Detectors for the future European XFEL

Monica Turcato
for the European XFEL Detector Group

24th international Workshop on Radiation Imaging Detectors
Oslo Science Park, June 26th, 2023
Outline

- The EuXFEL machine and its extraordinary features
 - The 1st generation detectors for the EuXFEL

- Present operation and lessons learnt

- Detector development at the EuXFEL
 - start and first steps
The European XFEL in Schenefeld, Germany

- Total length: 3.4 km
- Superconducting linear accelerator
- Undulator systems
- Electron injector
- 7 Experiment stations for research in Schenefeld
The European XFEL beamlines and instruments

XFEL beam facility: 3 beamlines, 7 Instruments

- **HED**
- **MID**
- **Future Beamlines**
- **FXE**
- **SPB/ SFX**
- **SXP**
- **SQS**
- **SCS**

Linear accelerator: 10.5, 14, 17.5 GeV
SASE 2: 6 – 25 keV
SASE 1: 6 – 25 keV
SASE 3: 0.2 – 3 keV

The specific time structure of the EuXFEL challenges detector design!
What are the challenges for the detectors?

- The time structure of the machine is unique:
 - burst mode operation, with pulses arriving at max 4.5 MHz frame rate
 - 99.4 ms interval between the 0.6 ms bursts, 10 times per second
 - typical experiment rates 0.5-1.1-2.2 MHz

- High dynamic range: up to 10^4 photons / pixel / pulse, with the capability at the same time to detect also single photons

- Radiation resistance

- Large active area (at present, 20x20 to 50x50 cm2) with relative small pixels (200 – 500 μm pixel pitch)

- Suitable for very different scientific applications

For the first generation detectors we went for a dedicated call for proposals.

External institutes / consortia developed the detectors in cooperation with EuXFEL, especially for integration and calibration
The first detector generation at the EuXFEL

For the first generation detectors we went for a dedicated call for proposals.

- Development time for the first detectors ca 2009-2023
 - AGIPD (SPB/SFX): 2017
 - LPD (FXE): 2017
 - AGIPD (MID): 2018
 - DSSC (SCS): 2019
 - DSSC DEPFET: 2023-24

- New AGIPD generation
 - AGIPD500k (HED): 2020
 - AGIPD4M (SFX): 2023-24
 - AGIPD1M (HED): 2023-24

- Three different projects adopting different solutions to solve the challenges

- Other detectors for specific applications or as backup

Detector Specifications

<table>
<thead>
<tr>
<th>Detector</th>
<th>Specs</th>
<th>Gain Mechanism</th>
<th>Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGIPD</td>
<td>352 memory cells (analog) 200μm x 200μm sq. pixels 1-10^4 12 keV ph 3-20 keV Modular: 16 (1MPix) or 8 (0.5MPix) modules</td>
<td>3 gains with automatic switching</td>
<td></td>
</tr>
<tr>
<td>LPD</td>
<td>(3x)512 memory cells (analog) 500μm x 500μm sq. pixels 1-10^5 12 keV ph 7-20 keV Modular: 16 (1MPix) modules</td>
<td>3 parallel gain stages with on front-end selection</td>
<td></td>
</tr>
<tr>
<td>DSSC</td>
<td>800 memory cells (digital) 204μm x 236μm hex. pixels N x 256 ph @ 4.5 Mhz N x 512 @ fs2.2 MHz N ≤ 1 for single ph sensitivity 0.5 – 6 keV Modular: 16 (1MPix) modules</td>
<td>Linear response (miniSDD), non-linear signal compression in sensor (DEPFET)</td>
<td></td>
</tr>
</tbody>
</table>
Detectors for EuXFEL

X-ray energy

Hard X-rays
- 6-25 keV
- ePix100 (MID, HED)
 - Noise: 50 e- (HG)
 - Dyn range: 100 8 keV ph
- Jungfrau x 18 (all hard X-ray inst.)
 - Noise: 80 e- (HG)
 - Dyn range: 10^4 12 keV ph
- pnCCD (SQS)
 - Noise: 3 e-
 - Dyn range: 1500-3000 1 keV ph

Soft X-rays
- 0.5-3 keV

Rate
- 10 Hz
- 4.5 MHz

Gotthard-II

- AGIPD (SPB/SFX, MID)
 - Noise: 350 e- (HG)
 - Dyn range: 10^4 12 keV ph
- LPD (FXE)
 - Noise: 2010 e- (HG)
 - Dyn range: 10^5 12 keV ph
- DSSC (SCS, SQS)
 - Noise: 40/60 e-
 - Dyn range: N x 256 ph @ 4.5 Mhz – N x 512 @ f≤2.2 MHz
 - N ≤ 1 for single ph sens.
The European XFEL detectors are used to produce excellent scientific results

- MHz XPCS to look at system dynamics
- Study of materials in extreme conditions
- Typical SFX sample
- Example of SFX diffraction pattern

Examples of scattering patterns from IrCl3 and Mimivirus.

