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๏The idea of these lectures is to introduce data analysis practices typical 
of High Energy Physics 

๏I will use some example from HEP, mostly from LHC, but the scope of these 
techniques is broader 

๏I will describe the physics applications when use the examples 

๏If you are not familiar with something, raise your hand and ask for a 
clarification



Probability in a nutshell



๏Since the early ‘80s, particle physics 
is dealing with challenging data 
analysis problems 

๏Large amount of data created 

๏Interest in rare processes 

๏Need to separate interesting events 
from overwhelming background 

๏No obvious solution: whatever you 
do, a perfect separation is just 
not possible 

๏The days of “I discovered something 
because I just saw an event” is gone 
(for us, not for others, see LIGO/
VIRGO)

The starting point
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๏Clearly this is a problem at the LHC  

๏But this is a problem even with dark 
matter searches 

๏You go below a mountain to look 
for a quite place 

๏But you are looking for a very 
rare signal 

๏Even the most unlikely noise is 
as probable as your signal 

๏You need to be able to tell the 
background from the signal

The starting point

5



๏You are searching for Dark Matter. You 
build a detector underground, screened 
by any source of natural radiation 

๏You are waiting for a DM particle to 
hit your detector and produce an 
energy deposit 

๏Signal = large energy deposit 
leading to a large electronic signal 

๏Background = some noise 

๏You count events with large enough 
electronic signal 

๏You see any, you get a Nobel Prize 

๏Why do you need statistics at all?

A counting experiment
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๏Real life is not like that: whatever is 
your fiducial region (your cut on E) you 
never expect exactly 0 background  

๏And even if you know exactly the number 
of bkg events you expect (e.g., λ = 1 
event) you cannot jump to conclusions if 
you see > λ events 

๏This is because statistical fluctuations 
happen 

๏If you toss the same coin ten times, 
you expect 5 heads, but you might see 
4, or 6, etc 

๏What is the probability of seeing k 
events when you expect λ?

Separating Sig from Bkg
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๏You pick k items out of a 
bag with N items and you 
ask a yes/no question 

๏does my event come with 
energy E above a 
threshold? 

๏is my ball red? 

๏Let’s call  

๏p: probability that the 
answer is Yes 

๏q = 1-p : probability 
that the answer is No

Bernoulli’s process
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P(k |N) =
n!

k!(N − k)!
pkqN−k

k
N

k

k
k

k

๏Probability of 
one out of one 
item being Y 

๏Probability of 
one out of two 
items being Y 
[order not 
important!] 

๏Probability of k 
out of N items 
being Y [order 
not important!]

Binomial distribution
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P(k = 1 |N = 1) = p

P(k = 1 |N = 2) =
pq + qp

p2 + pq + qpq2
= 2pq



๏For N→∞ with p→0 so that Np stays finite, the Binomial 
distribution takes the form of a Poisson distribution

Limit of rare events
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๏This is the 
distribution 
followed by your 
counting 
experiment for a 
very hard cut on 
the recorded 
energy (i.e., for 
a very small 
number of expected 
background events)



๏k is the unknown (the outcome of our 
experiment counting). It takes 
integer values by construction 

๏λ is the parameter determining the 
distribution shape and it is related 
to the most probable outcome of our 
counting experiment. It might be an 
integer, but in general it is a real 
number 

Poisson distribution
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๏What is the most probable outcome of our experiment? 

๏For a given value of λ, the probability of seeing k=0, 
1, 2, etc. depends on the value of the Poisson 
distribution 

๏So, we can compute the expectation value of k as a 
weighted average of all the possible outcomes of the 
experiment, waited by the value of the Poisson 
distribution

Expectation value
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Expectation value
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Expectation value
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๏E[x] is not enough to characterize 
a distribution 

๏distributions with same E[x] can 
be very different 

๏It is convenient to have a measure 
of the dispersion of points around 
E[x] 

๏One typically introduced the 
variance (aka mean square error)

Variance
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Var[x] = E[(x − E[x])2] = E[x2] − E[x]2



