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Outline

Lecture 1: Constraints on FIPs from stellar cooling
Solar lifetime

Horizontal branch stars

Supernova explosions

Lecture 2: Constraints on light dark matter from structure formation
Warm dark matter

Self-interacting dark matter

Small-scale hints
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The sun exists!

Typical core temperatures: 10^7 K ~ 1 keV

Approximate age: 5 billion years

→ Half-way through hydrogen burning cycle

Luminosity: L⊙ = 4 * 1026 W

If another type of particle could be produced in the sun with a luminosity L > L⊙, 
the sun would have already burnt all its hydrogen
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Example: Solar production of axions

The existence of the sun implies gaγ < 10-9 GeV-1 and gae < 10-11

Agreement between neutrino fluxes and solar models gives slightly stronger bound

O'Hare et al.,, arXiv:1807.09004
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The life-cycle of a solar-mass star

When the hydrogen in the core 
is depleted the sun will become 
a red giant

Temperature and brightness grow and 
helium burning begins
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Horizontal branch stars

We can witness stars at any 
stage of that evolution (for 
example in globular clusters)

Interesting observable 1:   
Tip of the red giant branch 
(RGB)

FIP production delays helium 
ignition and thereby leads to 
larger and brighter red giants
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Horizontal branch stars

We can witness stars at any 
stage of that evolution (for 
example in globular clusters)

Interesting observable 2: 
Ratio of the number of stars 
in the horizontal branch (HB) 
and red giant branch (RGB)

Data: R ~ 1.39 ± 0.03

Theory: R ~ 1.42 – 1.45
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FIPs production in helium burning stars

Higher core temperature than for 
hydrogen burning (~10 keV)

→ “Heavier” FIPs can be produced

For gaγ ~ 10-10 GeV-1 R parameter 
would be reduced by ~0.4

→ Much more sensitive to FIPs than 
solar environment

Generally considered to give the 
strongest and most robust bound on 
keV-scale FIPs

Hoof, FK et al., arXiv:1810.07192
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Stellar production of dark photon
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Stellar production of dark photon
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Summary

Sensitivity of the sun, HB stars 
and RGB stars peak at different 
dark photon masses 
corresponding to the plasma 
mass in the core

Even stronger bounds from 
laboratory experiments , 
assuming dark photons are 
dark matter (dark photoelectric 
effect)
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What about more massive stars?

Stars much more massive than 
the sun end their life-cycle in a 
supernova explosion
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What about more massive stars?

a)  A nickel-iron core forms, which 
cannot undergo further fusion

b)  (Electron) degeneracy pressure can 
no longer support the core

c)  Core heats up, nuclei are 
disintegrated/converted into neutrons

d)  Collapse halted by neutron 
interactions and degeneracy

e)  Infalling material bounces and 
creates a shock wave

f) Neutrinos accelerate the shock wave 
and create a supernova explosion
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SN1987a
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Neutrino burst

The neutrino burst was observed to last approximately 10 seconds

→ Time it takes for the SN core to cool sufficiently for neutrinos to escape

FIPs production accelerates SN cooling and shortens the neutrino burst

Core temperature ~ 30 MeV 

Neutrino luminosity ~ 1045 W (almost 20 
orders of magnitude larger than the sun)

Require FIP luminosity < neutrino 
luminosity (Raffelt criterion) Jonas Spinner, master thesis
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Dark photon production in SN1987a

Temperature large enough to 
produce positrons (and even 
muons)

Possibility to produce dark photons in Bremsstrahlung, Compton scattering or 
pair annihilations

Jonas Spinner, master thesis
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Supernova trapping

If dark photons are too “strongly” coupled, they are absorbed again before they 
leave the supernova

Efficient trapping suppresses energy loss

Rigorous treatment:
Calculate optical depth τ(r, E) for dark photons

Escape probability given by exp(– τ(r, E))

Useful simplification: Calculate trapping 
radius rtr for which τ(rtr, E) = 2/3

Dark photons produced at r < rtr never escape

Dark photons produced at r > rtr always escape

Chang et al., arXiv:1611.03864 
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Results

Efficient 
trapping

Resonant 
production

Boltzmann
suppression

Chang et al., 
arXiv:1611.03864 
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Additional constraints from SN1987a

If the FIPs produced in the SN can decay (or be converted) into photons on their 
way to Earth, even stronger bounds can be obtained

Ferreira et al., arXiv:2205.07896 

Balázs, FK et al., 
arXiv:2205.13549
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Open questions: Trapping

Huge experimental efforts to investigate models in the trapping regime

How sure are we that SN constraints are absent?

