

Monolithic Active Pixel Sensors for High-Energy Physics applications

Giacomo Contin

Università di Trieste & INFN Sezione di Trieste

24th iWoRiD - International Workshop On Radiation Imaging Detectors 25-29 June 2023 – Oslo (Norway)

Outline

- Monolithic Active Pixel Sensor technology
- Successful experiences: STAR HFT and ALICE ITS2
- The future: ALICE ITS3 and further plans

The ingredients for the recipe

Low material budget π⁺ μ⁺ μ

The ingredients for the recipe ... pose technological challenges

• Large number of track-points

Small distance from interaction point

 D^0

The ingredients for the recipe ...

• Low material budget

pose technological challenges

- Reduce unnecessary material
- Minimize sensitive thickness with acceptable signal

• Large number of track-points

Small distance from interaction point

The ingredients for the recipe

Low material budget

pose technological challenges

- Reduce unnecessary material
- Minimize sensitive thickness with acceptable signal
 - Equip large areas (scales with r²)

Large number of track-points

Limit power, data, costs

Small distance from interaction point

The ingredients for the recipe

Low material budget

Large number of track-points

- pose technological challenges
- Reduce unnecessary material
- Minimize sensitive thickness with acceptable signal
 - Equip large areas (scales with r²)
 - Limit power, data, costs
 - **Improve radiation tolerance**

Small distance from interaction point

Explore novel layouts ۲

Monolithic Active Pixel Sensor technology

 Combines sensitive volume and front-end readout CMOS logic in the same piece of silicon

Minimizes the material budget + simplifies the construction

MAPS: the origins

- Invented in the '90s for the detection of visible light
 - Soon became leader technology for cameras
 - Later reached performance required by scientific imaging applications
 - Active area is just a fraction of the pixel; the standard substrate has low resistivity
- Only in the early 2000s proposed for charged particle tracking in HEP
 - Need larger fill factor and better charge collection (higher resistivity substrate)

A monolithic active pixel sensor for charged particle tracking and imaging using standard VLSI CMOS technology

R. Turchetta^{a,*}, J.D. Berst^a, B. Casadei^a, G. Claus^a, C. Colledani^a, W. Dulinski^a, Y. Hu^a, D. Husson^a, J.P. Le Normand^a, J.L. Riester^a, G. Deptuch^{b,1}, U. Goerlach^b, S. Higueret^b, M. Winter^b

^aLEPSI, IN2P3/ULP, 23 rue du Loess, BP20, F-67037 Strasbourg, France ^bIReS, IN2P3/ULP, 23 rue du Loess, BP20, F-67037 Strasbourg, France

First MAPS for collider experiment: STAR HFT

Requirements for the MAPS layers

Operate in a moderate radiation environment	20 to 90 kRad / year 2*10 ¹¹ to 10 ¹² 1MeV n eq/cm ²
DCA pointing resolution	≤ 30 µm for 750 MeV/c kaons
Integration time	< 200 µs
Sensor efficiency	\ge 99% with accidental rate \le 10 ⁻⁴
Installation and maintenance	Quick insertion and extraction from one side

The STAR Experiment at RHIC (BNL)

Goal: Detect charm decays with small $c \tau$ in Au-Au collisions at 200 GeV

First MAPS for collider experiment: STAR HFT

Requirements for the MAPS layers

Operate in a moderate radiation environment	20 to 90 kRad / year 2*10 ¹¹ to 10 ¹² 1MeV n eq/cm ²
DCA pointing resolution	≤ 30 µm for 750 MeV/c kaons
Integration time	< 200 μs
Sensor efficiency	≥ 99% with accidental rate ≤ 10 ⁻⁴
Installation and maintenance	Quick insertion and extraction from one side

A new Heavy Flavor Tracker (HFT)

Two vertexing layers based on thin, low-power, small-pitch MAPS sensors

The MIMOSA Ultimate-2 sensor for STAR HFT

MIMOSA-family sensor developed for HFT at IPHC, Strasbourg

- AMS 0.35 μm CMOS, Twin-well process
 - Only NMOS transistors to avoid competition in charge collection
- 'High' resistivity (\geq 400 Ω ·cm) p-epi layer (~ 15 μ m)
 - Reduced charge collection time and improved radiation hardness
- Charge collection mostly by diffusion
 - Shallow depletion region formed between n-well and p-epi
 - High-potential difference between epi and substrate acts as a mirror

