

24th International Workshop On Radiation Imaging Detectors

25-29 JUNE 2023

First Results from the 4D-PET Scanner for the Brain Examination

José M. Benlloch Baviera I3M Director June 29th 2023

Instituto de Instrumentación para Imagen Molecular

1. A View to Cure: the coming clinical revolution in Neurology (and Neurosurgery)

- Enemy at the Gates
 - One in four people worldwide will suffer from neurological disfunctions or diseases (-1- ECR, March 2019)
 - New evidence: Alzheimer's dementia is one among many not unrelated neurodegenerative diseases...
 - ...and neurodegenerative diseases are 1/3rd of brain pathologies

• Imaging to the rescue:

- Brain imaging breakthroughs: From CT to MRI to multimodality with **PET** as decisive
- Functional brain alterations and/vs anatomical changes: earlier / different / predictive
- The evolving role of brain imaging: from diagnosis to treatment follow up to integrated Imaging-treatment (theranostics, targeted therapies tracer+drug...)
- PET / Positron emission tomography: from "cancer hunter" to pathfinder
 - SEEING brain areas in action, dynamic quantification of activity and drug / treatment results
 - The tracer "Big Bang" (see 2)

2. PET tracer "Big Bang": from cancer and Alzheimer's to the future... now

- 18F-FDG: Keystone / "Jack of all trades" (cancer, stroke, dementias, aphasias, Multiple Sclerosis, ELA...)
- Brain Tumors: ¹⁸F-FDG, ¹⁸F-FDOPA, ¹¹C-Metionine, ¹⁸F-FET
- Neurodegenerative / cognitive Impairment (Alzheimer's, FTD...)
 - Neural degeneration: ¹⁸F-FDG, new **TAU protein tracers**
 - Amyloid-β deposits: ¹¹C-PIB, ¹⁸F-Flutemetamol, ¹⁸F-Florbetaben, ¹⁸F-Florbetapir
- Parkinsonian syndromes
 - Presynaptic: ¹⁸F-FDOPA, ¹¹C-DTBZ, ¹¹C-Metilfenidate
 - Postsynaptic: ¹⁸F-FDG, ¹¹C-Raclopride
- Epilepsy:
 - Lesion: ¹⁸F-FDG
 - Receptors: ¹¹C-Flumazenil, ¹⁸F-Triptofan
- Post traumatic brain injury: ¹⁸F-FDG, ¹⁵O-labeled water (H₂¹⁵O)/C¹⁵O (inhaled)
- Psychiatric pathologies (depression, schizophrenia, learning disabilities, substance abuse): ¹⁸F-FDG, ¹¹C-Raclopride

Brain disease incidence

3. From whole body (wb) PET to dedicated Brain PET. SEVEN reason

- 1. wb PET CT use is very often saturated by Oncology demand
- 2. PET in wb PET CT or PET MRI have physical limitations for brain imaging
 - eg clinical resolution, 6+ mm wb PET vs CMB's <1,5 mm
- 3. Brain PET is **optimized** for CNS neurological imaging:
 - Detectors are very near target regions. Unprecedented resolution and sensitivity
 - Revolutionary quantification accuracy at small brain areas / centers, unique dynamic capabilities
- 4. Brain PET seamless integration in patient continuum of care
 - Easy fusion with anatomical WB studies / atlas, flexible clinical setting / location
- 5. A new gold standard in **workflow** and **cost-effectiveness**
 - Small footprint, Shorter test time, Controlled investment with fast Rol
 - Easy to use, intuitive interface, full hospital / neurology center systems integration
- 6. Patient comfort / positioning / new options: sitting vs lying down, "active" PET
- 7. Patient safety and **optimum clinical value**: VERY low tracer / RX dose, combined tracers

PERSONALIZED, FUNCTIONAL BRAIN IMAGING: THE SUPREME BRAIN CHALLENGE We need to see – and quantify – clinically relevant changes in very small regions vs "normal" by age and condition

Assessing brain functional activity and its alterations at cortex layer /deep nuclei level is a mayor unmet clinical and neurological research need

Multiplying sensitivity and resolution is opening a whole new view of healthy, altered and pathological brain: the critical imapct of heterogeneity

Cortex thickness is 1,5-4,5 mm SIX layers with different functions and neuro receptors.

Clinical / practical brain PET resolution HAS TO BE 1,5 mm or better for accurate assessment of cortex changes

Histological Structrure of the Cerebral Cortex

SENSITIVITY & RESOLUTION CHALLENGES: CLINICALLY-RELEVANT CHANGES IN SMALL BRAIN REGIONS

Critical Brain regions (entorrhinal cortex, affected in Braak 1 AD..) and nuclei (Raphe, substantia nigra, locus ceruleus ...) are very small, often smaller than 2 cc in volume (grain of rice)

Brain PET requires very high sensitivity, resolution and dyanmic capabilities.

