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Lecture program

Day1 Day2 Day3 Day4

Introduction to  Data analysis in a Data analysis
Lecture probability and nutshell Bayesian inference Bayesian inference beyond hypothesis
statistics test

® The 1dea of these lectures 1s to 1ntroduce data analysis practices typical
of High Energy Physics

@1 will use some example from HEP, mostly from LHC, but the scope of these
techniques 1s broader

@1 will describe the physics applications when use the examples

@ IT you are not familiar with something, raise your hand and ask for a
clarification
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THERES A 424107 PROBABILITY THAT THIS
BABY WILL (REATE A BLACK HOLE THAT DESTROYS

THE EARTH )
WOW. WHATS THE CHANCE

\ IT WILL DO SOMETHING
VSEFUL?

WELL, THERES A 424107 CHANCE THAT
WELL BE RID OF PARIS HILToN |

Probaoility in a nutshell




The starting polnt
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@ Since the early ‘80s, particle physics h
1s dealing with challenging data 92 EVENTS

analysis problems
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® Large amount of data created

EVENTS PER L GeV/c?
=
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@ Interest 1n rare processes
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® Need to separate interesting events NVARIANT MASS M (e'e) (GeV/c))
from overwhelming background

L =4 H-—yy
- \s=7TeV,L=5.11"
g, \s=8TeV,L=53"

@® No obvious solution: whatever you
do, a perfect separation 1s just
not possible

E

Events / 1.5 GeV
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® The days of “I discovered something
because I just saw an event” 1s gone

S/(S+B) Weighted
)
o

(for us, not for others, see LIGO/
VIRGO) R T RT Rt

1 m,, (GeV)




The startin OolNt

@ Clearly this 1s a problem at the LHC

@ But this 1s a problem even with dark EENER B Wall © Neutron EEEIAC W WIMP
matter searches 104 F

® You go below a mountain to look

for a quite place | - .. i "-.,.'.-.'- ]
E o N0 e ] e o’ e " et
: P et - TTII
® But you are Tlooking for a very = - B
rare signal % -

® Even the most unlikely noise 1s
as probable as your signal

® You need to be able to tell the | E— | | |

) 0 20 40 60 80 100
background from the signal cS1 [PE] :

1M
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[ countinNg expertmen

® You are searching for Dark Matter. You
build a detector underground, screened
by any source of natural radiation

® You are waiting for a DM particle to
hit your detector and produce an %
energy deposit rcormin

@® Signal = large energy deposit
leading to a large electronic signal

® Background = some noise

® You count events with large enough
electronic signal

® You see any, you get a Nobel Prize

@ Why do you need statistics at all?
6




Separating Sig from Bkg

@ Real 11fe 1s not like that: whatever 1s
your fiducial region (your cut on E) you
never expect exactly 0 background

® And even 1f you know exactly the number
of bkg events you expect (e.g., A =1
event) you cannot jump to conclusions 1f
you see > A events

@ Th1is 1s because statistical fluctuations
happen

@ I you toss the same coin ten times,
you expect 5 heads, but you might see
4, or 6, etc

® What 1s the probability of seeing Kk
events when you expect A?




Bernoullls process

® You pick k 1tems out of a
bag with N 1tems and you
ask a yes/no question

Axiomatic Probability

® does my event come with

energy E above a Probability is a set function P(E) that assigns to every event E
threshold? a number called the “probability of E” such that:
|.The probability of an event is greater than or equal to zero
@1s my ball red? P(E)=0
2.The probability of the sample space is one
@Let’s call P(Q)=1

© Byjus.com

@p: probability that the
answer 1s Yes

@qg = 1-p ! probability
that the answer 1s No




Binomwal distribution

@ Probability of
one out of one Pk=1|N=1)=p

1tem being Y

_|_
Pk=1|N=2)=—279% _ 1,

@ Probabi1lity of 2 v >
one out of two P Pq T 4qpPq

1tems being Y _
Probability that the selected
[ order not event is obtained k times out

of the total of N trials.

] /
! mp ortant! ] | 7/ /, Probabability that something
n. I N—J | otherthan the chosen event
® Probabi] 7ty O'lc k P(k ‘ N) p— —p q will occur in all the other trials.
; K\(N—k)!
out of N 1tems ( )
be'i ng Y [ O r‘de r : The' combnnatuon expression, which is
. I the permutation relationship (the number :
not 1mportant! ] : of ways to get k occurrences of the selected

. event) divided by k! (the number of different
. orders in which the k events could be chosen,
. assuming they are distinguishable).