STAR HFT

13

The MIMOSA *Ultimate-2* sensor for STAR HFT

MIMOSA-family sensor developed for HFT at IPHC, Strasbourg

- AMS 0.35 μm CMOS, Twin-well process
 - Only NMOS transistors to avoid competition in charge collection
- 'High' resistivity (\geq 400 Ω ·cm) p-epi layer (~ 15 μ m)
 - Reduced charge collection time and improved radiation hardness
- Charge collection mostly by diffusion
 - Shallow depletion region formed between n-well and p-epi
 - High-potential difference between epi and substrate acts as a mirror
- Rolling-shutter readout architecture
- 185.6 μ s integration time
- ~170 mW/cm² power dissipation
 - Clock distributed across the matrix

- Pixel matrix
 - 20.7 μ m pitch
 - 928 rows * 960 columns = ~1M pixel
 - In-pixel amplifier
 - In-pixel Correlated Double Sampling (CDS)
- Digital section
 - Ping-pong memory
 - 160 MHz LVDS data output

STAR HFT

HFT PXL timeline and operations

- 2013 Engineering Run (3 sectors in actual STAR environment) crucial to solve:
 - Electrical shorts, mechanical interference, missing functionalities
 - Power control, monitoring and overcurrent thresholds were made available
- 2014-2016 Physics Runs operations: up to 1000hits/sensor; Trigger rate: 0.8-1 kHz

HFT PXL timeline and operations

- **2013 Engineering Run** (3 sectors in actual STAR environment) crucial to solve:
 - Electrical shorts, mechanical interference, missing functionalities
 - Power control, monitoring and overcurrent thresholds were made available
- 2014-2016 Physics Runs operations: up to 1000hits/sensor; Trigger rate: 0.8-1 kHz
- SEL (Single Event Latch-up) induced damage
 - Current limited latch-up states (typically ~300 mA) permanently damaging the thin sensor
 - Affected mostly high-density logic in the digital section: local power dissipation melting the metal layers
 - Mitigated with latch-up detection and automatic power cycling: dead time up to ~6%

HFT PXL timeline and operations

- **2013 Engineering Run** (3 sectors in actual STAR environment) crucial to solve:
 - Electrical shorts, mechanical interference, missing functionalities
 - Power control, monitoring and overcurrent thresholds were made available
- 2014-2016 Physics Runs operations: up to 1000hits/sensor; Trigger rate: 0.8-1 kHz
- SEL (Single Event Latch-up) induced damage
 - Current limited latch-up states (typically ~300 mA) permanently damaging the thin sensor
 - Affected mostly high-density logic in the digital section: local power dissipation melting the metal layers
 - Mitigated with latch-up detection and automatic power cycling: dead time up to ~6%

MAPS technology proved to be suitable for a collider experiment!

ALICE ITS2: first large-area MAPS-based tracker

- **ITS1**: three silicon technologies
 - Hybrid pixels ٠
 - Drift chambers ٠
 - **Micro-strips**
- Operated for 10 years in ALICE •
 - Secondary vertex reconstruction: ٠ essential ingredient for its physics output

• **ITS2**: a large-scale MAPS detector **Goal**: a dramatic improvement in the • detector performance, especially at low p_{τ}

Single technology: MAPS sensor ٠ developed within the Collaboration in TowerJazz 180nm CMOS process

ALICE ITS2: 12.5 Gpixels on ~10 m² of silicon

"Technical Design Report for the Upgrade of the ALICE Inner Tracking System" ALICE Collaboration, J.Phys. G41 (2014) 087002, CERN-LHCC-2013-024

- Monolithic Active Pixel Sensor
- Pixel pitch: ~30 μm
- 7 cylinders covering ~10 m²
- Innermost radius: 23 mm ullet
- ~0.35% X₀ material budget
- ~24k chips = **12.5G pixels**

oitaxial laye

The ALPIDE sensor for ALICE ITS2

TRANSISTORS

PWELL

30mm

.....

PMOS

NWELL

DEEP

PWELL

PWELL

^e Diffusion

DIODE

Drift

pads over matrix

NWELL DIODE

Drift

 $N_{\Delta} \sim 10^{13} \text{ cm}^{-3}$

N_A~10¹⁸ cm⁻³

IB: 50µm thick

OB: 100µm thick

10¹⁸ cm⁻³

-GND

MAPS produced using TowerJazz 0.18µm CMOS Imaging Process

PWELL

Epitaxial Layer P-

Substrate P++

ALPIDE

DEEP PWELL

- Deep P-well allows in-pixel full CMOS
- Low-power (~40mW/cm²)
- ~30 μ m pitch \rightarrow high granularity
- 50 µm thickness → low material budget
- >1 k Ω ·cm p-type epitaxial layer (25 µm)
- Possibility of reverse biasing to expand drift region
- **TID** ~ 0.3 Mrad
- NIEL ~ $3\cdot10^{12}$ 1 MeV n_{eq}/cm^2
- 27x29x25 μm³
- 1024 x 512 pixels
- Spatial resolution: ~5 μm
- Priority Encoder Readout

- Integration time: < 20 µs
- Read out up to 1.2 Gbit/s
- Continuous or triggered read-out
- Final testing yield: 64%

1-year commissioning at the surface

- ITS2 included in ALICE Data Taking since 2022: ٠
 - Extremely quiet (<10⁻⁷ hits/event/pixel), meeting performance expectations

See J. Liu's poster @ this conference!

