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A multiple-step process
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๏Typically, HEP data analysis follows a top-down 
supervised problem


๏One starts with a specific process in mind


๏A theoretical framework allows to predict the 
experimental signature (qualitatively and 
quantitatively) through a Monte Carlo simulation


๏The data analysis is tailored on the process


๏PROS: maximise sensitivity (e.g., can work on 
improving background rejection)


๏CONS: poor generalization. Performance loss if the 
signal is different


๏A supervised approach is ideal when you have a target 
in mind, e.g., Higgs@LHC, WIMP underground, a 
precision measurement of a Standard Model process


๏For searches, one might need some additional tool 
with a different perspective (see Friday lecture)

A supervised problem
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The program for these lectures
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๏STEP 1: make sure that potentially interesting 
events enter your dataset (aka the trigger)


๏STEP 2: define an event selection that selects 
a subset of your data, potentially enhanced 
with signal


๏STEP 3: define a procedure to estimate the 
amount of residual background events in your 
selected sample 


๏STEP 4: extract the signal component (aka the 
measurement)


๏STEP 5: use the measurement to learn something 
about nature (aka phenomenology)

Monday


Tuesday


Wednesday and 
Thursday


Friday: a 
degression on 

signal 
“agnostic” 
analyses



STEP 1: trigger selection



๏Ideally, one would like to be able to 
store and analyse each individual events


๏In practice this is never done typically 
because of limited resources (storage, 
bandwidth, etc)


๏Sometimes this is harmless 


๏In a clean environment, one just 
needs to reject the obvious 
background (e+e- colliders, 
underground experiments, …)


๏Sometimes it’s a challenge 


๏At the LHC, one cannot store 
everything


๏Difficult choices have to be made 
very early

The need of a trigger
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R. Tenchini "Trigger @LEP"

At LEP, the trigger 
consisted in a set of 

algorithms requiring some 
activity, to reject beam-
gas interactions and to 
discard/tag obvious noise

https://indico.cern.ch/event/393093/contributions/1830018/attachments/786454/1078091/Triggers_at_LEP.pdf


How big is big?
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๏The amount of produced data is too 
much to be stored


๏1,000 times the data generated by 
google searches+youtube+facebook 
back in 2013


๏Reduced to 5x(google 
searches+youtube+facebook) after 
first filtering


๏Can only store 5% of those
(*) Only two big experiments 
(ATLAS and CMS), only RAW data



๏STEP 1: make sure that potentially interesting events enter your 
dataset (aka the trigger)


๏STEP 2: define an event selection that selects a subset of your data, 
potentially enhanced with signal


๏These are actually two aspects of the same problem


๏Both consists in applying a set of requirements to select a subset of 
the events


๏They differ in scope and for practical reasons


๏Efficiency vs Purity


๏Accuracy vs Speed

Online vs Offline
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๏Efficiency is the fraction of signal 
events that would pass your selection


๏aka True positive rate, recall, etc.


๏Purity is a measure of how large is 
the fraction of signal events in the 
selected dataset


๏Measured as , 
depending on the context


๏Maximizing efficiency (what one would 
do in a trigger) implies a loose 
selection


๏Maximizing purity (what one would do 
in a data analysis offline) implies a 
tight selection

S/B, S/ B, S/ S + B

Efficiency vs Purity
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๏When applying a selection, one pays 
for the limited detector resolution


๏The amount of background leaking 
in the selected region is inflated 
by poor resolution


๏When working in real time one has 
limited resources


๏limited computing power


๏little time to run complex 
calculations


๏Detector performance are not 
exploited at best


๏coarser algorithms, limited input 
information  (e.g., no particle 
tracking)

Accuracy vs Speed

11

IDEAL

DETECTOR LEVEL

ONLINE RECONSTRUCTION



๏You have a discriminating quantity x 
and two estimates of it


๏xoff: an accurate measurements of x


๏xon: a coarser measurement of x


๏A turn-on curve models how the 
distribution of xoff is affected by a 
cut on xon


๏A typical analysis would work beyond 
the turn-on


๏constant efficiency loss with 
measurable uncertainty


๏some analysis could try to model 
efficiency (ε) along the curve and 
reweigh events by 1/ε 

