.merge.ESDtoD3PD.r1093_p101_tid120206_00_r15.6.7.8Newtrk $$ * data09_900GeV.00142165.physics_MinBias.merge.ESDtoD3PD.r1093_p101_tid120032_00_r15.6.7.8Newtrk $$ * data09_900GeV.00142165.physics_MinBias.merge.ESDtoD3PD.r1093_p101_tid120032_00_r15.6.7.8Newtrk $$ * data09_900GeV.00142165.physics_MinBias.merge.ESDtoD3PD.r1093_p101_tid120032_00_r15.6.7.8Newtrk $$ * data09_900GeV.00142164.physics_MinBias.merge.ESDtoD3PD.r1093_p101_tid120032_00_r15.6.7.8Newtrk $$ * data09_900GeV.00142164.physics_MinBias.merge.ESDtoD3PD.r1093_p101_tid119999_00_r15.6.7.8Newtrk $$ * data09_900GeV.00142164.physics_MinBias.merge.ESDtoD3PD.r1093_p101_tid119032_00_r15.6.7.8Newtrk $$ * data09_900GeV.00142149.physics_MinBias.merge.ESDtoD3PD.r1093_p101_tid1190032_00_r15.6.7.8Newtrk $$ * data09_900GeV.00142149.physics_MinBias.merge.ESDtoD3PD.r1093_p101_tid119999_00_r15.6.7.8Newtrk $$ * data09_900GeV.00142149.physics_MinBias.merge.ESDtoD3PD.r1093_p101_tid119768_00_r15.6.7.8Newtrk $$ * data09_900GeV.00141811.physics_MinBias.merge.ESDtoD3PD.r1093_p101_tid119768_00_r15.6.7.8Newtrk $$ * data09_900GeV.00141749.physics_MinBias.merge.ESDtoD3PD.r1093_p101_tid119702_00_r15.6.7.8Newtrk $$ * data09_900GeV.00141749.physics_MinBias.merge.ESDtoD3PD.r1093_p101_tid119702_00_r15.6.7.8Newtrk $$ * data09_900GeV.0014$

Number of selected events = 357,523 Number of selected tracks = 4,532,663

MC data sample: (non-diffractive)

 $mc09_900 GeV.105001.py thia_minbias.merge.NTUP_MINBIAS.e500_s771_s767_r1234_p137_tid130221_00$

Number of selected events = 975,742 Number of selected tracks = 12,363,168

7 TeV data samples

Experimental data samples:

data10_7TeV.00152221.physics_MinBias.merge.NTUP_MINBIAS.f239_p127_tid125 125_00

data10_7TeV.00152166.physics_MinBias.merge.NTUP_MINBIAS.f239... data10_7TeV.00152214.physics_MinBias.merge.NTUP_MINBIA5.f239... data10_7TeV.00152345.physics_MinBias.merge.NTUP_MINBIAS.f239... data10_7TeV.00152409.physics_MinBias.merge.NTUP_MINBIAS.f239... data10_7TeV.00152441.physics_MinBias.merge.NTUP_MINBIAS.f239... data10_7TeV.00152508.physics_MinBias.merge.NTUP_MINBIAS.f241... Nr. Of selected events: about 10 M events MC sample: (non-diffractive samples) mc09_7TeV.105001.pythia_minbias.merge.NTUP_MINBIAS.e517_s764_s767_r122 9_p137 Nr. Of selected events: about 14 M events 7 TeV Data with the high multiplicity trigger **Experimental data samples:**

user.jmonk.00166850.physics.MinBias.NTUP_HIGHMULT.f296.v2/

Number of selected events = 13,985 Number of selected tracks = 2,070,633

Event/track selections for 7 TeV data sample with the high multiplicity trigger**

Trigger: mbSpTrkVtxMh

Another Luminosity blocks

Vertex:

at least one good primary vertex (type 1). Removed pile-up cut as defined by the MB 2.0 analysis. Instead if second vertex has higher multiplicity than the primary, skip event.

At least 108 tracks with:

- → |η| < 2.5
- → pt > 100 MeV
- → Reconstructed by the inside-out or low-pt tracking algorithms.
- → \geq 1 pixel hit*
- → ≥ 6 SCT hits
- → |d0| < 1.5 mm
- → |z0sinθ| < 1.5 mm
- → fit probability ≥ 0.01 for pt > 10 GeV

* No b-layer requirement. After MB 2.0 definition of expectHitInBLayer changed.

**http://indico.cern.ch/getFile.py/access?contribId=6&resId=0&materialId=slides&confId=106091

Q distributions, C2 functions, Ntracks Cuts 7 TeV data : Coulomb correction, Pt > 100 MeV, Q > 20 MeV

No dependence of the C2 parameters on the high multiplicity cuts!

Q distributions, C2 functions, Pt Cuts 7 TeV data : Coulomb correction, Q > 20 MeV, Ntracks cut > 110 tracks

For low pt cut (ex. 100 MeV) The drop in the C2 function is (almost) disappeared!

Q distributions, C2 functions 7 TeV data : With/ without Coulomb correction Pt> 200 MeV, Q > 20 MeV, Ntracks > 110 tracks

7 TeV data : C2 fit funs: C2_1,C2_2, C2_3, C2_4 Coulomb correction, Pt> 200 MeV, Q > 20 MeV, Ntracks > 110 tracks, full fitting interval

7 TeV data: C2 fit funs: C2_1,C2_2, C2_3, C2_4 Coulomb correction, Pt> 200 MeV, Q > 20 MeV, Ntracks > 110 tracks, excluded region (200-800MeV)

7 TeV data : C2 fit funs: C2_1,C2_3, C2_5, C2_6 Coulomb corrections, Pt> 200 MeV, Q > 20 MeV, Ntracks > 110 tracks, full fitting interval

7 TeV data : C2 fit funs: C2_1,C2_3, C2_5, C2_6 Coulomb correction, Pt> 200 MeV, Q > 20 MeV, Ntracks > 110 tracks, excluded region (200-800MeV)