Could imagine modifications to heat transport inside supernova

Problem: No detailed understanding of SN explosion mechanism

Data & simulations not good enough to constrain BSM processes within SN core

We need another supernova (ideally not too close)!
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Open question: Accretion disk

Conceivable that some of the observed neutrinos 
are emitted from an accretion disk

If true, would invalidate the SN cooling bound

Can be tested if we can 
identify the SN remnant

Neutron star would favour core collapse

Black hole would favour accretion disk

Bar et al., arXiv:1907.05020

Page et al., arXiv:2004.06078



19 May 2023 Astrophysical constraints on FIPs and Dark Matter22 Felix Kahlhoefer
Institute for Theoretical Particle Physics (TTP)

The end (of the lifetime of a star)

White dwarfs are electron-degenerate stellar remnants

Certain white dwarfs pulsate, i.e. their brightness oscillates with time

Exotic cooling via FIP production would increase the pulsation period

Observations reveal preference for ALPs with non-zero coupling to electrons

Giannotti et al., 
arXiv:1512.08108

Hoof, FK et al., 
arXiv:1810.07192
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Global fits

Want to test your model against astrophysical constraints?

All of the constraints discussed before have 
been implemented as likelihood functions in 
the GAMBIT global fitting framework 

Automated construction of composite 
likelihoods for a given model

Efficient scans of multi-dimensional 
parameter space

Consistent treatment of uncertainties and 
nuisance parameters

Easy comparison of astrophysical bounds 
and laboratory experiments

Athron, FK et al., arXiv:2007.05517 



19 May 2023 Astrophysical constraints on FIPs and Dark Matter24 Felix Kahlhoefer
Institute for Theoretical Particle Physics (TTP)

Conclusions (lecture 1)

FIPs can contribute to stellar cooling and accelerate stellar evolution
Lifetime of sun, RGB stars, HB stars

Duration of SN1987a neutrino pulse

Period increase of WD pulsation

Strong constraints on axions, dark photons, light dark matter, …
Up to ~10 keV for stars

Up to ~100 MeV for SN1987a

Large couplings allowed due to trapping
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Sub-GeV dark matter

Cosmology places strong constraints on thermally produced dark matter

BBN bound on Neff implies mDM > 10 MeV

CMB bound on exotic energy injection 
implies mDM > 10 GeV for s-wave 
annihilation

Even larger masses may be excluded for 
resonant annihilations / Sommerfeld 
enhancement

Interesting to consider non-thermal DM!

Bernreuther, FK et al., arXiv:2010.14522
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Freeze-in production of DM

DM may also be produced via out-of-equilibrium processes

Freeze-in mechanism: 
“energy leakage” from 
the visible sector

Well-known example: 
Production of keV-scale 
sterile neutrinos

D'Eramo & Lenoci, 
arXiv:2012.01446 
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Testing freeze-in

For DM produced via the freeze-in 
mechanism, typical couplings are 
much smaller than for thermal DM

Laboratory searches mostly hopeless 
(with some notable exceptions)

Need to rely on astrophysical 
constraints to make progress!