Turn-on curve
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δx = xoff-xon

xon > xT ⟹ xoff = xon + δx > xT + δx

xon > xT

xon

xoff



STEP 2: data selection



๏What to cut on


๏S vs B separation depends on the 
discriminating quantity you use


๏Depending on the quantity on 
axis, selection can be more or 
less efficient


๏How to cut 


๏linear vs non-linear cuts


๏Where to cut


๏trade-off between efficiency and 
purity

What you need to decide
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๏An event selection is a multi-
dimensional problem


๏Several quantities can discriminate 
S vs B for different reasons


๏Example:


๏Signal: long-lived particles at LHC 
decaying to electrons 


๏Signature: electrons displaced from 
collision point


๏Backgrounds


๏Events with real electrons from 
SM processes


๏Fake events (random association 
of a track to a calorimeter 
deposit)

What to cut on
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๏This is the easiest case


๏one can define two quantities which are 
(to a large extent) independent


๏Track displacement from primary vertex 
typically relies on the tracker


๏An electron ID score uses the 
calorimeter information

What to cut on
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๏Real problem and state-of-art 
solutions are typically more 
complicated


๏There is no magic quantity 
that gives optimal separation 
(but you can try to build one)


๏Several quantities can be 
defined, based on same inputs 
and correlated


๏Just using the quantity with 
best discrimination might not 
be optimal 


๏Using more quantities can 
improve separation

1-Dim vs N-Dim cut

21



๏Cut-based selection


๏Select a portion of the N-
dim space, through a set of 
cuts on each quantity


๏MVA-based selection


๏Combine quantities in a 
single discriminator 


๏N-dim likelihood (when 
correlations are known)


๏Machine learning e.g., 
BDT, NN, etc (when they 
are not)

Different approaches
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๏Traditional approaches exploits high-level features (hlf) built based 
on physics intuition


๏With Deep learning, it is now possible to start from raw data and 
engineer high-level quantities


๏The hlf definition is optimized together with the task (electron vs 
fake separation)

A new approach: end-to-end
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๏Multi-task problem 
with single train


๏cluster energy 
deposits into 
photon/electron 
candidates


๏build hlf quantities 
from the cluster


๏maximise the 
separation between 
signal and 
background

A new approach: end-to-end
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CASE STUDY: JET SUBSTRUCTURE 10

Just an illustrative example, lessons are generic! 
Might not be the best application, but a familiar one


ML in substructure is well-studied

Figure 1. Pictorial representations of different jet substructures at the LHC. Left: jets originating
from quarks or gluons produce one cluster of particles, approximately cone-shaped, developing
along the flight direction of the particle starting the shower. Center: when produced with large
transverse momentum, a heavy boson decaying to quarks would result into a single jet, made of 2
particle clusters (usually referred to as sub-jets). Right: In its full decay chain, a high-momentum
t ! Wb ! qqb results into a jet composed of three sub-jets.

In this work, we compare the typical performances of some of these approaches to what
is achievable with a jet identification algorithm based on an IN (JEDI-net). Interaction
networks [5] (INs) have been introduced to predict the evolution of physical systems under
the influence of forces, e.g. gravitational force, springs, etc. This is achieved by constructing
a graph network representing the system and learning the interaction between the nodes of
the graph. This results into a post-interaction representation of the system, which is used
to predict the evolution of the system. In our case, we are interested to INs as a tool to
learn a fixed-size jet representation, that is used to train a jet classifier. In this respect,
INs are interesting because the can learn a sparse representation with an architecture that
(at least in principle) is similar to the 2 ! 1 recombination procedure that is followed to
cluster jets. To a certain extent, INs (and graph networks in general) seem to be more
QCD-compliant than other network architectures. For instance (see section 4), INs process
jet-constituent four-momenta in pairs and can potentially learn the metrics typically used
for jet clustering, such as the anti-kt [3], kt [2], or Cambridge-Aachen [1] jet algorithms. In
this paper, we investigate if this structural affinity to jet clustering algorithms translates
into a better tagging performance.

