

AGH

ULTRA-FAST ENERGY RESOLVED IMAGER FOR 'PSEUDO' LAUE DIFFRACTION EXPERIMENTS AT SYNCHROTRON FACILITIES

¹ Synchrotron SOLEIL, Saint-Aubin, 91192 Gif-sur-Yvette, France ²AGH University of Krakow, av. Mickiewicza, 30-059 Krakow, Poland

SCIENTIFIC MOTIVATIONS AND DESCRIPTION OF THE ASIC PROTOTYPE

Scientific motivations

- Time-resolved crystallographic applications (e.g. serial synchrotron crystallography, in situ macromolecular crystallography, in vivo crystallography and high-pressure/temperature crystallography) \rightarrow using 'Pseudo' Laue diffraction technique with multi-pink beam (for the **Upgrade of SOLEIL)**
- Capability to measure simultaneously continuous high photon fluxes at several energies
- High count rate capability of the readout ASIC
- Pump-probe techniques can be considered

Detector / Asic requirements

- Photon counting detector is preferred \rightarrow a new ASIC, named UFERI (Ultra-Fast Energy) **R**esolved Imager), has been designed for this purpose
- Energy range: from 5 up to 30 keV
- Very high photon flux \rightarrow an ultra-fast front-end is considered as a priority in the design of the chip \rightarrow max input count rate: 0.43×10¹⁰ ph/s/mm² (30% count loss at the output)
- Multi-threshold detector \rightarrow energy discrimination is required \rightarrow 3 discriminators and counters per pixel are implemented
- Gating option needed

TESTS RESULTS OF THE FIRST HYBRID PIXEL PROTOTYPES IN LABORATORY

The 3 counters features similar photon counting performances / several chips show quite similar results

Good linearity of inflection points vs photon energy separation of different energies can be improved with a fine gain trimming (work on-going)

SUMMARY AND NEXT STEPS

Ultra-Fast Energy Resolved Imager (UFERI) is an ambitious R&D project of a new hybrid pixel photon counting detector designed for hard X-ray diffraction experiments, using high throughput photon fluxes from pink beam at synchrotron facilities

- A first small-size ASIC prototype was designed, and several dies were tested in laboratory showing promising results
- Other performance tests (count rate capability, energy separation, etc) with photon beam are foreseen in the coming weeks at SOLEIL synchrotron
- After a detailed review of the testbeam results with the first UFERI chip, a medium-size prototype is to be considered (collaboration is welcome)

