

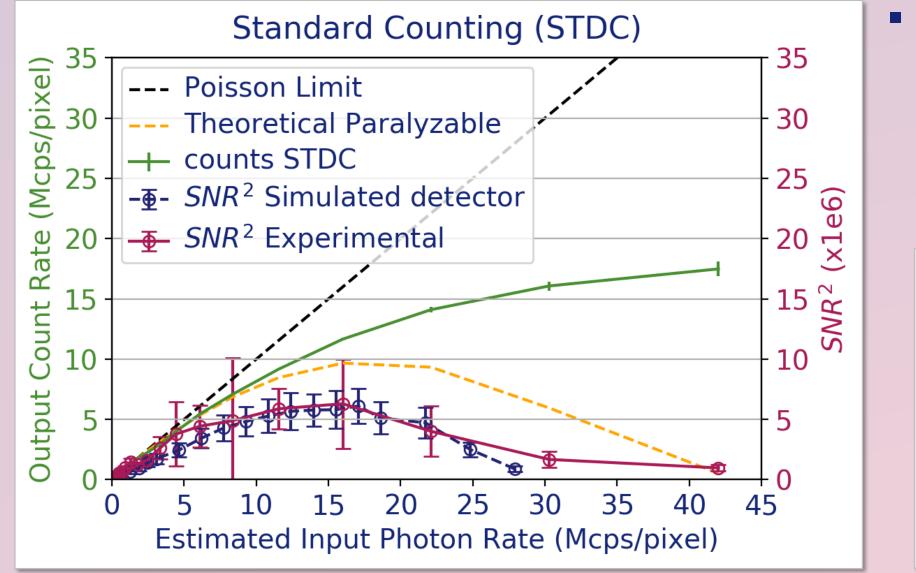
The European Synchrotron

Experimental evaluation of signal-to-noise ratio in counting detectors under pile-up conditions

D. Magalhães, P. Fajardo, P. Grybos, R. Kleczek, P. Kmon, P. Otfinowski and M. Ruat

This work puts to the test a methodology to investigate how the pile-up effect impacts detrimentally the signal-to-noise ratio of measurements taken by counting detectors. As a follow-up from the previously presented study ^[1], the methodology was applied to experimental data taken at an ESRF bending magnet beamline with SPHIRD^[2], an X-ray photon counting detector developed by an ESRF-AGH University collaboration that contemplates different pile-up compensation algorithms in the pixel logic.

Data processing methods were applied to compensate for the experimental artefacts related to the X-ray source. The SNR² of the standard counting mode presented a similar behaviour to the analytical response of a paralyzable counting system, and both tested pile-up compensation methods have presented a relative improvement in the statistical quality of the data.


Recap of the Methodology

Response of a standard counting system

- To estimate the SNR of a non-linear system, a linearization correction of the transfer function of the system (pile-up curve) is required.
- Numerically: obtain the pile-up curve and estimate the number of input counts from each measured output count-rate
 - > The pile-up curve can be obtained by accessing the average output count rate with respect to the various input fluxes
 - > For several measurements at a given input flux, use the pile-up curve to estimate the corresponding input counts
 - SNR is obtained from the mean and standard deviation of the estimated input counts
- Analytically: correction of the variance analytical expression for the slope of the pile-up curve at a given input count rate:

$$SNR_{meas}(count \, rate_{in})^2 = \left(\frac{counts_{in} \times slope(count \, rate_{in})}{\sigma(counts_{out})}\right)^2$$

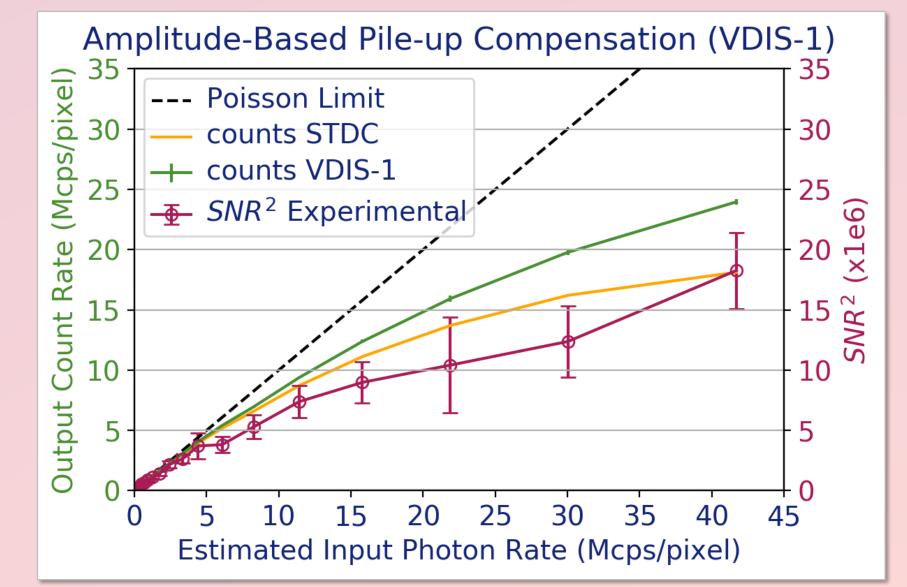
- The results shown here refer to the same single pixel
- Deadtime estimated via fitting: 21.1 ± 0.1 ns
- SNR behaviour comparable to the ideal <u>paralyzable</u> model with same deadtime

Performance worse than the ideal model, but similar to the simulated realistic detector \rightarrow artefacts of the detection chain