L.umtit of rare events

® For N—=o with p—0 so that Np stays finite, the Binomial
distribution takes the form of a Poisson distribution

® Th1s 1s the FCKM{V):_:V_“__ e (1-¢) :
distribution (9= 9" ket ynnas
followed by your | K L oS yz‘;;?
counting =M Ne) /. ?) (i) Ag,}fp)
experiment for a =M R T H+
very hard cut on EERREET =Ry ARSERERL
the recorded - i. | ": . Z(‘-;‘) (\-3) [—
energy (i.e., for KECINR N SuaRs a
a very small - i € .
number of expected EAEVaL R8s o
background events) Voo | T
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Polisson distribution

\ee—A

f(E{A) = Pr(X=k) = T

0.40

@k is the unknown (the outcome of our 035} 1 fiii
experiment counting). It takes 0.30 L o )10 -
1nteger values by construction ol

— 0.
. . 020}

@A 1s the parameter determining the =

: : . C 0.5 F
distribution shape and 1t 1s related
to the most probable outcome of our 0-10°F
counting experiment. It might be an 0.05

1nteger, but 1n general 1t 1s a real 0.00 - - m
number k
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Expectation value

® What 1s the most probable outcome of our experiment?

® For a given value of A, the probability of seeing k=0,
1, 2, etc. depends on the value of the Poisson
distribution

® So, we can compute the expectation value of k as a
weighted average of all the possible outcomes of the
experiment, waited by the value of the Poisson
distribution

12



Expectation value
EcIN]= ©-Ploln) + ¢ PCILYN) 42 -PLz 1)+ -

- —~.~

(ol A + ?Cux) FP(21N)4--
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Expectation value
DEFINITIOMN -

For A Geweric T CKIA)

ElciR]: = XVPlkix)
T = P(%I)
FOR A GeveEare PUxIA)

E[x14] - _yxf P x I<)
_———SJX P(xl-()
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Varance

@ E[x] 15 not enough to characterize
a distribution

@distributions with same E[x] can
be very different

@It 1s convenient to have a measure
of the dispersion of points around

E[x]

® One typically 1ntroduced the
variance (aka mean square error)

Var[x] = E[(x — E[x])*] = E[x*] — E[x]*

15



Variance of 3 Polsson oist.
® The Variance of Elk’lr g:' e":‘ék "
x

Po1sson %

. . . . K -A
distribution 1s (Kh A
equal to_7ts L~/
expectation value C.

. . I
@It is convenient = AL

to 1ntroduce the
Root Mean Square

(RMS) = +/Var,

since 1t has the 1y
same “units” as =tXe
the mean and 1t

quantifies the

“statistical

dispersion” E[(k — E[k])z] _ E[kz] _ E[k]2 — 124+ 1=-1%2=2

around 1t
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Expectation value and variance

Function Distribution

A1k
Poisson Pk|2) = e "4 A A
k!
Pk|p,N) = Ak K1 = p)N=*
Binomial ( ‘p’ ) o k'(N— k)'p ( _p) pN p(1'p)N

| _
Gx|u,o) = e 22
Gaussian \/ 2o ¥ 02
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Histogram uncertainty

® The number of entries 1n a histogram

bin can be computed as a Y/N question
(Bernoulli process)

® The for large pi, the bin counting

175 -
follows a binomial distribution

150 -

® expected count = Np; i\/Np,-(l —P;)  125-

-
o
o

® For small pi, the bin counting
follows a Poisson distribution

frequency

g &

® expected counts = Np,x£4/Np.

@ In both cases, the relative
uncertainty on the expected
counting decreases <« 1/JYN (which is

why experiments take more data to
1ncrease precision)

18




Rsymptotic lmit: Gaussian
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How blg 1s blg \?

0.40




Bl The special role of Gaussian
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The speclal role of Gaussian

® The central 1imit theorem establishes the role of the Gaussian distribution as the
asymptotic limit of a much broader class of problems

In probability theory, the central
limit theorem establishes that, In
many situations, when
independent random variables are
summe up, their properly
normalized sum tends toward a
normal distribution even Iif the
original variables themselves are
not normally distributed. (from

Density

1.0~
0.8 4
0.6-

0.4 4

3
-
-
1
~
-

-

-

0.2

0.0

Density of Sum of 2 Independent Uniform(0,1)

Random Variables Densities of Sums of Independent U[0,1] Deviates

1 2
1 1#

3 Undorm Dewates
6 Uniform Dewates
2 Unidform Dewviates

—n

Density
o — (%) w EN o ) -~ 0
| | | | | | |

Wlklpedla) 00 02 04 06 08 10 12 14 16 18 20 “0 1

Z=U1+U2

@® In practice, 1n a counting experiment one has to deal with

® The 1ntrinsic variation (statistical uncertainty) associated with the spread of the
distribution (Poisson, Binomial, etc.)