- What happens next?

Examples of scattering patterns from IrCl3 and Mimivirus.

Study of materials in extreme conditions

- M. Frost et al., accepted by Nature Astronomy (2023)

kHz XPCS to look at system dynamics

- F. Büttner et al., Nat. Mater., 20, 30-37 (2021)

Examples of SFX diffraction pattern

Where do we want to go next with EuXFEL detectors?

- The first generation detectors were excellent for the start of the EuXFEL program, but to keep EuXFEL as world leading facility and allow producing excellent science we need to provide new possibility also in terms of detectors.

- The technology of the 1st detector generation is now old and difficult to reproduce or to update.
 - Transferring the same concept and specs to another technology is long and expensive.

- What are the main facility upgrades we are facing, and when will they take place?
 - high energy (> 20 keV) operation already started
 - SCU system for photon energies up and above 40 keV → 2028+
 - change of pulse rate, at present under discussion → not before 2035

- Which are the main upgrades the instruments are asking for?
 - Main request from all instruments, since 2017:
 - smaller pixels, ~100 μm pitch
 - Present detectors have 200-500 μm pixel pitch
 - major upgrade needed, floor space already small
 - memory dominates the space consumption in the pixel
Running the EuXFEL with harder X-rays: now!

The recent week in which the machine provided 23 keV photons made very clear the limitations of silicon:
- only ca 20% of the radiation is absorbed by the sensor
- electronics damage on the ASIC becomes likely
- need materials able to absorb these photons: GaAs, Cd(Zn)Te
- the worldwide community is looking for a solution to this problem
- EuXFEL to provide beam and joining sensor qualification activities

Jungfrau with GaAs
LPD with CZT

EuXFEL is joining the community of scientists active in this topic
Facility developments: SCU system, 2028+

- Electron beam energy > 16.5 GeV
- Estimated range of photons per pulse achievable by tuning the SCU afterburner to amplify the output of the fundamental of the PMUs and the bunching of the second harmonic of the PMUs
- Peak flux ~100 x higher than HE diffraction-limited SR sources
- Large dynamic range detectors needed!

Normalized emittance 0.4 mm mrad
Initial energy spread 3 MeV
Current 5 kA
The simulations do not consider wake fields and tapering. A flat top 3 fs bunch is considered

Thanks to Sara Casalbuoni and UND group of EuXFEL
Where are we now?

European XFEL plan for the next decade+
What should be the main features of next generation detectors?

- If you ask users: provide excellent data quality and easiness of analysis
- If you ask Instrument Scientists: they would add ease of operation and maintenance
- If you ask Detector Scientists at EuXFEL: emphasis move on system robustness and ease of integration, maintenance and calibration
- If you ask Detector Developers: the project must also be interesting and feasible from the technology point of view.

At the end of the day, the common goal is excellent data quality, the point of view slightly different → we should combine the views and expertise since the beginning!
What have we learned from the first detector generation?

1. The first detector generation was fully integrated with no EuXFEL available
 - real tests can be done only with the time structure and pulse intensity of the EuXFEL
 - it is important to test prototypes as soon as they become available

2. Last year EuXFEL provided ca 8000 hours for user beamtime
 - ease of operation is a must
 - reliability is a must, ease of intervention facilitates operation a lot
 - reliable hardware interlocks are vital

3. Data quality is the main parameters to judge detector quality
 - need for reliable calibration sources

4. Having several different technologies increases the operation burden a lot

5. The volume of the produced data is enormous and reduction strategies must be put in place
1. The importance of testing in real experimental conditions

- We can test at the same time all detector properties only with the EuXFEL beam
- Especially features related with the high intensity at high speed are hard to spot
- Two examples from AGIPD: baseline shift and snowy pixels

Baseline shift as a function of X-ray intensity

Baseline depending on deposited energy
Corrected via h/w intervention at SPB/SFX
MID intervention to be scheduled

Problem at the transition region b/w high and medium gain
Very much dependent on repetition rate: running with longer integration time helps

Similar discoveries also for the other detectors…
2. The importance of ease of operation and of interlocks

