

Topics in this course:

- 1. Intro to QCD
- 2. Parton Distribution Functions
- 3. Scattering Amplitudes
- 4 Parton Showers
- 5. High Energy Limit

<u>Books</u>: Buckley, White + White "Practical Collider Physics" IoP Ellis. Stirling ⁺ Webber " QCD and Collider Physics"Cup Campbell, Houston - Krauss "The Black Book of ..."COP

Edinburgh (MetOffice)Cloudy changing to light showers Today in the afternoon. $16^{\circ} 11^{\circ}$ Tue 18 Jul Wed 19 Jul Thu 20 Jul Fri 21 Jul 14°
 11° 16° _{11°} ϕ : $\frac{18^{\circ}}{11^{\circ}}$ $16°$ Sunrise: Sunset: ∞ \curvearrowright M UV \leq Pollution Pollen 10^o 04:51 21:46

FIFA's position on extreme heat

If there is a WGBT of more than 32° Centigrade (89.6 degrees Fahrenheit) cooling breaks are mandatory in both halves of a match, around the 30th minute and 75th minute; the decision on whether to suspend or cancel the match is at the discretion of competition organisers.

1 QCD Intro

1.1 Depinition QCD is a non-Aselian SU(3) gauge theory consisting of · Spir- 1/2 quartes : 6 familiers (d, u, s, c, b, t) Each in 3 "colons" fermiar number • $Spin-1$ gluan: $8 = N_c^2$ massless **COOSSOON** Lagrangean $L = -\frac{1}{4} F^{a \mu\nu} F^{a}_{\mu\nu} + \overline{\Psi}_{i} (i \cancel{B}_{ij} - m \cancel{S}_{ij}) \psi_{j}$ fund¹ rep? Where D_{ij}^{μ} = $D^{\mu}\delta_{ij}$ + $ig_{s}T_{ij}^{\alpha}A^{\alpha}\mu$ $F_{\mu\nu}^{\alpha}$ = $\partial_{\mu}A_{\nu}^{\alpha}$ - $\partial_{\nu}A_{\mu}^{\alpha}$ + gs $f^{abc}A_{\mu}^{b}A_{\nu}^{c}$ gluar field adjoint rep? M,V et Lorent Indices a,b adjoint colais Repeated indices summed ares. is j fund. colour

Glav matrices
$$
T_{ij}^a
$$
 satisfy $(T^a, T^b) = i \int_{i}^{a} x^b T^c$ of $(a_{i}, a_{j}) \in i \times a_{k}$

\nSubstituting the 20(2)

\n

$$
\mu_{\nu}^{A}(\mu_{\nu})^{\nu}
$$

\n $\mu_{\nu}^{A}(\mu_{\nu})^{\nu}$
\n $\mu_{\nu}^{A}(\mu_{\nu})^{\nu}$

and the first two are no layer gauge-invariant because gauge
\npieceo has multiplied by [17,7%]
$$
\neq 0
$$
, but [17,7%] \approx and
\nis cancelled by [16]
\nFinally need incoming/antgang particles:
\nIn
\n`\n1n\n`
\n`\n1n\n`

Carpling carstant is gs or often $\alpha_s = \frac{g_s^2}{4\pi}$ It is not constant, but evidues with scale of the process. We It is not constant, but evidues with scale of the process $\beta(\alpha_S) = \mu^2 \frac{\partial \alpha}{\partial \mu^2}$ $M = \mu^2 \frac{\partial \alpha}{\partial \mu^2}$ which is calculated perturbatively, currently to s-loops. See Tut-wed. $p(\alpha_s) = \mu_{\overline{\alpha\mu^2}}$
which is calculated perturbaturely
for QCD, the $\beta-f^n$ is regature $For QCD, the β-f^n is negative.
\n
$$
P = \frac{QCD}{T}, \frac{dQCD}{T}, \frac{d
$$$ \rightarrow Result means α_5' large at small energies \rightarrow non-pert. to why we only see color-neutral states day-to-day. α_s small at large energies. "Asymptotic freedom" 1.2 QCD Cross Sections At an ete⁻ collider, the cross section for (Pet Pe--> PitP2+...+Pr) is given by Jee = Sec

Col

F

F

F

F

F (3)(2)"8 (Pe- ⁺ $+P_{e^{+}} - \sum_{j=1}^{n} P_{i} \sqrt{|\mathsf{M}|^{2}}$ J $i = 1$ $\sqrt{2E_i(2\pi)^3}$ π $j = 1$ π $j = 1$

& Lorentz - Invariant Total man matrix-element flux factor Phase space (LIPS) conservation squared, gives norm? summed t - (28p?-mi) averaged over helicity, colour. This is straight forward as the exactmomental of it and are known. ⑲-- Asymptotic freedom tells us at H.E., coupling weak ↑ & and we can treatthem independently. fair to assume they travel withfractionof total man pr=x:1M for each componentwhere ,is thematurefractal of ⁱ Picture confirmed by detailed experiments, see This tutorial. We use ^a paton distributionfunction (pdf) find to connecta partonic cross section to the proton collision,so Ep (ep- p....pr) ⁼ [^S iesgigigsd file) :(ei-p.pn) ⁺ 0(4)

with two incoming protons, Opp (pp - p. ...Pn) ⁼ [·^j -29,aig Jodi S.d fillfjk Eij (ij p, ...(n) ⁺ 0(88) y e patonic cross section non-petub. petubature. -

Notes

- . This has an appealing interpretation where the pdf gives the -
This has an appealing interpretation where the pdf gives the
probability of finding a patricular flavour of parton with man^{ny} fraction
- · Ithas been analytically shown tobe valid for DIS and for Drell-Yan $(p\ddot{\rho}\rightarrow e^+e^-)$. Not true at all orders for every final state.
- · There is a correction term of $O(\frac{N_{QCD}}{Q^2})$ where N_{QCD} is scale where QCD becomes non-peturb. and Q² is scale of the hosd-process.
- . Pdfs cannot yet be calculated explicitly (some hope from lattice)
. can be large sauce of the une at the LHC.