QCD Lecture 4

Last time: Hard Scattes Part with $qQ \rightarrow qQ$ as an example · LO · found a virtual contribution: constants x $x \sqrt{M_{keel}}^2 \left(\frac{1}{\epsilon^2} + \frac{1}{\epsilon} \log\left(-\frac{\mu_e^2}{\hat{s}}\right) + \Theta(\epsilon^{\circ})\right)$ Full thing Ellis + Sexton 1986 Real cant'd $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ rg70 $\frac{1}{2}$ \times $[\bar{u}(\rho_1)3^{\mu}\rho_1\nu(\rho_2)][\bar{u}(\rho_2)3^{\mu}\rho_2\nu(\rho_3)] \times \frac{1}{2} \times cd\alpha_1\xi$ $\frac{QCD \text{ Lecture } I_{+}}{1000}$

Hard Scattes Bat with $qQ \rightarrow qQ$ as an example

. LO

. found a virtual contribution:

. candiants $\times \frac{|I_{tree}|}{|I_{tree}|} \times (\frac{1}{\epsilon^2} + \frac{1}{\epsilon} \log(\frac{-\mu_{R}^2}{\epsilon}))$

full thing $\frac{E}{100} + \frac{1}{\epsilon} \log(\frac{-\mu_{R}^2}{$ kinematic tree. Eikanal kinematic tree. Changed by Other 9-9 vertex diagrams have same form, different colour factors. When we sum over gluan helicity, $\sum_{h=f_1^-} \sum_{j=1}^{h} \left(\beta_1\right)^h \sum_{j=1}^{h} \beta_j^o = -g^{\mu\nu}$ (f. gauge.)

\n M_1^2 from has cross-form of the form $\frac{R_1P_4}{R_1P_3P_1P_3P_2P_3}$, ... \n We need to integrate over P_1M .\n	\n $S_{ij}=(f_2+P_3)^2-2p_1P_3$ \n
\n $10e$ defines the equation of phase space are where S_{ij} small.\n	
\n $S_0^2: S_{ij}$ small, $S_{ij} \leq S_{min}$ find $S_{ij} \leq S_{min}$ find $S_{ij} \leq S_{min}$ and $S_{ij} \leq S_{min}$ and $S_{ij} \leq S_{min}$ and $S_{ij} \leq S_{min}$.\n	
\n $S_0^2: S_{ij} \leq S_{min}$ and $S_1 \leq S_{ij} \leq S_{min}$ find $S_{ij} \leq S_{min}$ and $S_{ij} \leq S_{min}$.\n	
\n $S_0^2: S_{ij} \leq S_{min}$ and $S_{ij} \leq S_{min}$ and $S_{ij} \leq S_{min}$.\n	
\n $S_0^2: S_{ij} \leq S_{min}$ and $S_{ij} \leq S_{min}$ and $S_{ij} \leq S_{min}$.\n	
\n $S_0^2: S_{ij} \leq S_{min}$ and $S_{ij} \leq S_{min}$ and $S_{ij} \leq S_{min}$.\n	
\n $S_0^2: S_{ij} \leq S_{ij}$ and $S_{ij} \leq S_{ij}$ and $S_{ij} \leq S_{ij}$.\n	
\n $S_0^2: S_{ij} \leq S_{ij}$ and $S_{ij} \leq S_{ij}$ and $S_{ij} \leq S_{ij}$.\n	
\n $S_0^2: S_{ij} \leq S_{ij$	

$$
= \frac{(\ln r)^{\epsilon}}{8\pi^{2} \text{ P}(1+\epsilon)} \frac{1}{\epsilon^{2}} \left(\frac{\mu_{\alpha}^{2}}{5\pi^{2}}\right)^{\epsilon} \left(\frac{S_{\alpha}}{5\pi^{2}}\right)^{\epsilon}
$$
\n
$$
= \frac{(\ln r)^{\epsilon}}{8\pi^{2} \text{ P}(1+\epsilon)} \left(\frac{1}{\epsilon^{2}} + \frac{1}{\epsilon} \left(\log\left(\frac{\mu_{\alpha}^{2}}{5\pi^{2}}\right) + \log\left(\frac{\epsilon}{5\pi^{2}}\right)\right) + O(\epsilon) \frac{\epsilon}{2} + \epsilon \log x + \frac{1}{2} \epsilon^{2} \log^{2} x + \frac{1}{\epsilon^{2}} \log x + \frac{1}{\epsilon^{2}} \log
$$

5. t.
$$
\int dP_2 F_2 = \int dP_3 f_3
$$
 and $\int dP_2 (iM_{vich}P_1F_2) = \int P_3 M_{rad}P_2 - f_3$ both finite.