- Detectors are protected by interlocks which saved them already a couple of times:
 - ensure cooling is active when detector on
 - ensure vacuum is kept when detector is cold… etc…
 - switch off detector in case of danger…

- Radiation damage happens
 - easy access is a must, ability to quickly exchange modules
 - fast access to electronics
 - interlock against e.g. ice formation would help, under commissioning

- For future detectors risk minimisation has the highest priority
 - … and ease of installation and part exchange is also vital

Radiation damage on AGIPD

Beam damage on AGIPD

Deformed DSSC cooling pipes
3. The importance of reliable (internal) calibration sources

<table>
<thead>
<tr>
<th>Detector</th>
<th>Specs</th>
<th>Gain Mechanism</th>
<th>Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGIPD</td>
<td>352 memory cells (analog) 200μm x 200μm sq. pixels 1-10^4 12 keV ph 3-20 keV Modular: 16 (1MPix) or 8 (0.5MPix) modules</td>
<td>3 gains with automatic switching</td>
<td>![Graph 1]</td>
</tr>
<tr>
<td>LPD</td>
<td>(3x)512 memory cells (analog) 500μm x 500μm sq. pixels 1-10^5 12 keV ph 7-20 keV Modular: 16 (1MPix) modules</td>
<td>3 parallel gain stages with on front-end selection</td>
<td>![Graph 2]</td>
</tr>
<tr>
<td>DSSC</td>
<td>800 memory cells (digital) 204μm x 236μm hex. pixels N x 256 ph @ 4.5 Mhz N x 512 @ fs2.2 MHz N ≤ 1 for single ph sensitivity 0.5 – 6 keV Modular: 16 (1MPix) modules</td>
<td>Linear response (miniSDD), non-linear signal compression in sensor (DEPFET)</td>
<td>![Graph 3]</td>
</tr>
</tbody>
</table>

- Calibrating the full dynamic range is a major challenge.
- Not yet done for all detectors, also due to radiation damage.
- Calibration needs to be done any time there is an accident or major intervention on detector.
- Routinely done after each maintenance period for the hard X-ray detectors.
- Need of calibration-friendly design!
3. The importance of reliable (internal) calibration sources

<table>
<thead>
<tr>
<th>Detector</th>
<th>Specs</th>
<th>Gain Mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGIPD</td>
<td>352 memory cells (analog)</td>
<td>1-10^4 12 keV ph</td>
</tr>
<tr>
<td></td>
<td>200 μm x 200 μm sq. pixels</td>
<td>3 gains with automatic switching</td>
</tr>
<tr>
<td></td>
<td>Modular: 16 (1MPix) or 8 (0.5MPix) modules</td>
<td></td>
</tr>
<tr>
<td>LPD</td>
<td>(3x)512 memory cells (analog)</td>
<td>1-10^5 12 keV ph</td>
</tr>
<tr>
<td></td>
<td>500 μm x 500 μm sq. pixels</td>
<td>3 parallel gain stages with on-front-end selection</td>
</tr>
<tr>
<td></td>
<td>Modular: 16 (1MPix) modules</td>
<td></td>
</tr>
<tr>
<td>DSSC</td>
<td>800 memory cells (digital)</td>
<td>N x 256 ph @ 4.5 Mhz</td>
</tr>
<tr>
<td></td>
<td>204μm x 236μm hex. pixels</td>
<td>N x 512 @ f≤2.2 MHz</td>
</tr>
<tr>
<td></td>
<td>Modular: 16 (1MPix) modules</td>
<td></td>
</tr>
</tbody>
</table>

Challenges
- Three gain stages per pixel
- Analog memory cells
- Analog gain evaluation
- Many operation modes to mitigate detector artefacts
- Non-linear gain to be evaluated

Example AGIPD (one operation scenario)
- x 1 million pixels
- x 352 memory cells
- x 3 gain stages
- x number of needed calibration constants
 → > 10^9 parameters

The constants have to be generated for different operation scenarios:
- rep. rate
- Number of mem. cells
- Integration time
4. The impact of having a detector ‘zoo’