ITS2 technology transfer to other projects

The next MAPS development for HEP

How can we do better than this?

Material: 0.3%X₀ Minimum radius: 2.3 cm Pixel pitch: ~ 30 μ m

The next MAPS development for HEP

Material: 0.4%X₀ Minimum radius: 2.8 cm Pixel pitch: ~ 21 μ m

ALICE ITS2 (2021 - 2025?)

Material: 0.3%X₀ Minimum radius: 2.3 cm Pixel pitch: ~ 30 μ m

A truly-cylindrical, 'silicon-only' detector to achieve unprecedented tracking performance at low transverse momenta.

ALICE ITS3 (2027 - ?)

> Material: $< 0.05\%X_0$ Minimum radius: ~1.8 cm Pixel pitch: < 25 μ m

See <u>M. Suljic's talk</u> @ this conference!

ITS3 silicon-only layers

- Curved geometry
 - Silicon becomes flexible below 50 μm thickness

ALICE ITS3

featuring:

- Large area chips to reduce segmentation and interconnections
 - 30 cm wafers
 - Stitched design:

- possible architecture
- abutting identical but functionally independent units
- connect metal traces for power distribution and long range on-chip interconnect busses
- repeat in vertical direction to match layer size
- TPSCo 65 nm CMOS process exploration
 - First submission containing test structures now characterised
 - Performance meeting ITS3 requirements

- * 30 cm wafers (vs 20 cm in 180 nm)
- 2D stitching experience
- ✤ Smaller feature size → smaller pixels

Bent silicon validation

doi:10.1016/j.nima.2021.166280

Bent silicon works!

Bent silicon validation

Process validation

Manual bending and assembly

Manually wrapping a 50 μ m thick dummy sensor, ~10 x 28 cm² around the 3 cm radius assembly mandrel

See M. Mager @ LCWS 2023

27/06/2023

24th iWoRiD, Oslo - giacomo.contin@ts.infn.it

Manual bending and assembly

Manually wrapping a 50 μ m thick dummy sensor, ~10 x 28 cm² around the 3 cm radius assembly mandrel

Total active area: ~0.12 m²

Bent sensor **manually glued** to the low-mass carbon foam supports and stuck on top of each other

See M. Mager @ LCWS 2023

Future challenges for MAPS-based trackers - 1

- Improve radiation tolerance and develop mechanics to place the detector directly 'in the beam'
 → ALICE 3 Experiment, proposed for LHC LS4 (2034)
 - ALICE 3 Vertex Layers: curved sensors at 5 mm from the interaction point
 - Expected NIEL: 10^{16} 1MeV n_{eq} / cm² ~1000x ITS3 level
 - Improve doping profiles in modified process
 - Expected TID: 300 Mrad ~300x ITS3 level
 - Extend tests to understand limitations

See M. Mager @ FCC Week 2023

- Retractable mechanics inside the beam pipe
- Vacuum-compatible services and interconnections

27/06/2023

Cover extra-large areas on barrel and disk layers

Future challenges for MAPS-based trackers - 2

- ALICE 3 Outer Tracker ~60 m²
 - Industrialisation of the production
 - Module layout complying with industrial standards
 - Specific sensor development
 - Extremely low power consumption (≈ 20 mW/cm²)
 - Larger pixel pitch to reduce data and power

See M. Mager @ FCC Week 2023

- ePIC Silicon Vertex Tracker, proposed for EIC (2034)
 - Based on ALICE ITS3 sensor
 - Stitched sensor size adapted for yield optimisation

See X. Li @ <u>Vertex 2022</u>

Summary: the sensor

MIMOSA Ultimate-2

- AMS 350 nm CMOS
- Twin-well process
- In-pixel NMOS transistors only
- Rolling-shutter readout
- ($\rho > 0.4 k\Omega \cdot cm$) p-type epitaxial
- Collection mostly by diffusion + drift in the built-in depletion

ALPIDE

- TowerJazz 180 nm CMOS
- Quadrupole-well technology
- Deep-pwell for in-pixel full CMOS
- Hit-driven readout
- (ρ > 1kΩ·cm) p-type epitaxial
 (~25µm) on p-type substrate
- Depleted **drift region expanded** through reverse bias (0-6V)