\n1. What P_1 will have a particle.

\n1. What P_2 will have a particle.

\n2. a P_1 will have a particle.

\n3. a P_2 will have a field.

\n4. a P_1 will have a circle.

\n5. a P_1 will have a circle.

\n6. a P_1 will have a circle.

\n7. a P_2 will have a circle.

\n8. a P_1 will have a circle.

\n9. a P_2 will have a circle.

\n1. a P_1 will have a circle.

\n1. a P_2 will have a circle.

\n1. a P_3 will have a circle.

\n1. a P_4 will have a circle.

\n1. a P_4 will have a circle.

\n2. a P_1 will have a circle.

\n3. a P_1 will have a circle.

\n4. a P_2 will have a circle.

\n5. a P_1 will have a circle.

\n6. a P_1 will have a circle.

\n7. a P_2 will have a circle.

\n8. a P_3 will have a circle.

\n9. a P_4 will have a circle.

\n1. a P_5 will have a circle.

\n1. a P_6 will have a circle.

\n1. a P_7 will have a circle.

\n1. a P_8 will have a circle.

\n1. a

There is a problem when the 'ci's increase with i. An important example is collinear emissions. We cancel the 'oo's, but nealoy is still large. Take a = 1
b = 2 with p splitting p = 1 p1 $s \rightarrow s$
As for initial collinear, $d\hat{\sigma}_3 = d\hat{\sigma}_1 \int \frac{d\hat{\sigma}}{t} \int \frac{d\hat{\sigma}}{t} P_{qq}(\hat{\sigma})$
previously $|k_1|$ p_{j}
 p_{j}
 p_{j}
 p_{j}
 p_{j} For outgang, depine $t = p_i^2$ = Lorentz Invariant virtuality Can iterate with more and more envissions dôn_{t 1} dôn Jat_{ry} Jaten pining After Each envission, parton is closer to an-shell $\rho_1 \rightarrow \infty$ which is adjud Use $|M|^2$ for hard scatter, then evalue dan like this to small scales, to

of course gives an approx to full 2-1 result, but if a high enough, don't have a full result.

Similar for soft. An extra soft parton not so easily associated to 1 (or 2) hard partons. "Colour columnes" means well-modelled if instead of you order emissions by angle 0.

A parton shaver uses these probabilities to produce a set of events with varying numbers of extra emissions faithful to that dist. Define Sudation factor, Δ_i (toit), to be the probability that no resoluable emission has been produced from paton; between two scales to andt. Δ_{i} (t_{0} , t + St) = Δ_{i} (t_{0} , t) × [1 - $\sum_{j}\int_{t}^{t+8t}\frac{dt}{d} \int dz \quad \rho_{ji}(z)$

$$
\frac{d\Delta_{i}(t_{0},t)}{dt} = -\frac{1}{t} \sum_{j} \int dz P_{ji}(z) \Delta_{i}(t_{0},t)
$$
\n
$$
\Rightarrow \Delta_{i}(t_{0},t) = exp \left(-\sum_{j} \int_{t_{0}}^{t} \frac{dt'}{t'} \int dz P_{ji}(z) \right)
$$

of n envissions with flavour in, monne fraction Zk, : Cascade/shaver virtuality to has prob? $P_{i_1,...,i_n}$ ($\{z_{i_1}, \dots, z_{i_n}\}$ = $\left[\prod_{m=1}^{n} \triangle_{i_m} (t_{m_1}t_{m_2})\right] \left[\prod_{m=1}^{n} \int d\overline{z}_{m+1} P_{i_{m+1}i_m} (z_{m+1})\right]$ Molitting fr for Sudata & each Separation in scales each enission. Notes

· Only mentioned real envissions. Vistual corrections are implicatly included in the Sudakov.

· We required probabilitiessum to 1, and ifyou sum above equ over all frial states, you get1. =>Total cross sectionshould be unchanged by showering, justmoved in jetbins/distributions. In practice, itwill change slightlydue tocuts, jetalgorithms,... · similar treatmentfor soft/collinear emissions from incoming particles, but color-charged mustexclude emissions in pafs. · Sudabor includes ^a ratio of pdfs.

. Need to run shaver an each colou-charged particle, and the ones you produce.
The ordering and to mean it will be time-consuming.
Merging

Wish to combine the best of an fixed arders with the best shaver.