๏The Variance of 
Poisson 
distribution is 
equal to its 
expectation value 

๏It is convenient 
to introduce the 
Root Mean Square 
(RMS) = , 
since it has the 
same “units” as 
the mean and it 
quantifies the 
“statistical 
dispersion” 
around it

Var

Variance of a Poisson dist.
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E[(k − E[k])2] = E[k2] − E[k]2 = λ2 + λ − λ2 = λ



Expectation value and variance
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Function Distribution E[x] Var[x]

Poisson λ λ

Binomial pN p(1-p)N

Gaussian μ σ2

P(k |λ) =
e−λλk

k!

P(k |p, N) =
N!

k!(N − k)!
pk(1 − p)N−k

G(x |μ, σ) =
1

2πσ
e− (x − μ)2

2σ2



๏The number of entries in a histogram 
bin can be computed as a Y/N question 
(Bernoulli process) 

๏The for large pi, the bin counting 
follows a binomial distribution 

๏expected count = 

๏For small pi, the bin counting 
follows a Poisson distribution  

๏expected counts = 

๏In both cases, the relative 
uncertainty on the expected 
counting decreases ∝ 1/√N  (which is 
why experiments take more data to 
increase precision)

Histogram uncertainty
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Npi ± Npi(1 − pi)

Npi ± Npi



Asymptotic limit: Gaussian
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How big is big λ?
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The special role of Gaussian
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The special role of Gaussian
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๏The central limit theorem establishes the role of the Gaussian distribution as the 
asymptotic limit of a much broader class of problems 

๏In practice, in a counting experiment one has to deal with  

๏The intrinsic variation (statistical uncertainty) associated with the spread of the 
distribution (Poisson, Binomial, etc.) 

๏The systematic uncertainty, associated to the uncertainty on the knowledge of the 
expectation. This is typically the result of many contributions -> it tends to have 
a Gaussian behavior

In probability theory, the central 
limit theorem establishes that, in 
m a n y s i t u a t i o n s , w h e n 
independent random variables are 
s u m m e u p , t h e i r p r o p e r l y 
normalized sum tends toward a 
normal distribution even if the 
original variables themselves are 
not normally distributed. (from 
Wikipedia)

https://en.wikipedia.org/wiki/Probability_theory
https://en.wikipedia.org/wiki/Statistical_independence
https://en.wikipedia.org/wiki/Normalization_(statistics)
https://en.wikipedia.org/wiki/Normal_distribution


Statistics in a nutshell



๏We have a discriminating quantity, in our 
case the energy E 

๏We apply a threshold and count values above 
threshold 

๏The integral of the background distribution 
above threshold sets the expected background 
count 

๏In absence of a signal, we expect to observe 
a number of counts distributed around b and 
following a Poisson distribution (we 
typically cut tight enough for the expected 
yield to be small) P(n|b) 

๏In presence of a signal, we expect that the 
observed counting distributed according to a 
Poisson P(n|s+b) (signal, if exists, is 
rare, so s is also small) 

๏How do we know if what we observe favours 
the BKG-only hypothesis P(n|b) or the 
SIG+BKG hypothesis P(n|s+b)?

From Probability Model to Likelihood
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๏Probability: When we introduced distributions, we started 
from known distributions (e.g., a  Poisson on known λ) 
and we tried to characterize a typical experiment outcome  

๏Hypothesis Testing: Now we inverted the problem: we know 
the experiment outcome (e.g., we counted events above 
threshold during a one-year run) and we ask ourselves 
which of two λ values (bkg-only or sig+bkg) they come 
from 

๏Inference: we could also just ask what is the value of λ 
more compatible with the observation (trivial question in 
this case - right? - but not in general). This is a 
typical application of maximum likelihood fits and a 
regression problem in Machine Learning
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From Probability Model to Likelihood



๏Given a statistical model (e.g., our Poisson of known λ and 
unknown k), we can assess probabilities. Pr is a function 
of k 

๏Given a class of statistical models for k, function of 
unknown λ, we have a likelihood model 