® The systematic uncertainty, associated to the uncertainty on the knowledge of the
expectation. This 1s typically the result of many contributions -> 1t tends to have
a Gaussian behavior

2


https://en.wikipedia.org/wiki/Probability_theory
https://en.wikipedia.org/wiki/Statistical_independence
https://en.wikipedia.org/wiki/Normalization_(statistics)
https://en.wikipedia.org/wiki/Normal_distribution

DID THE SUN JUST EXPLODE?

(ITS NIGHT, 50 WERE NOT SURE.)

THIS NEUTRINO DETECTOR MERSURES
WHETHER THE SUN HAS GONE NOVA.

THEN, T ROWS TWO DICE. |F THEY
RWHCOVEUPSIX ITUES TO US.
OTHERWISE, ITTEU.STI-EML

LETS TRY.

DETECTOR! HAS THE
&»VGOVE/\OW.’

'PES

FREQUENTIST STATISTICIAN: BAYESIAN STATISTIOAN:

THE PROGABLIT OF TS RESULT
HAPPENING BY CHANCE 15 350027 BET YOU $50

GNCE p<0.05, T. CONCLUDE T HANT.
mmw%m )

e M

Statistics 1IN 3 nutshell




@ From Probasbllity Model to Likelihood

® We have a discriminating quantity, 1n our
case the energy E

@ We apply a threshold and count values above L6r (
threshold 6‘ $’ &

® The 1ntegral of the background distribution
above threshold sets the expected background
count

@® In absence of a signal, we expect to observe
a number of counts distributed around b and
following a Poisson distribution (we

typically cut tight enough for the expected
yield to be small) P(n/b)

C ounwTS

'..--
'lllll._\

--n----.~

== Ip=
@ In presence of a signal, we expect that the b £
observed counting distributed according to a
Poisson P(n|s+b) (signal, 1f exists, 1S
rare, so s 1s also small)

@ How do we know 1f what we observe favours
the BKG-only hypothesis P(n[b) or the
SIG+BKG hypothesis P(n|s+b)?

=24



From Probabllity Model to Likellhood

@ Probability: When we 1ntroduced distributions, we started
from known distributions (e.g., a Poisson on known A)
and we tried to characterize a typical experiment outcome

® Hypothesis Testing: Now we T1nverted the problem: we know
the experiment outcome (e.g., we counted events above
threshold during a one-year run) and we ask ourselves
which of two A values (bkg-only or sig+bkg) they come
from

® Inference: we could also just ask what 1s the value of A
more compatible with the observation (trivial question 1n
this case - right? - but not 1n general). This 1s a
typical application of maximum likelihood fits and a
regression problem 1n Machine Learning

=5



Likelinood
\ee=A
k!

@ Given a statistical model (e.g., our Poisson of known A and

unknown k), we can assess probabilities. Pr 1s a function
of k

Pr(X=k) =

@ Given a class of statistical models for k, function of
unknown A, we have a li1kelihood model

® Formally the same function but a much different object

® The counting 1s given (observed) and the mean 1s unknown
— A likelihood 1s a function of A, given the observed k

26




Likelinhooaod

@ Let’s imagine a histogram of a quantity %
x and a curve b(x) predicting the
amount of expected background

25

: 20 F
® for each bin centre xi we can compute

bi=b(xi)

15T

® the bi values will depend on a set of
parameters that describe the curve y

= b |

10

@ In each bin, we observe some counting ni

® The l1kelihood of the model 1s given by

ni!

zii|a) = | | Py (@) = | | PO b(x,| @) =

l

=2/



Two HApprosches

@ Frequentist: People think confidines vrbervals
ose Like lLf‘C‘J\QNl‘:

- H\e -bo.r%):b s -C‘\YQ.A .3
the +vrove valuoa -t %\c'c

® Freqguentist statistics 1s a type of

statistical 1nference that draws end up n the \nreeual
conc7u5_7qns from sample data by eoe contidence
emphasising the frequency or @ vo-lue \nterval.
proportion of the data (‘YB >

® G1ven an unaccessible true value ;_P-e.\\:e

the outcome of a measurement,
frequentist statistics assess how
typical the outcome 1s

