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Examples of FIP models constrained by cosmology

1.

Massive scalar generated by inflation.

BBN and CMB constraints on dark photons and a Higgs-portal scalar.
Application for the long-lived particle searches at the LHC.

Axion and N

Massless ALPs and B-modes of the CMB.



Cosmological constraints on “portals” to
the SM

Let us classify possible connections between Dark sector and SM
H'H (158 +A4S) Higgs-singlet scalar interactions (scalar portal)

BV, “Kinetic mixing” with additional U(1)’ group

(becomes a specific example of J,/ 4 , extension)
LHN  neutrino Yukawa coupling, N — RH neutrino
J,/ A, requires gauge invariance and anomaly cancellation

It 1s very likely that the observed neutrino masses indicate that
Nature may have used the LHN portal...
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Example1. Energy density stored in a massive
scalar field
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Analogous to harmonic oscillator equation in the presence of time-
dependent viscosity.




Scalar field equation in the expanding bkgr

Expectation: little motion of ¢ at early times, damped oscillations at
late time. We expect energy density
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Example: choose m = 0.1, and radiation domination, H = 1/(2t)
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Constraint on the energy density

Non-interacting scalar field 1s not allowed to carry more energy density
than pDM

/ ,3// 3 M

Y =T/ L 4, 7 =0z T

If the scale of 1nﬂat10n%§’ maximal, no non- 1nteract1ng massive scalar
fields with m ;> eV‘are allowed. /§/ = /D @ %




Example 2: Production and decay of weakly
coupled massive dark photon

Let us study ~ a few MeV mass new particle V with coupling es~ 10-18
—_—

Let us introduce a new notation, o~ o &2 ~ 1038

—

Production cross section for the eTe™ — V. process is

T efF
2
Ec.m.

~ 1079 om2

'
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It is hard to believe at first:

Not only such a model can be tested — as it turns out it can be
robustly excluded by the data ! Constraints from “freeze-in”

(First application to HNL, Adams, Sarkar, Sciama, 1998)



Constraints on very dark photons

* The production cross section 1s ridiculously small, but 1n the
carly Universe at T > my,, 1n fact, every colliding pair of
particles can produce such V, and there 1s a lot of time available
for this.
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* Once produced such particles live for ry long time, and
decay 1n the “quiet” Universe, depositing non-thermal amounts
of energy and changing physics of primordial matter after
recombination. Cosmological beam dump




Calculation of energy release

* Lifetime against the decay of V to electron-positron pairs
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» ¢*e2>V in the early Universe leads to the energy stored per

baryon
Ep.b. ~

—1
mVFprOdHT:mV 0.1oeg Mp

nb,T:mV nb

~ Qo X 103% eV

L
for Ty,' = 10's.
» Planck mass in numerator, and 1/7, ~ 10° provide huge

enhancement.

* Once injected back to the medium via V2>e*e- ~ 1/3 of the stored
energy leads to 1onization. E.g. 1 eV per baryon recreates X, ~
few 10-2 — which would be in gross conflict with CMB physics.
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Dark photon changes ionization history
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Constraints on dark photons
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* We rule out significant fraction of dark

photon parameter space.

These new limits are inevitable: only rely
on thermal production and require that
the Universe was T~ 0.3 my hot.

Non-thermal component of <V, > (so-
called “vacuum misalignment™) will only
make limits stronger. Existence of “dark
Higgs” can only make limits stronger.

After 2014, limits/sensitivity can be
further improved with Planck
polarization data.

(Fradette, MP, Pradler, Ritz, 2014)
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Generalization to Higgs-mixed scalars

Basic 1dea 1s the same: freeze-in production in the very early
Universe, T > mq.

Late decays via mixing with the Higgs

Because of the Higgs portal, the production peaks at T close EW
scale.

The sensitivity 1s enhanced compared to dark photons: small mass
dark photons decouple, but small mass S scalars do not. Production
due to e.g. top Yukawa, decay due to e.g. electron Yukawa. Expect
more sensitivity!

(Fradette, MP, Pradler, Ritz, 2018, PRD)
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Results significantly constrain technically
natural corner

10° 102 104 108 108 1010

1 2 1 2 Q2 T M eVl
*CHiggs portal — 5((9#3) — imSS — ASH'H

Coupling of a new state S to electron here is ~ 10-22. Similar to

gravitational coupling of NR electron. 13



Example 3: Higgs portal and light scalars at
the LHC

= | will consider Aq sizeable and A parameter (mixing) to be small.