OBJECTIVE

4D-PET: Innovative PET scanner for dynamic imaging

To develop a Dedicated Brain PET scanner:

- Spatial resolution below 1,5 mm.
- CTR < 250ps.
- SENSITIVITY > 20%.
- SCAN ALL HEAD AT ONCE.
- AFFORDABLE.
- CONFORTABLE TO THE PATIENT.

THE CHALLENGE

To develop a detector Module with:

- Excellent position resolution.
- Good DOI (Depth Of Interaction) Information.
- Good Timing resolution.
- High Efficiency.

4D-PET DETECTOR MODULE

To develop a detector Module with:

- Excellent position resolution.
- Good DOI (Depth Of Interaction) Information.
- Good Timing resolution.
- High Efficiency.

MODULE:

- LYSO array of 16 slabs:
 - Slab dimensions: 25.6x1.5x20 mm³
 - all sides polished and separated by
- Total dimension: 25.6x25.6x20 mm³
- Coupled to 8x8 Hamamatsu SiPM: S13, without light guide
- 2 slabs per SiPM
- ightarrow 25.6x25.6x20 mm³ , All ESR, 8x8 SiPM S13

TOTAL : 320 MODULES

CRYSTAL MODULE

4D-PET Advanced Grant

DETECTOR ELECTRONICS

1 ASIC (PETSYS) READS 4 MODULES SUPERMODULE = 2 x 8 MODULES SUPERMODULE NEEDS 4 ASICs **4D-PET**

Advanced

Grant

erc

COOLING WITH PLATES

20 SUPERMODULES

Advanced Grant

Voltage Control & Temperature Monitor

SUPERMODULE CALIBRATION

Clock Trigger Connection to PC Water Cooling SM in ²²Na sources coincidence FEB-D Signal and power Power Cables distributor

Y position (monolithic)							
200 -	400 -	600 -	800 -	1000 -	1200 -	1400 -	
		анан на алекан на наказа на наказана на наказана на наказана на наказана на наказана на наказана на наказана На политика на наказана на н					
		n ar - 17 a - 21m - 1990 anna anna an an - 27 a 27 a 1 7 a - 27 a					
			·				

ENERGY RESOLUTION

Detector performance. Position inside Slab (Measurement with Pinhole) Neural Network Prediction (Slab 3)

Monolithic direction

DOI direction

*Pinhole Measurement. 2 mm pinhole diameter

4D-PET Advanced Grant

Energy

196 ± 13 ps Second group of slabs (4 ts) DTR (ps 229.0 - 211 4 193.8 176,2 4007000100400700001004 X (mm)

*No energy calibration

SPATIAL RESOLUTION ALONG SLAB

SPATIAL RESOLUTION

Distance to center (along x)

Detector performance. Slit measurement

6

5

3

2

0

-1

-2

-3

-4

Parameter (mm)

(SiPM unit)

DO

Slab Identification

Slab Peter crystal CoG Position after 15% energy and 10% position filtering

MAE (mm)	R75 (mm)	FWHM (mm)
1.5+0.4	2,1+0.5	3.5+0.9

Slit position along monolithic direction (mm)

Neural Network Prediction

Slab ERC-Brain. All ESR

Bias

MAE

-R75

-14 -12 -10 -8 -6 -4 -2 0 2

-FWHM

4

6 8 10 12 14

-		

MOUNTING ALL CRYSTAL MODULES

Advanced

DATA PROCESSING UNIT

IMAGING PERFORMANCE: DERENZO PHANTOM

Siemens Biograph MCT (simulation)

Siemens Biograph MCT (real data, paper)

Now

©i3M

Instituto de Instrumentación para Imagen Molecular

4D-PET (simulation 205 ps TOF)

Siemens Biograph Vision 205 ps TOF (simulation)

Next generation

Seeking an objective comparison: HOFFMANN PHANTOM SIMULATIONS

NEW PET PHANTOM

SUMMARY: EXPECTED PERFORMANCE

SENSITIVITY and RESOLUTION of Brain PET, existing and under development

- Estimated sensitivity and resolution
 - Performance of current available PETs (1-8) are poor for imaging human brains.
 - The sensitivity is estimated for 25 cm length line source using data measured using 70 cm length source by following NEMA NU 2-2012 standard.

(Initial plot courtesy of Dr. Junwei Du, UC Davis)

CONCLUSIONS: PROJECT PLAN FOR REAL DATA

4D-PET Advanced Grant

SCANNER CALIBRATION & PHANTOM MEASUREMENTS ONGOING

First 3 human patients in July

Dr. John Prior

Compare Images with SIEMENS PET BIOGRAPH VISION

ETHICAL COMMITTEE DOCUMENTATION in Preparation

