

ePixUHR-35kHz: a read-out ASIC for tender X-ray imaging at LCLS-II with 35 kHz frame-rate

Lorenzo Rota - on behalf SLAC Detectors R&D group lorenzor@slac.stanford.edu

Contributions from: D. Doering, A. Gupta, A. Habib, M. Hammer, C. Hansson, R. Herbst, C. Kenney, P. King, B. Markovic, A. Miceli, A. P. Perez, J. Segal, A. Dragone

LCLS-II & LCLS-II-HE: revolutionary tools for X-ray science

- LCLS-II will be the first XFEL to be based on continuous-wave superconducting accelerator technology
- Continuous repetition rate of 1 MHz, with photon energies between 250 eV and 12 keV

SLAC long-term X-ray detector development plan

Bigger, Faster, Higher resolution and Higher Energies

With goals built into projects progressively meeting science priorities and requirements

Methodology towards higher frame rates

• Large number of detectors to be designed & commissioned in next years at LCLS-II

• Strategy:

- Top-down approach: focus is on delivering detectors systems to meet LCLS-II science program
- Modularity, following the success story of the ePix family
- Sensors:
 - Sensors compatible with different detectors (pitch, polarity, etc.)
- ASICs:
 - CMOS 130 nm node selected: cost-effective, availability & good analog performance
 - "Overhead" of IP blocks development & prototyping (communication, biasing, control, etc.) is spread over multiple projects / fabrication runs
- FPGA & readout cards:
 - Common data protocols & slow-control interface
 - Common readout cards, mechanics, cooling strategies etc..
 - Firmware & software are modular (and open-source!)

ePixUHR-35 kHz ASIC: overview

Summary of main specifications

- Noise: <100 e⁻, single-photon resolution at 4 keV
- **Dynamic range:** 10⁴@ 8keV
- Size: 192x168 pixels with 100 µm pitch, ~2x2cm², 3-side buttable (camera up to 4Mpix)
- Frame-rate: 35 kHz (pixel and ADC ready for 100kHz operation)

Goals of 1st prototype:

- Demonstrate path towards >25kHz detector on single ASIC
- Retire risks associated with TSV and 3D stacking
- Evaluate integration and performance at LCLS-II beamline

Goals of 2nd prototype:

• Optimize pixel front-end circuitry for 35 kHz operation

Architecture towards higher frame rates

Move A/D conversion closer to pixels and increase parallelism

	ePix	ePixHR	ePixUHR
Type of backend	Analog	Digital	Digital
A/D approach	Off-chip	Column-parallel	Cluster
Architecture	Analog Mux	1 MSPS Sigma-Delta ADC for each column	8 MSPS SAR ADC for 72-pixels cluster
Rate	1 kHz	7.5k Hz	100 kHz – 1 MHz
ASIC floorplan (top view) Pixel matrix ADCs			
Slow control & readout	192 x 176	192 x 144	192 x 192

Pixel matrix architecture

configuration and readout

TECHNOLOGY INNOVATION DIRECTORATE

• ASIC: 50x100 µm²

Pixels 62%

Pixel analog front-end

- Challenge: meet dynamic range and noise performance in a scaled CMOS tech with low supply voltage
- Auto-gain switching architecture adapted from previous ePix detectors:
 - each pixel switches from HG (or MG) to LG when input charge exceeds a programmable threshold
 - 'CompEn' feature = prevents incomplete settling at gain-switching point
- 'Correlated pre-charging' circuitry reduces noise after gain-switching [1]

Analog-to-Digital Converter

12b Differential Successive Approximation Register (SAR) architecture:

- Optimized switching scheme to reduce both area and power consumption (on ADC local reference buffers)
- Novel circuit to perform built-in single-ended to differential conversion
- Based on custom-designed MOM capacitors with differential metal strips [Harpe, JSSC'19]
- Total of 384 ADCs + local reference buffers operating synchronously in pixel matrix