Ly = p2HUH — Ay (HVH)® = V(S) — ASH'H — \gS*H'H + kin. terms.

" [f quadratic and linear coupling co-exist, then the LHC offers nice
ways of probing this sector for light-ish S: At the LHC, we will be
concerned with H=> S+8, due to A followed by S decay.

*  What if S are so long-lived that they decay at really macroscopic
distance away? BBN comes to rescue to set limits on maximum
lifetimes.
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MATHUSLA proposal (staring from Chou, Curtin, Lubatti, 1606.06298)

Industrial size O(200 m) hollow
detector to be put on the surface,

near the forward region of a particle
detector at the LHC, e.g. CMS.

Time correlation between events
at the LHC and decay vertex
inside a large detector can
drastically cut the number of
background cosmic events
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Higgs portal and light scalars

At the LHC, we will be concerned with H-> S+S, followed by S
decay.

Consider “an almost” Z, symmetric case to maximize the depletion
of S in the early universe, and minimize its decay:

Lyss = p2HH — A (HH)® = V(S) — ASH'H — \gS*H'H + kin. terms.

_— \

Defines lifetime Defines H decay and S abundance
A2 4m%
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Tmp, my,
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Cosmological metastable abundance

In the early Universe, the number density 1s depleted as for the usual
WIMP:

However, because Higgs mediation 1s relatively mefficient, the
abundance you are stuck with is large. [The smaller H>SS
branching 1s, the MORE of these particles survive in the early U]

10° ————————
Br=0.1 —
ng/ny — Br=0.01 ——
el Br = 0.001
10° |
10°
10" |

mg [GeV] 17



Constraints on lifetime come mostly from n/p

enrichment

Decay products (nucleons, kaons, pions) induce extra p—=2>n
transitions and quite generically increase n/p. This 1s very
constrained.
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For a ~ GeV scale particle, and energy of 200 GeV (broadly
consistent with being a decay of the Higgs at 13 or 14 TeV energy),
the minimum probability to decay in 100m detector is ~ 10°. If the ,
branching of H=>SS is sizeable, then it is a detectable signal.



Examples 4: axion as dark radiation
The model:
a ~

1
Leverything — £SM+grav7jty =+ ['z'nflatz'on + §(a,ua)2 =+ ﬁF,UJVFIUJ/

Axion scattering rate vs Hubble expansion
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Examples 4: axion as dark radiation
The model:
a ~

1
Leverything — LSM—Fchwity =+ ['z'nflation + §(a,ua)2 =+ ﬁF,UJVFIUJ/

Axion scattering rate vs Hubble expansion

20



Examples 4: axion as dark radiation

Contributions to Neff from one axion:
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Ex5: fluctuating pseudoscalar driven by

The model: inflation
a .

1
Leverything — £SM+grav7jty =+ ['z'nflatz'on + §(a,ua)2 =+ ﬁF,UJVFIUJ/

—

[Can be viewed as a generic consequence of two QCD axions. ]

Massless field a receives [random, Gaussian, nearly flat-spectrum]
fluctuations during inflation, oa~ H,,/(2 7).

Rotation of polarization plane after travelling from point 1 to point 2 1s
ap — az

T
(EE) — (BB): (TB) = (EB) = 0

The measure of the r.m.s. angular rotation 1s oa~ H,,/(27f,) Log z .



Propagation of CMB from the LSS

Surface of Last Scattering
with chaotic pseudoscalar

f% prOfile t=ths, dy gs LS

given by inflation.

t=ttoday7 atoday:O .

H \* _

Polarization of arriving to us CMB photons is randomly rotated by
Ay(n) = A; gs(n)=ass(n)/f,, Since f, > 101 GeV is a mild
constraint, H ~ 10'° GeV or below can generate BB
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Formula for <BB> calculation
MP, Ritz, Skordis, 2008
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with the generalized transter function,
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Numerical Results and comparison with experiment
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Summary of examples

Cosmological constraints are derived on the entire mass-mixing
plane for scalars coupled through the super-renormalizable
portals, and on dark photons.

Constraints are derived on the lifetime of the Higgs portal
scalars from BBN, relevant for rare Higgs decay searches.
Lifetime 1s generically < 0.1 sec. Good news for a LLP-style
projects.

. Axion does contribute to Neff, but its detectability in the next
generation of CMB experiments i1s still questionable.

. A massless ALP can generate B-modes out of E-modes of
CMB polarization, even for the case when the H. 4 1s low, e.g.

1011 GeV.
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