#### Development of the grade selection of X-ray events using machine learning for a CubeSat application

#### Hsien-chieh Shen (Aoyama Gakuin University, Japan)

Takanori Sakamoto, Motoko Serino, Yasuyo Hata, Ayumi Yamamoto (Aoyama Gakuin U.), Naoki Ogino, Makoto Arimoto (Kanazawa U.)



Oslo Science Park (25 ~ 29 June 2023)

#### Binary star merger



#### Binary star merger





#### **Key Science**

- High energy phenomena associated with Gravitational wave (GW)
- The birth of black holes

#### Binary star merger





#### **Key Science**

- High energy phenomena associated with Gravitational wave (GW)
- The birth of black holes

To explore this phenomena … We need a space observatory with wide FoV & high sensitivity

#### SEAGULL (SEArching origin of Gravitational wave by 3U SateLLite )



#### Lobster-eye optics (LEO)



| X-ray deteo | ctor |                         |                     | _    |
|-------------|------|-------------------------|---------------------|------|
|             |      | Communication<br>System | attitude<br>control | 10cm |





### **CMOS Image Sensor**



## <sup>55</sup>Fe X-ray Image



## <sup>55</sup>Fe X-ray Image



# X-ray Observation in Astronomy

- Only few X-ray photons / 1 sec.
- 1 X-ray photon = 1 X-ray event
- We want the time, energy, and location information of X-ray events

Problem

- Image data is too large
- Remove the background noise like cosmic ray

#### How to extract the X-ray events from the image?

#### X-ray events



### Grade discrimination method (GDM)

- Two types of thresholds : an event threshold and a split threshold.
- All the pixel values which exceed two thresholds in 3×3 pixels are summed up to obtain the total deposit energy.



### Grade discrimination method (GDM)

- Two types of thresholds : an event threshold and a split threshold.
- All the pixel values which exceed two thresholds in 3×3 pixels are summed up to obtain the total deposit energy.



#### Grade discrimination method (GDM)

- Two types of thresholds : an event threshold and a split threshold.
- All the pixel values which exceed two thresholds in 3×3 pixels are summed up to obtain the total deposit energy.



7

• GDM is unable to discriminate charged particles such as cosmic rays



• GDM is unable to discriminate charged particles such as cosmic rays



• GDM is unable to discriminate charged particles such as cosmic rays



Utilize one of the machine learning models of convolutional neural network (CNN) to identify X-ray events & charged particle events.

① Train an image recognition model with the data of X-ray events & charged particle events.



CNN machine learning

Image recognition model

Train an image recognition model with the data of X-ray events & charged particle events.
 Use a threshold identifies a center pixel of X-ray from the image.



- ① Train an image recognition model with the data of X-ray events & charged particle events.
- ② Use a threshold identifies a center pixel of X-ray from the image.
- ③ Clip adjacent 5×5 pixels around the center pixel and recognize this range by the machine learning model.



- ① Train an image recognition model with the data of X-ray events & charged particle events.
- ② Use a threshold identifies a center pixel of X-ray from the image.
- ③ Clip adjacent 5×5 pixels around the center pixel and recognize this range by the machine learning model.



- ① Train an image recognition model with the data of X-ray events & charged particle events.
- ② Use a threshold identifies a center pixel of X-ray from the image.
- ③ Clip adjacent 5×5 pixels around the center pixel and recognize this range by the machine learning model.
- ④ If the event is categorized as an X-ray, the data will be saved. On the contrary, the data will be discarded.



#### <sup>55</sup>Fe Spectrum

Check the X-ray extraction performance

- CMOS pixels : 4096 (H) x 4096 (V)
- Processing speed : 0.71 s/frame
- Energy Resolution
  Mn-Kα : 241.2 eV @ 5.89 keV
  Mn-Kβ : 258.9 eV @ 6.49 keV



MLM can extract the X-ray events in high speed

# The judgment accuracy of charged particles

- Identify the charged particles event from the image data using both the GDM & the MLM.
- Create an event map based on the location information of the event.



The accuracy for recognizing charged particles:

- α particles : ~ 100%
- Proton : ~ 98 %

The charged particle events could be recognized and removed from the event map by using the MLM.

#### How to install MLM on a CubeSat ?

#### Spresense

- Sony's single-board computer
- Low power consumption
- Compact size
- Machine learning support library
- Space qualified : Adopted by JAXA's RAISE-2 mission (2021)

| Spresense                                   |                                        |  |  |
|---------------------------------------------|----------------------------------------|--|--|
| Size (Main board)<br>Size (Extension board) | 50.0 mm × 20.6 mm<br>68.6 mm × 53.3 mm |  |  |
| Typical Operating Power                     | 100 mW<br>(Main Board:30 mW)           |  |  |
| processor                                   | ARM®Cortex®-M4F × 6 cores              |  |  |
| Clock speed                                 | 156 MHz                                |  |  |
| RAM                                         | 1.5 MB                                 |  |  |
| FLASH                                       | 8 MB                                   |  |  |



20.6 mm

#### Implement the MLM in Spresense

- 1.5 Mbyte RAM limit •
- Compressed ADU : 12 bit  $\rightarrow$  8 bit ٠
- Binning the pixels :  $4096^2$  pixels  $\rightarrow 456^2$  pixels •

- X-ray lines were clearly detected
- Operating speed was about 3 s/frame.



#### AI (1.5 keV) spectrum

## Summary

- SEAGULL will explore the origin of GW events in soft X-ray band.
- MLM can identify X-ray events & charged particle events
- High processing speed
- We implement MLM in Spresense.