<table>
<thead>
<tr>
<th>Detector</th>
<th>Specs</th>
<th>Gain Mechanism</th>
<th>Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGIPD</td>
<td>352 memory cells (analog) 200μm x 200μm sq. pixels 1-10^4 12 keV ph 3-20 keV Modular: 16 (1MPix) or 8 (0.5MPix) modules</td>
<td>3 gains with automatic switching</td>
<td></td>
</tr>
<tr>
<td>LPD</td>
<td>(3x)512 memory cells (analog) 500μm x 500μm sq. pixels 1-10^6 12 keV ph 7-20 keV Modular: 16 (1MPix) modules</td>
<td>3 parallel gain stages with on front-end selection</td>
<td></td>
</tr>
<tr>
<td>DSSC</td>
<td>800 memory cells (digital) 204μm x 236μm hex. pixels N x 256 ph @ 4.5 Mhz N x 512 @ fs2.2 MHz N ≤ 1 for single ph sensitivity 0.5 – 6 keV Modular: 16 (1MPix) modules</td>
<td>Linear response (miniSDD), non-linear gain in sensor (DePFET)</td>
<td></td>
</tr>
</tbody>
</table>

- We have three kind of detectors which are one-of-a-kind!
- Different experts needed for different technologies
- Standardisation in controls, interlocks, calibration difficult if not impossible
- Heavily depending on developers for e.g. f/w updates
5. Data reduction efforts

- Initial approach of storing the entire generated data long-term throughout the embargo period and beyond is no longer sustainable

- Data reduction addressed starting from policy down to specific online and offline data reduction implementations:
 - Data management plan (DMP) to include data reduction early and throughout the proposal process
 - Operation-specific, e.g.: automatic detection of non-illuminated frames (LitFrameFinder), photonization, pulse-on-demand
 - Technique-specific, e.g. event reconstruction (REMI), hit finding (SFX, SPI), $g^{(2)}$ correlation functions (XPCS, XCCA)

- LitFrameFinder and photonization used now routinely for processing results

- First attempts with real-time reduction before saving to disk

- Currently preparing to apply techniques to past data in collaboration with users

Thanks to Philipp Schmidt and DA group of EuXFEL
When do we need new detectors?

- **2017–2021**: Start-up
 - Instrument Reviews
 - Facility upgrade: Acc., 2nd fan, Science instruments

- **2022–2030+**: Harvesting

- **2024–2029**: Developments & Extensions

- **2030+**: Facility Upgrade

Detector development
Detector development

Goal: 2nd generation of Large Area Pixel Detectors 2028-2030, matching expected lifetime

Phase I 2023 – 2025
- Areas of investigation:
 - System integration, backend electronics
 - System integration, mechanics and cooling
 - High-Z materials
 - Sensor and ASIC
- Main goals:
 - increase our expertise in key areas
 - identify a feasible project fitting with the timeline, possibly in the direction we want to go in the future

Phase II 2024 – 2030
- Establish concrete projects to build detectors to be ready for 2030
- Prototyping of selected technologies
- Final designs
- Construction and commissioning at Scientific Instruments
Where is our main expertise right now?

- Our main expertise is integration together with calibration, and some part of mechanics including assembly.
Where do we want to go? Take over system assembly and integration

- How we plan to be involved: significant engineering resources needed

Figure from M. Porro et al., “IEEE Transactions on Nuclear Science, vol. 68, no. 6, pp. 1334-1350, June 2021
Third port of SASE2 approved for construction in 2025

- Hutch and beam transport tunnel approved, installation in the 2025 long shutdown until early 2027

- Can offer extra possibilities for detector testing
How to get to the final requirements?

- Burst mode will still be our operation mode
 - this has no equal in the world
 - even a very fast (100 kHz) continuous readout detector will not help
 - per 0.6 ms burst, we could only read out max 60-70 frames, at present we read out 350-800 per burst
 - EuXFEL is bound to MHz repetition rate
How to get to the final requirements?

How do we get to the requirements for the 2030 detectors?

- Burst mode will still be our operation mode
 - this has no equal in the world
 - even a very fast (100 kHz) continuous readout detector will not help
 - per 0.6 ms burst, we could only read out max 60-70 frames
 - at present we read out 350-800 per burst
 - EuXFEL is bound to MHz repetition rate
 - a continuous readout MHz detector is far away in the future

- For 2030 we still need detectors able to cope with our burst mode!
 - **Focus on burst mode for next detector round**

- Can we upgrade our detectors so that we get closer to what we could need in 2035?
 - **Consider facility upgrades, science needs and technology developments all together**
Our preliminary requirements

Not all parameters to be reached at the same time!