๏Formally the same function but a much different object 

๏The counting is given (observed) and the mean is unknown 
 A likelihood is a function of λ, given the observed k→

Likelihood
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๏Let’s imagine a histogram of a quantity 
x and a curve b(x) predicting the 
amount of expected background 

๏for each bin centre xi we can compute 
bi=b(xi) 

๏the bi values will depend on a set of 
parameters that describe the curve y 
= b(x) 

๏In each bin, we observe some counting ni 

๏The likelihood of the model is given by

Likelihood
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ℒ( ⃗n | ⃗α ) = ∏
i

P(ni |bi( ⃗α )) = ∏
i

P(ni |b(xi | ⃗α )) = ∏
i

e−b(xi| ⃗α)b(xi | ⃗α )ni

ni!



๏Frequentist: 

๏Frequentist statistics is a type of 
statistical inference that draws 
conclusions from sample data by 
emphasising the frequency or 
proportion of the data 

๏Given an unaccessible true value 
the outcome of a measurement, 
frequentist statistics assess how 
typical the outcome is 

๏The result is a confidence 
interval, defined based on a 
given probability (confidence 
level) that the true value is 
contained in an interval built as 
specified

Two Approaches
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๏Bayesian: 

๏Bayesian statistics is an approach 
to data analysis and parameter 
estimation based on Bayes' theorem. 
Unique for Bayesian statistics is 
that all observed and unobserved 
parameters in a statistical model 
are given a joint probability 
distribution, termed the prior and 
data distributions 

๏Given an accessible true value and 
the outcome of a measurement, 
Bayesian statistics assesses a 
probability range (credibility 
interval) for the true value, based 
on the measurement outcome and 
prior knowledge of the true value

Two Approaches
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๏A frequentist in HEP would 

๏build the likelihood 

๏modify it to include the modeling of nuisance parameters (the systematic 
uncertainty) 

๏use profiling to remove the dependence on nuisance parameters 

๏use a maximum-likelihood estimator of the parameter of interest to report a 
measurement, etc 

๏A bayesian in HEP would 

๏build the likelihood 

๏build the posterior as a product of likelihood and the priors of the nuisance 
parameters and the parameters of interest 

๏use marginalization to remove dependence on nuisance parameters 

๏Let’ see this in practice with out counting experiment

Frequentist and Bayesian in practice
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F: Building the likelihood
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๏The process likelihood is a Poisson 
function 

๏The “full likelihood” including 
systematics has three terms 

๏The “real” likelihood 

๏The constraint on the background 
expected yield.  

๏Additional systematic uncertainties 
on the signal (we neglect them here 
to keep discussion simple)

ℒHEP = P(n |λB + λS)G(λ̄B |λB, σλB
)

ℒ = P(n |λB + λS)



๏We are given a likelihood model  and some data D 

๏D is known,  are unknown 

๏We want to find the  values that would make our data D 
the most probable outcome of the experiment 

๏If we knew these  values, the probability of 
observing D is maximal (here D is unknown and  is 
known) 

๏ You can convince yourselves that 

ℒ(D |w)

w

ŵ

ŵ
ŵ

F: Maximum Likelihood estimation

32

ŵ = arg max
w

ℒ(D |w)



๏A full likelihood model would depend on the parameter of interest (signal 
yield, if any) and some nuisance parameter (the amount of background) 

๏To learn about the parameter of interest, one has to remove the 
dependence on nuisance 

๏At that point, one can estimate the parameter of interest

F: Maximum Likelihood estimation
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ℒ̂HEP(n |λS) = max
λB

P(n |λB + λS)G(λ̄B |λB, σλB
)

λ̄s = arg max
λS

ℒ̂HEP(n |λS)

ℒHEP(n |λS) = P(n |λB + λS)G(λ̄B |λB, σλB
)



B: Building the likelihood
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๏The process likelihood is a Poisson 
function 

๏The posterior probability density 
function, including systematics, has 
three terms 

๏The “real” likelihood 

๏The constraint on the signal expected 
yield  

๏The constraint on the background 
expected yield.