ITS3 sensor

- TPSCo 65 nm CMOS
- Deep-pwell for in-pixel full CMOS
- Hit-driven readout
- Modified process for planar depletion + gaps for efficient collection from the edges
- Uniformly and fully depleted epilayer

Summary: the sensor

MIMOSA Ultimate-2

- AMS 350 nm CMOS
- Twin-well process
- In-pixel **NMOS** transistors only
- Rolling-shutter readout
- ($\rho > 0.4 k\Omega \cdot cm$) p-type epitaxial
- Collection mostly by diffusion + drift in the built-in depletion

ALPIDE

- TowerJazz 180 nm CMOS
- Quadrupole-well technology
- Deep-pwell for in-pixel full CMOS
- Hit-driven readout
- (ρ > 1kΩ·cm) p-type epitaxial
 (~25µm) on p-type substrate
- Depleted **drift region expanded** through reverse bias (0-6V)

ITS3 sensor

- TPSCo 65 nm CMOS
- Deep-pwell for in-pixel full CMOS
- Hit-driven readout
- Modified process for planar depletion + gaps for efficient collection from the edges
- Uniformly and fully depleted epilayer

Summary: the sensor

MIMOSA Ultimate-2

- AMS 350 nm CMOS
- Twin-well process
- In-pixel **NMOS** transistors only
- Rolling-shutter readout

p-well

- (ρ > 0.4k Ω ·cm) p-type epitaxial
- Collection mostly by diffusion + drift in the built-in depletion

ionizing particle

n-well

E depleted

region

passivation

oxide

ALPIDE

- TowerJazz 180 nm CMOS
- Quadrupole-well technology
- Deep-pwell for in-pixel full CMOS
- Hit-driven readout
- $(\rho > 1k\Omega \cdot cm)$ p-type epitaxial (~25µm) on p-type substrate
- Depleted **drift region expanded** through reverse bias (0-6V)

ITS3 sensor

- TPSCo 65 nm CMOS
- Deep-pwell for in-pixel full CMOS
- Hit-driven readout
- Modified process with low dose for planar depletion + gaps for efficient collection from the edges
- Uniformly and fully depleted epilayer

recombination

p-epi

p++ substrate

Summary: the apparatus

STAR HFT Pixel

- 2 vertexing layers
- ~356 Mpixel on 0.16 m²
- Traditional stave layout in turbo-like geometry
- 50 μm sensors on carbon fiber supports + FPC
- Air cooled
- Inner layer $X/X_0 = 0.39\%$

ALICE ITS2

- **7-layer tracker** Inner(-Outer) layers
- ~12.5 Gpixels on 10 m^2
- Traditional (module-)stave layout in turbo-like or staggered geometry
- 50(/100) μm sensors on carbon fiber
 + FPC (+ power bus)
- Water cooled
- Inner layer $X/X_0 = 0.35\%$

- **3 vertexing layers** (~0.12 m²) integrated in ITS2 tracker
- Truly-cylindrical layer layout
- ~40 μm sensors on minimal carbon foam supports
- No in-acceptance data/power bus
- Air cooled
- Inner layer $X/X_0 = 0.05\%$

Summary: the apparatus

STAR HFT Pixel

- 2 vertexing layers
- ~356 Mpixel on 0.16 m²
- Traditional stave layout in turbo-like geometry
- 50 µm sensors on carbon fiber supports + FPC
- Air cooled
- Inner layer **X/X₀ = 0.39%**

ALICE ITS2

- **7-layer tracker** Inner(-Outer) layers
- ~12.5 Gpixels on 10 m²
- Traditional (module-)stave layout in turbo-like or staggered geometry
- 50(/100) µm thin sensors on carbon fiber + FPC (+ power bus)
- Water cooled
- Inner layer **X/X₀ = 0.35%**

ALICE ITS3

- 3 vertexing layers (~0.12 m2) integrated in ITS2 tracker
- Truly-cylindrical layer layout
- ~40 µm thin sensors on minimal carbon foam supports
- No in-acceptance data/power bus
- Air cooled
- Inner layer **X/X₀ = 0.05%**

Final considerations

- The HEP experiment requirements pushed the sensor technology to the current specifications and performance
- Innovative solutions for sensor, layout and mechanics developed for HEP goals are now **enabling new detector concepts**, made available for any application
- The construction approach depends on detector area and layout complexity:
 - From manual to semi-automated, to fully industrialised procedure as the area increases
- Novel technologies, fresh from R&D, quickly embedded in operating detectors, need risk mitigation strategies:
 - Engineering run (HFT), long-period commissioning (ITS2), spare detector copies for relatively quick replacement in case of failure
- Higher radiation tolerance and larger areas are the next challenges for MAPS

Thank you for your attention!