<table>
<thead>
<tr>
<th>Hard X-ray detector</th>
<th>Soft X-ray detector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target values</td>
<td>Target values</td>
</tr>
<tr>
<td>Sensitive Energy Range</td>
<td>0.4 - 3 keV, possibly higher</td>
</tr>
<tr>
<td>Dynamic range in photons</td>
<td>> 5 x 10^3 1 keV ph./px</td>
</tr>
<tr>
<td>Noise (ENC)</td>
<td>< 30 el. rms.</td>
</tr>
<tr>
<td>Frame rate</td>
<td>Burst mode, 1.1 MHz</td>
</tr>
<tr>
<td>Sensor type</td>
<td>2D pixelated</td>
</tr>
<tr>
<td>Pixel size</td>
<td>80 - 100 µm pitch</td>
</tr>
<tr>
<td>Pixel count</td>
<td>Move away from fixed large detectors, modular approach, max 4 Mpix</td>
</tr>
<tr>
<td>Operating pressure range</td>
<td>Both ambient and vacuum (below 10^-3 mbar) versions needed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Possible variant</th>
<th>Possible variant</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-13 keV½ with Si</td>
<td>500 - 1000 1 keV ph./px, one gain</td>
</tr>
<tr>
<td>13-50 keV with high-Z</td>
<td>~0.125 keV photon in Silicon</td>
</tr>
<tr>
<td>> 5 x 10^3 12 keV ph./px</td>
<td>Burst mode, 1.1 - 4.5 MHz</td>
</tr>
<tr>
<td>< 300 el. rms.</td>
<td>Burst mode, 1.1 MHz</td>
</tr>
<tr>
<td>~1 keV photon in Silicon</td>
<td>Burst mode, 1.1 - 4.5 MHz</td>
</tr>
<tr>
<td>Burst mode, 1.1 MHz</td>
<td>Burst mode, 1.1 MHz</td>
</tr>
<tr>
<td>Burst mode, 1.1 - 4.5 MHz</td>
<td>Burst mode, 1.1 - 4.5 MHz</td>
</tr>
<tr>
<td>Move away from fixed large detectors, modular approach, max 4 Mpix</td>
<td>Move away from fixed large detectors, modular approach, max 4 Mpix</td>
</tr>
<tr>
<td>Both ambient and vacuum (below 10^-3 mbar) versions needed</td>
<td>< 10^-6 mbar</td>
</tr>
</tbody>
</table>

\[\text{Defined by QE of the sensor. Operation above/below is possible with reduced performance.}\]
Detector workshop 18-19 September

Goal of the workshop:
- illustrate the needs of the EuXFEL in terms of detector performance and operation, including facility upgrade, scientific needs and lessons learned
- discussion of the ongoing developments
- identification of interesting technologies for the EuXFEL
- identification of areas where common developments are possible
Conclusions

- EuXFEL producing excellent scientific results based on data collected by the present detector generation

- Looking at the future, the next generation detector development program is starting at the EuXFEL

- Phase 1 of the development will serve to increase EuXFEL expertise in certain fields and to define collaboration with external partners in specific topics (ASICs, sensors…)

- Phase 1 is also aimed to define what is possible in terms of detector development and on which time scale

Looking forward to the new challenges!
Thank you!
Backup
Read-out pulses at 4.5 MHz

- 2700 x-ray pulses in one bunch
- 7.12 µs
- 220 ns
- 600 µs

Max. mean frame rate: 27 kHz
(8 kHz with 800 memory cells)

EuXFEL X-ray pulses delivery

Read-out pulses at 1.1 MHz

- 880 ns
- 7.12 µs
- 592 µs
- 600 µs

Max. mean frame rate: ~ 7 kHz

Read-out pulses at 113 kHz

- 8.8 µs
- 7.12 µs
- 592 µs
- 600 µs

Max. mean frame rate: ~ 700 Hz
Detectors setups: data correction

Corrected data proposed for each detector

- Offset Correction
- Gain corrections
- Bad Pixel Maps
- ...

Raw data → Corrected data

Online/ off line correction process

Raw data → Cal. constants → Calibration database → Corrected data → User data

1 trains/ 5 (2 Hz) → Calibration database → Corrected data

Online cluster → Corrected data → Users on line display

Offline cluster → Corrected data → Full corrected data set

Experiment tuning !!
Facility developments: new time structure, 2035+?

Time structure not yet defined, some options under consideration

- CW mode implies a max electron energy of 7 GeV (with respect to the 17.5 GeV of now)
- Energy can be gained by running in high duty-cycle mode, when RF is on for a fraction of time (the present burst mode corresponds to a duty cycle of 0.006)
- This choice impacts dramatically on detector design
- Timeline: CDR end of 2027, implementation 2035+
 - not thinkable to run with present detectors until then

Thanks to the accelerator team, in particular J. Sekutowicz and E. Vogel