Dvorkin et al., arXiv:1902.08623 
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Lower bound on DM mass

The freeze-in mechanism in principle works down to very small DM masses

For fermionic DM, we have to satisfy the Tremaine-Gunn bound
Pauli exclusion prevents the formation of very dense DM halos

Observations of such systems imply mDM > 500 eV

Moreover, for keV-scale DM the kinetic energy is not completely negligible
Free-streaming prevents the formation of small-scale structures

Cut-off in the matter power spectrum
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Suppression of small-scale structure
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Lyman-alpha forest

Bound on mass of 
thermal DM:

mDM > 3.5 – 5.3 keV



19 May 2023 Astrophysical constraints on FIPs and Dark Matter31 Felix Kahlhoefer
Institute for Theoretical Particle Physics (TTP)

Non-thermal dark matter

Subtlety: Non-thermal DM has non-thermal phase space distribution

Precise 
bound on 
DM mass 
becomes 
model-
dependent

Can be as 
strong as    
mDM > 20 keV

D'Eramo & Lenoci, arXiv:2012.01446 
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DESI: The future of Lyman-alpha data

Dark Energy Spectroscopic Instrument

Measure of Lyman-alpha forest absorptions auto-
correlation and cross-correlations with quasars

3d map of the distribution of matter at redshift z = 2–5

Infer BAO scale and constrain dark energy models

Sensitive probe of suppression of small-scale structure

Can expect much stronger (and more robust) bounds 
on warm DM
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DM self-interactions

We (roughly) know the mass density ρ and velocity v of DM in astro systems

Typical numbers: ρ ~ 0.1 – 1 GeV cm-3 v ~ 100 – 1000 km/s

Corresponding number density n = ρ/mDM increases with decreasing DM mass

Scattering rate given by n v σ = ρ v σ/mDM

Astrophysical observations place upper bound on σ/mDM

Naive dimensional analysis: σ ~ mDM
-2 

→ Lower bound on mDM



19 May 2023 Astrophysical constraints on FIPs and Dark Matter34 Felix Kahlhoefer
Institute for Theoretical Particle Physics (TTP)

Bullet Cluster

Bullet Cluster shows that DM behaves 
more like (collisionless) galaxies than like 
(collisional) gas

Can make this statement more precise 
by measuring mass-to-light ratio and 
separation between DM and galaxies in 
each cluster

Result: σ/mDM < 1 cm2 g-1 ~ 2 barn / GeV

Comparable to nucleon-nucleon 
scattering cross section
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Example 1: SIMPs

Consider DM particles similar to SM pions (but stable!)

Self-scattering cross section:

Assuming coupling close to perturbativity limit (g ~ √4π), Bullet Cluster implies 
mπ > 100 MeV

Very difficult to realize strongly-interacting dark sector below this scale!
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Example 2: Dark photon models

Consider self-scattering of DM particles via 
exchange of a light dark photon

Perturbative result:

Huge non-perturbative corrections 

Excluded by Bullet Cluster Tu
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Example 3: Long-range interactions

If the dark photon mass is negligible, the cross section correspond to Rutherford 
scattering

  ~ with E = mDM v2 / 2

Scattering dominated by small velocities and scattering angles

Effect of self-interactions in galaxy clusters (large v) strongly suppressed

Averaging over large number of scatters leads to effective drag force F ~ v-2  
(like dynamical friction)



19 May 2023 Astrophysical constraints on FIPs and Dark Matter38 Felix Kahlhoefer
Institute for Theoretical Particle Physics (TTP)

Bounds on long-range interactions

Leading constraint comes from the obser- 
vation of elliptical DM haloes, which would 
be isotropised by self-interactions

However, constraints from Bullet Cluster 
become stronger for ultra-light dark 
photons due to plasma instabilities

Lasenby, arXiv:2007.00667

Agrawal et al., arXiv:1610.04611
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Bounds on millicharged dark matter

Long-range self-interaction from 
exchange of SM photons
Leading constraints from stellar 
cooling and cosmology (Neff, CMB)

Interesting 
parameter 
range for 21cm 
brightness 
temperature

Ely Kovetz

Kovetz et al., arXiv:1807.11482
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Stronger bounds on DM self-interactions

Numerical simulations of structure formation predict the radial distribution of DM 
particles in DM halos:

NFW profile: ρ(r) ~ r–1 (r + rs)–2

Prediction broadly confirmed by 
measurements of galactic rotation 
curves: vrot(r)2 = G M(r) r–1
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Core formation