Moving data to the ASIC periphery

Results – prototype system

clock frequency of 35 kfps

- First prototype readout architecture is fully functional up to the target frame-rate of 35kHz
- ASIC has been assembled on prototype camera system with cooling block (no Si sensor yet)

Results – ADC matrix (x384)

- ADC dynamic range: 650mV
- ADC resolution:
 - 12b during calibration (1 ADU = 150uV)
 - 11b during pixel readout (1b becomes gain bit)
- **Results:** no missing codes in any of the 384 ADCs, linearity better than 0.2% (limited by test setup)
- Hard to evaluate ADC performance because of limitations in ASIC/test setup:
 - Can only test all ADCs simultaneously
 - Test voltage distributed across all matrix
 - Noise <1.2 ADUs (limited by test setup)

Preliminary

Results – Pixel response

Noise map of pixels in High-Gain mode [ADUs]

- Default setting: each pixel switches from HG/MG to LG
- 'Correlated pre-charging' reduces noise after gain-switching [1]
- 'CompEn' feature = prevents incomplete settling at gain-switching point

Preliminary

Towards ePixUHR-100kHz

- Current design will be upgraded with 5 Gb/s links (CML/SST) (2024)
- New FPGA readout architecture is currently being designed (2024)

Summary

SLAC is developing a novel charge-integrating, high-frame rate ASIC for LCLS-II-HE

Status:

- Designed 1st prototype on CMOS 130 nm technology
- ASIC is functional at nominal frame-rate of 35 kfps
- Pixel tested with integration times as low as 400ns (1 MHz operation)

Next steps:

- Characterization performance with bonded Si sensor
- Integration with LCLS-II DAQ at beamline has started (with both emulated ASIC and real ASIC)
- **35 kHz:** 2nd iteration with optimized pixel performance in Q4 2023 / Q1 2024
- **100 kHz:** 1st prototype of ePixUHR-100kHz in mid Q2024

Backup slides

Cluster & pixel layout

- Distributed ADCs and dig. logic in matrix \rightarrow pixel circuitry displaced
- Need to re-route from bump pad to pixel input
- Can be done on-ASIC \rightarrow do not need special Si sensor
- Routing and shielding implemented in SparkPix-ED

Cluster & pixel layout

- Noise across pixel in a cluster is "uniform": no visible difference between pixels above ADC and pixel above "analog" front-end
- → Shielding + RDL of bump connections on ASIC demonstrated

Cluster Layout

Cluster Noise Map

ePixUHR digital readout logic

Clock distribution and serializer

- Digital balcony with data path split into multiple identical blocks (DigRO)
- Clock is generated by FPGA or external PLL
- CMOS clock spine with duty-cycle re-generation circuit
- Serializers generate local lock for each DigRO, skew is handled in FPGA
- Fully functional up to >1.1 Gbps with forced air cooling

ASIC-FPGA codesign

- Having a behavioral model of the ASIC allows us to **speed up the firmware/software design** of the camera.
 - Ease the testing and verification of the ASIC logic before the tape-out.
 - Development of FW/SW and integration with DAQ can now run in parallel to the ASIC fabrication.
- We target the **emulation of the ASIC inside the FPGA** (done for Fabulous, and under progress for ePixUHR).

Simulation

Methodology: co-design

- Data reduction on-ASIC → must ensure data quality and integrity after reconstruction
- Industry-standard verification frameworks (UVM) are very powerful, *but...*

We developed an agile verification frame-work:

- Development of ASIC and FPGA digital logic is done in parallel (not sequentially)
- Simulate full ASIC + FPGA + Software stack
- Verification code = Deployment code
- Enable emulation of ASIC within FPGA

Additional benefits:

- Integration with LCLS-II DAQ starts while ASIC in fab
- Enables design space exploration of heterogeneous architectures: co-design of detector

P. King, L. Ruckman, B. Reese, C. Bakalis, D. Doering – TID Electronics & EDGE Computing Systems, SLAC *Ruckman, Larry, et al. "A Methodology for Digital ASIC, FPGA and Software Development and Verification." 2022 IEEE NSS/MIC 23