30".7 (‘Q.Os“b C.OT\-C\&LnCL 2\ A*Qr\)&.\s
oce wore ke r'\n% +08s ¢

-the tvoe volve is $ixed
. i 2 4\we inkeruod m\%\rc‘c
® The result 1s a confidence end U owoond it

interval, defined based on a
given probability (confidence @

level) that the true value 1is 1%—— @ - — - !

contained 1n an interval built as "
specified ool i)

S @epaliic



Two HApprosches

@Bayesian:
® Bayesian statistics 1s an approach P(BIA\P(A
to data analysis and parameter P(A|B) = (B|A)P(A)

estimation based on Bayes' theorem. P(B)

Unique for Bayesian statistics 1S
that all observed and unobserved
parameters 1n a statistical model Posterior
are given a joint probability
distribution, termed the prior and
data distributions

Data or Prior

® Given an accessible true value and Likelirood

the outcome of a measurement,
Bayesian statistics assesses a
probability range (credibility
interval) for the true value, based
on the measurement outcome and
prior knowledge of the true value

0.2 04 1 3

Relative Risk (log scale)

|



3’ Frequentist and Bayesian in practice
@A frequentist 1n HEP would

@ build the Il1keli1hood

@modify 1t to 1nclude the modeling of nuisance parameters (the systematic
uncertainty)

@ use profiling to remove the dependence on nuisance parameters

@ use a maximum-1likelihood estimator of the parameter of 1nterest to report a
measurement, etc

®A bayesian 1n HEP would

@ build the li1keli1hood

@ build the posterior as a product of likelihood and the priors of the nuisance
parameters and the parameters of 1nterest

@ use marginalization to remove dependence on nuisance parameters

@ Let’ see this 1n practice with out counting experiment

30



—: Buulding the likellhood

® The process likel1hood 1s a Poisson
function

V)
I
® The “full 1ikelihood” including R
systematics has three terms g
U

@ The “real” li1keli1hood

® The constraint on the background =
expected yield.

@ Additional systematic uncertainties
on the signal (we neglect them here
to keep discussion simple)

31




—: Maximum Likelihood estimation

@ We are given a li1keli1hood model £ (D|w) and some data D
@D 1s known, w are unknown

@ We want to find the w values that would make our data D
the most probable outcome of the experiment

@ IT we knew these w values, the probability of
observing D 1s maximal (here D 1s unknown and w 1s
known)

® You can convince yourselves that

w = argmax £ (D | w)

32



—: Maximum Likelinood estimation

@A full li1kelihood model would depend on the parameter of 1nterest (signal
yield, 1f any) and some nuisance parameter (the amount of background)

Lpp(n| As) = P(n | Ag + )G (g | A, 6, )

@ To learn about the parameter of i1nterest, one has to remove the
dependence on nuisance

L yep(n| Ag) = max P(n| Ag + A)G(Ag| A, 6, )

Ap

@ At that point, one can estimate the parameter of 1nterest

;tS
333
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B: Bullding the likellhooo

® The process likel1hood 1s a Poisson
function

— L6
-
® The posterior probability density R
function, i1ncluding systematics, has 3
three terms
U
@ The “real” Ili1keli1hood
-
® The constraint on the signal expected =
yield b

® The constraint on the background

poree P Pl + AT Gl A )
| n,—- —— —
P [disdigP(n g + AT Gl | 25, 03,)




@ Posterior pdf and credibility interval

® One can remove dependence on nuisance with probability theory, summing
over all possible Ag values, weighted by their probabilities
(marginalization)

@ At that point, any statement on As can be made using integration of the

posterior 30
U T

| summer16

O med-l dh vd 7ue -SM prediction

® 68% probability region around the median

Probability density

-l
o
N T

@ etcC.

0.3

|
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LUJhen to use what

® Frequentist statistics makes a lot L

of sense when you are facing ATLAS and CMS ——iTotal Stat. == Syst
" " " LHC Run 1 Total Stat. Syst.
multiple equiprobable experiments

ATLAS H—yy 126.02 + 0.51 ( + 0.43 + 0.27) GeV

CMS H—yy 124.70 + 0.34 (4 0.31+ 0.15) GeV
® Tdeal tool to handle HEP data ATLAS H—ZZ 4] 124.51+ 0.52 (+ 0.52 + 0.04) GeV
CMS H—2ZZ —4] 125.59 + 0.45 ( + 0.42 + 0.17) GeV

ATLAS+CMS yy

® But keep n mind that any | anascusy B sissom(:omiomcer
statement is about your prpuNpe MM 000 0001 10RO O

experiment, not about the true i
. . . — T T T [ T T T 1 I  —
values of fundamental quantities n |