Dark matter (DM) self-interactions can transfer energy from hot regions of a DM halo 
(shallow gravitational potential) to cold regions (deep gravitational potential)
As a result, they transform halos with cuspy profiles into halos with central cores

Heat Mass
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Rule of thumb: Core 
radius r1 given implicitly 
by ρ(r1) σ/mDM v tage ~ 1

Observational upper 
bound on r1 implies upper 
bound on σ/mDM

Empirical Jeans formalism
Kaplinghat et al., arXiv:1508.03339
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SIDM bounds from core sizes

A recent analysis of galaxy 
clusters gives σ/mDM < 0.3 cm2 g-1

Main challenge: Account for 
baryonic effects (e.g. adiabatic 
contraction) that could counteract 
core formation

Note: Vanishing cross section 
strongly disfavoured!

Sagunski et al., arXiv:2006.12515
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The cusp-core problem

Various systems 
exhibit discrepancy 
between predicted and 
observed vrot(r) in 
central region

Deficit in mass points 
to constant-density 
cores rather than 
cuspy density profiles

Note: Important caveat: Neither the observational situation nor the predictions from 
numerical simulations are fully robust, so there may be no cusp-core problem

Tulin & Yu, arXiv:1705.02358
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Solving the cusp-core problem

Velocity-dependent DM self-interactions can resolve the cusp-core problem

Sagunski et al., arXiv:2006.12515
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The diversity problem
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The other diversity problem

Dwarf galaxy rotation 
curves exhibit much 
more diversity than 
expected

In fact, some dwarf galaxies are even cuspier than in ΛCDM!

Speculated to be a projection effect due to non-circular motion

No conclusive demonstration that enough diversity is achieved

Possibly greatest challenge for ΛCDM on small scales

Creasey et al., arXiv:1612.03903

Oman et al., arXiv:1504.01437



19 May 2023 From picoseconds to teraseconds: The lifetime frontier of particle physics48 Felix Kahlhoefer
Institute for Theoretical Particle Physics (TTP)

Gravothermal collapse

Cores created by DM self-interactions are not 
stable

Once the inner region is fully thermalised, the 
direction of the heat flow reverses and the 
central region starts cooling down

After sufficiently long times (or for very large 
cross sections) cores experience gravitational 
collapse and cusps reappear

→ gravothermal catastrophe

Turner et al., arXiv:2010.02924
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The impact of tidal forces

If the outer parts of a DM halo are stripped by tidal forces (e.g. from a nearby galaxy), the 
heat loss increases and core collapse accelerates

High concentration halos become even denser while low 
concentration halos are disrupted

Moreover, central density of a Milky Way satellite depends 
on its precise orbit (i.e. the pericenter distance)

Possible explanation of the observed diversity of MW 
satellites

Valli & Yu, arXiv:1711.03502

Sameie et al., arXiv:1904.07872; FK et al., arXiv: 1904.10539
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Conclusions (part 2)

Non-thermal DM particles can have masses below the MeV scale
Below the keV scale there are strong bounds from small-scale structure
Need to account for non-thermal phase space distribution

Astrophysical bounds on self-interactions constrain the ratio σ/m
Bullet Cluster gives lower bound on the mass of many DM candidates

Measurements of core sizes give even stronger bounds, but also hints
Self-interactions may solve the cusp-core and diversity problem
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Hooked?
    Confirmed speakers:

    Sebastian Baum
    Kim Berghaus
    Elisabetta Bossio
    Jamie Boyd
    Torsten Bringmann
    Pilar Coloma
    Pratika Dayal
    Miguel Escudero
    Angelo Esposito
    Elina Fuchs
    Saniya Heeba
    Kyle Leach
    Seung Joon Lee
    Laura Molina Bueno
    Diego Redigolo
    Giovanni Villadoro
    Susanne Westhoff
    Sam Witte

https://indico.scc.kit.edu/event/3490/
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Thank you...

… to all the lecturers for giving an excellent 
overview of the FIPs landscape

… to all participants for making FIPs in the 
ALPs such an exciting, entertaining and 
inspirational event

…, Gaia, for all your time and hard work, 
which made this school possible
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