P(λB, λS |n) =
P(n |λB + λS)Π(λS)G(λB | λ̄B, σλB

)

∫ dλSdλBP(n |λB + λS)Π(λS)G(λB | λ̄B, σλB
)

ℒ = P(n |λB + λS)



๏One can remove dependence on nuisance with probability theory, summing 
over all possible λB values, weighted by their probabilities 
(marginalization) 

๏At that point, any statement on λS can be made using integration of the 
posterior 

๏median value 

๏68% probability region around the median 

๏etc.

Posterior pdf and credibility interval
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P(λS |n) = ∫ dλBP(λS, λB |n)



๏Frequentist statistics makes a lot 
of sense when you are facing 
multiple equiprobable experiments 

๏Ideal tool to handle HEP data 

๏But keep in mind that any 
statement is about your 
experiment, not about the true 
values of fundamental quantities 

๏Bayesian statistics is good to 
invert the information gathered by 
the experiment into knowledge on 
true values of fundamental 
quantities 

๏But a prior is needed here. No 
free lunch

When to use what
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๏For a Frequentist  

๏the need to introduce prior knowledge in Bayesian statistics is a problem. A 
measurement outcome should not depend on who makes the measurement 

๏For a Bayesian 

๏the absence of a framework to introduce prior knowledge is a limitation of 
the frequentist statistics: there is no rigorous way to add information about 
nuisance parameters and systematic uncertainties 

๏They are both right 

๏Frequentists are focused on Bayesians having to model ignorance (what’s the 
prior on something you never measured before? A flat prior? Flat on what? on 
x, x2? Mind the Jacobian) 

๏Bayesians are focused on Frequentists not being able to model knowledge on 
nuisance parameters (if you know that your signal efficiency for the model 
you are excluding would have been , how do you tell your likelihood?) (20 ± 1) %

The prior problem
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๏The real fact is  

๏that only a few people attempt Bayesian analyses with HEP data 

๏But everyone uses a posterior with flat prior (notice 
different role of  and  as arguments in G)λB λ̄B

The difference in practice
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ℒHEP = P(n |λB + λS)G(λ̄B |λB, σλB
)

P(λB, λS |n) =
P(n |λB + λS)Π(λS)G(λB | λ̄B, σλB

)

∫ dλSdλBP(n |λB + λS)Π(λS)G(λB | λ̄B, σλB
)



The difference in practice

39

ℒHEP = P(n |λB + λS)G(λ̄B |λB, σλB
)

P(λB, λS |n) ∝ P(n |λB + λS)Π(λS)G(λB | λ̄B, σλB
)

๏The same expression as long as 

๏the prior Π is flat 

๏The function G is symmetric for exchange of the  and its 
estimate  (e.g., a Gaussian, which is what people typically use)

λB
λ̄B

๏HEP physicists are Bayesians that use profiling on the 
posterior and think that they are doing frequentist 
statistics
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๏Using profiling on a posterior is considered very bad practice in Bayesian 
statistics (see paradoxes documented in literature) 

๏As a matter of fact, frequentist’s concern is the issue with the prior on the 
parameter of interest 

๏Professional literature suggests to 

๏Marginalize the posterior wrt the nuisance parameters  

๏Apply frequentist methods (e.g., confidence interval derivation) on the 
marginalised function of the parameter of interest, w/o a prior on it 

๏Why don’t we do it?

A Hybrid approach
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ℒhybrid(n |λS) = ∫ dλBP(n |λB + λS)G(λ̄B |λB, σλB
)
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Integration is hard and we are having a 

… Since a few decades



What are we?
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https://gandenberger.org/2014/07/28/intro-to-statistical-methods-2/



Now that we know everything about 
statistics…
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๏We introduce basic probability notions to build a 
probability model (with the specific example of a 
counting experiment in mind) 

๏We built the likelihood from the probability model 

๏We reviewed how a frequentist and a bayesian would 
approach the problem 

๏The rest tomorrow…

Summary
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