Design and optimization of a MPGD-based HCAL for a future experiment at Muon Collider

Anna Stamerra on behalf of the International Muon Collider Collaboration

• A Muon collider [1] combines the best of hadrons (can reach multi-TeV energy range) and leptons (all energy available to the collision) colliders

• **Challenge**: the decay of the µ induces a high flux of background particles in the detectors (**BIB**)

 coping with BIB as main driver of detector design

Requirements for HCAL @ Muon Collider: High granularity: O(3cm²) cell in HCAL

Why MPGD-based HCAL?

- ✓ Radiation hardness
- ✓ Fine granularity
- ✓ Rate capability O(MHz/cm²)
- ✓ Good space (<50 um) and time (5-10 ns) resolution
- ✓ Response uniformity
- ✓ Cheap for large area instrumentation
- ✓ Eco-friendly gas mixture

Resistive µMegas [3] and µRWELL

Resistive Micromegas

> Good timing ($\sigma_t = 100 \text{ ps-1ns}$) > Energy resolution to work in Particle Flow approach [2] (HCAL: $30/\%\sqrt{E}$)

[4] for discharge suppression

MPGDs Hcal in Muon Collider framework

Monte Carlo simulation in GEANT4

Geometry implemented

•Sampling calorimeter made of • 2 cm of Iron (absorber) • 5 mm of Ar/CO₂ (active gap) • Cell granularity: 1x1 cm² **Source**: π^{-} gun from 1 to 80 GeV

Energy contained at 90% • 14 λ_N in the direction of the incoming π • 3 λ_{N} in the orthogonal direction

From preliminary studies, jet reconstruction efficiency simulated with the baseline geometry (plastic scintillators as active layers) is **comparable** with the MPGD geometry.

Future steps: test on MPGDs Hcal prototype

- Main goal: Test Beam with π (1-6 GeV) on a MPGD **HCAL prototype** (September 2023)
 - ~ $1 \lambda_{N}$ (8 layers) and 20x20 cm² trasversal size, 1 cm² RO pads
- µRWELL and µMegas for active layers • Preliminary Test Beam with MIPs on **MPGD alone** (July 2023)

Digital and Semi-digital HCal

Digital RO

- **1. Digitization**: define **multiple** threshold and weighted hits distributions
- **2. Energy reconstruction** with the formula:

 $E_{rec} = \alpha \cdot N_1 + \beta \cdot N_2 + \gamma \cdot N_3$ where α , β and γ depends on N₁ + N₂ + N₃²⁰ and are estimated minimizing

- **1. Digitization**: 1 hit = 1 cell with energy deposit higher than the applied threshold
- 2. Find the **calorimeter response**
 - function: $\langle N_{hit} \rangle = f(E_{\pi})$
- **3. Reconstruct the energy** with the inverse response function $E_{rec} =$ $f^{-1}(N_{hit})$

Semidigital RO

- test the performance and choose the best detectors to be included in the HCAL prototype
- All the detectors (11 overall) have been tested to assess the working point with INFN sections of Bari, Napoli, Frascati, Roma3 and the Weizmann Institute of Science

CONCLUSIONS

MPGD-HCal simulation in G4– response to single π : • Energy resolution better with **semi-digital RO** for cells of 1x1 cm² **MPGD-HCal in Muon Collider framework** – jet reconstruction \Box Comparable performance between baseline and MPGD-Hcal \rightarrow geometry optimization of MPGD-HCal, with RO DHCal and SDHCal Test on MPGD prototype: 20x20 cm² – 8 layer (~ 1 λ_{N}) Test beam with **MIP** on telescope with the active layers alone + test beam with π from 1 to 6 GeV on the calorimeter (absorber + MPGDs)

Energy resolution: DHcalvs SDHcal

for $E_{\pi} = 80$ GeV: • DHcal ~ 14%

Bibliography

[1] <u>https://doi.org/10.48550/arXiv.2203.08033</u> [2] <u>https://doi.org/10.48550/arXiv.1308.4537</u>

[3] <u>https://doi.org/10.1016/j.nima.2022.167310</u> [4] <u>https://doi.org/10.48550/arXiv.1903.11017</u>

iWoRiD 2023, Oslo 25-28 June 24th International Workshop on Radiation Imaging Detectors