® Bayesian statistics 1s good to y oo -
invert the information gathered by ) P
the experiment into knowledge on [ Data -
true values of fundamental oig :

O
th

quantities

@ But a prior 1s needed here. No

free 7 un Ch 0.0 | | | L 1 |1 ] \| | | | |
36 0.0 0.5 1.0 1.5




The prior prooblem

@For a Frequentist

® the need to 1ntroduce prior knowledge 1n Bayesian statistics 1s a problem. A
measurement outcome should not depend on who makes the measurement

@ For a Bayesian

® the absence of a framework to i1ntroduce prior knowledge 1s a limitation of
the frequentist statistics: there 1s no rigorous way to add information about
nuisance parameters and systematic uncertainties

@ They are both right

® Frequentists are focused on Bayesians having to model i1gnorance (what’s the
prior on something you never measured before? A flat prior? Flat on what? on
X, X°? Mind the Jacobian)

® Bayesians are focused on Frequentists not being able to model knowledge on
nuisance parameters (1f you know that your signal efficiency for the model
you are excluding would have been 20+x1)%, how do you tell your likelihood?)

3/



o0 The difference in practice

@® The real fact 1s
® that only a few people attempt Bayesian analyses with HEP data

® But everyone uses a posterior with flat prior (notice
different role of i; and i, as arguments 1n G)

P(n| 2y + AT G(Ag | A, 5 )

P(4p, AgIn) = ———————————————
( B S‘ ) JdﬂSdﬂBP(n ‘ /1B —+ /IS)H(/IS)G(ﬂB ‘ /lBa G/IB)
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The difference \in practice

® The same expression as long as
® the prior 1 1s flat

® The function G 1s symmetric for exchange of the A, and 1ts
estimate i1, (e.g., a Gaussian, which is what people typically use)

P(Ag, Ag|n) o< P(n|Ag + A)II(A)G(Ag | A, 0),)

® HEP physicists are Bayesians that use profiling on the
posterior and think that they are doing frequentist
statistics

39
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[ Hybrig spproach

@ Using profiling on a posterior 1s considered very bad practice 1n Bayesian
statistics (see paradoxes documented 1n literature)

@®As a matter of fact, frequentist’s concern 1s the 1ssue with the prior on the
parameter of i1nterest

® Professional literature suggests to
@Marginalize the posterior wrt the nuisance parameters

@ Apply frequentist methods (e.g., confidence interval derivation) on the
marginalised function of the parameter of interest, w/o a prior on 1t

ZL hybrid | Ag) = | dAgP(n| Ap + A)G(Ag| Ap, 0),)

@ Why don’t we do 1t?

4]



@ INntegration s hard and we are having a

LNZ Y DAY

% ... Since afew decades




LUJhat are we?

https://gandenberger.org/2014/07/28/intro-to-statistical-methods-2/

Likelihoodists use likelihood functions to characterize data as evidence. Their primary
interpretive tool is the Law of Likelihood, which says that F favors H; over H, if and only

if their likelihood ratio £ = Pr(E|H;)/ Pr(E|H,) on E is greater than 1, with £
measuring the degree of favoring. Two major advantages of this approach are (1) it

(1) Conforms to
Likelihood
Principle

Bayesians use likelihood functions to update probability distributions in accordance with
Bayes's theorem. Their approach fits nicely with the likelihoodist approach in that the ratio
of the “posterior probabilities” (that is, the probabilities after updating on the evidence)
Pr(H,|E)/Pr(H,|E) on E equals the ratio of the prior probabilities Pr(H;)/ Pr(H,)
times the likelihood ratio £ = Pr(E|H;)/ Pr(E|H,). The Bayesian approach conforms to

(3) Provides
guidance for
belief or action

(2) Avoids prior
probabilities

Frequentists use likelihood functions to design experiments that are in some sense
guaranteed to perform well in repeated applications in the long run, no matter what the
truth may be. Frequentist tests, for instance, control both the probability of rejecting the
‘null hypothesis” if it is true (often at the 5% level) and the probability of failing to reject it if
it 1s false to a degree that one would hate to miss (often at the 20% level). They violate the
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MNow that we kNnow everything about
statistics...

ava



Summary

® We 1ntroduce basic probability notions to build a
probabi1lity model (with the specific example of a
counting experiment 1n mind)

@ We built the li1kelihood from the probability model

® We reviewed how a frequentist and a bayesian would
approach the problem

@ The rest tomorrow..
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