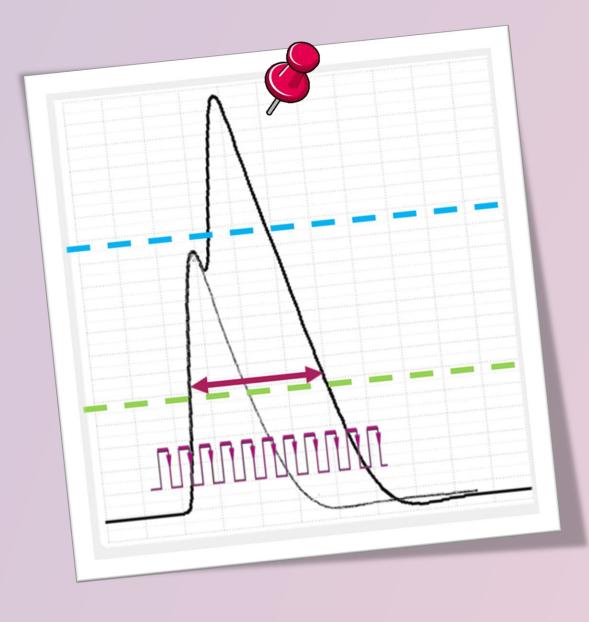
AGH

AGH UNIVERSITY OF SCIENCE

AND TECHNOLOGY

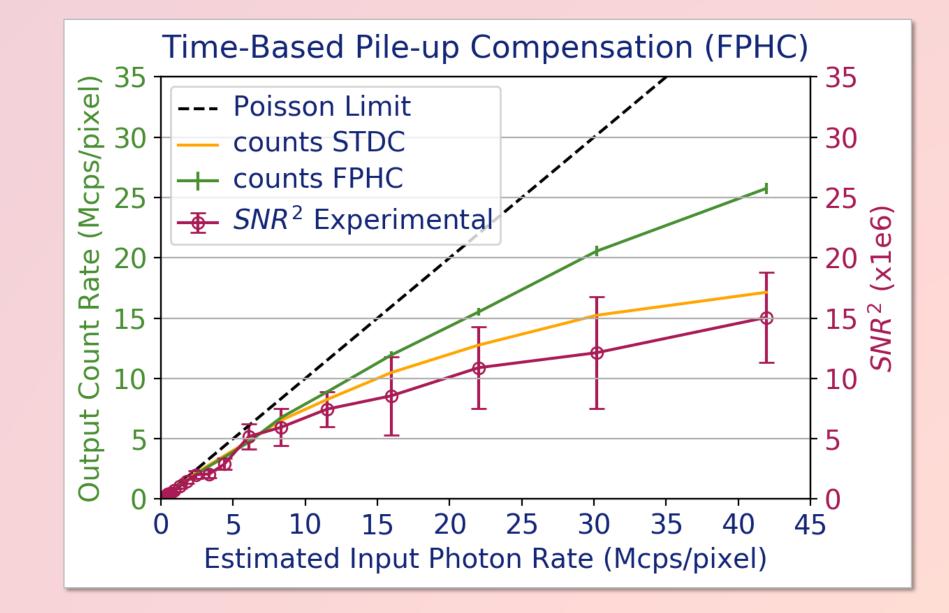

Simulated detector parameters: Si 400µm, -200V, 50µm pitch 500 threads 15 keV photons, TH at 50% • Acq. time 0.05s Pulse width 20ns at the base Triangular pulses Elect. noise 180e⁻ RMS Saturation at 50 keV

Experimental Setup


Detector under test: SPHIRD ASIC of 32x64 pixels, 50µm pitch, bonded to a silicon sensor 400µm thick

Response of the pile-up compensation schemes

- Source: Direct 15 keV monochromatic multi-bunch beam from the ESRF X-ray beamline **BM05**, 1.0x0.5mm (20x10 pixels)
- Flux controlled with a set of AI filters, 60µm to 8mm
- 500 acquisitions per filter step, threshold at 7.5 keV (50% energy)



- Pile-up compensation modes investigated:
 - > VDIS-1: pulse amplitude based
 - 1 extra threshold at 137% energy
 - The outcome is the sum of the 2 thresholds outputs
 - > FPHC: pulse width based
 - Measures the **ToT** with an asynchronous 200 MHz clock
 - Output normalized by the number of clock cycles in no pile-up conditions

How to minimize the impact of beam instabilities

Issue: The X-ray beam suffers from drifts and non-uniformities, resulting in time variations in the incident photon flux that degrade the SNR measurements.

- Improvement of the count-rate performance
- Improvement of the data statistical quality (SNR²)
- SNR² increases monotonically with flux up to 60% pile-up

- Time-based method (FPHC) was better in count-rate performance
- But statistically both had the same effect on the SNR²

- Processing method, for each step, for a given pixel (i, j):
 - \succ Estimate the correspondent input counts *counts_{in}* for each acquisition
 - \succ Calculate the ratio $r_{i,i}$ between two consequent acquisition $counts_{in}$ values
 - > Calculate the variance of the ratios $var(r_{i,i})$
 - > Calculate the SNR:

 $SNR_{i,j} = \frac{2}{var(r_{i,j})}$

Conclusions

- A method was established to estimate the SNR of counting systems
- The method has proven to be applicable to experimental measurements
- Despite the experimental artefacts, it was possible to identify that the behaviour of the pile-up effect on the SNR² matched the simulated predictions, peaking around 30% pile-up and degrading after
- Both pile-up compensation modes investigated have demonstrated a **comparable improvement** of the system's response on the SNR

[1] D. Magalhaes and P. Fajardo, JINST 18 (2023), C01016 [2] P. Grybos et al., IEEE Transactions on Circuits and Systems II: Express Briefs (2023)

ESRF – The European Synchrotron – 71 Avenue des Martyrs, Grenoble, FRANCE - Tel +33 (0)4 76 88 20 00