This paper is structured as follows: we provide in section 2 a list of related works. We
describe in section 3 the utilized dataset. The structure of the JEDI-net model is discussed
in section 4. Section 5 briefly introduces alternative benchmark models, based on other
DL architectures, whose design and optimization are discussed in Appendix A. Results are
shown in section 6. We conclude with a discussion and outlooks of this work in section 8.

– 2 –

๏Typically, one puts a “flat cut” on each 
quantity


๏This quantity could be a physics-
inspired function


๏Or an MVA score 


๏When doing so, one has to take care of 
the impact this has on other quantities


๏Example:


๏jet tagging: identify which kind of 
particle started a jet


๏Jet mass can do it, but the jet 
substructure provides extra information


๏Usually one b builds an MVA, e.g., a 
Neural Network

How to cut

25
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A dijet resonance search
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๏Very often, a NN learns 
information that is exploited 
in physics inspired quantities


๏A cut on the MVA score can 
learn kinematic and alert it


๏This can affect background 
distribution. For instance, 
a jet ID cut can change the 
distribution of dijet mass, 
creating a bump in the 
background


๏This can make a search for a 
new resonance more 
complicated

Mass sculpting

27



Designed decorrelated taggers
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๏The problem is visible even w/o machine learning


๏Jet substructure before NNs was done with physics-
inspired jet substructure


๏Jet substructure shows a correlation with , 
used in the search to extract the background


๏The correlation is critical in the regime of a 
typical search ( )


๏A two step approach


๏Most of the dependence is linear and can be corrected 

by hand, trading  for  (  GeV)


๏The residual dependent is removed trading  for 



๏At that point, a flat cut on  is applied

ρ = log(m2/p2
T)

ρ > − 8

ρ ρDDT = log ( m
pT μ ) μ = 1

τ21
τDDT

21 = τ21 − k × ρ

τDDT
21



๏DDT approaches can be generalized to 
non-linear dependencies using a 
learnable non-linear function


๏One can use machine learning to find 
the contour defined by  


๏  is learned through a neural 
network taking  as input


๏The training is performed using  a 
specific loss function


๏N-dim generalization: The big 
advantage of this approach (as usual 
with neural networks) is that  can 
actually be a vector of input 
quantities

y > yT(x)

yT(x)
x

x

Quantile Regression

29
x

y

https://www.wikiwand.com/en/Quantile_regression


๏When your quantity  is a trained 
algorithm you have a further option 
wrt quantile regression, DDT etc.


๏You can prevent  from learning  
through an adversarial learning at 
training time, minimizing the 
correlation between  and  while 
constructing 


๏BE CAREFUL: 


๏this might alleviate the problem 
but not remove it


๏Adversarial trainings can be 
tricky: two terms of the 
likelihood fighting against each 
other could introduce a training 
instability

y

y x

x y
y

Adversarial learning

30 G. Loupe et al. https://arxiv.org/pdf/1611.01046.pdf

https://arxiv.org/pdf/1611.01046.pdf
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Adversarial learning

31 E. Moreno et al. https://arxiv.org/abs/1909.12285

https://arxiv.org/abs/1909.12285


๏The cut threshold is 
chosen maximizing some 
figure of merit of 
purity.


๏Usually people set cuts 
that maximizes , 
when optimizing for a 
discovery


๏Where is this coming 
from? 

S/ B

Where to cut

32
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๏Given a population of N data entries 
(events)


๏Apply a cut with efficiency ε, one 
expect εN events surviving


๏The number of observed events is 
distributed according to a Poisson 
distribution


๏centred at S=εSNS for signal


๏centred at B=εBNB for background


๏The total number of events is centred 
around S+B 


๏A Poisson converges quickly to a 
Gaussian with mean λ and RMS λ

Counting Experiment
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P(k |λ) =
e−λλk

k! Var[k] = λ

E[k] = λ



๏When we talk about an observation, we 
quantify its strength in number of sigmas


๏The difference between the observed and 
expected yield, in units of the uncertainty


๏The uncertainty is that of a bkg-only 
distribution


๏One is minimizing the probability of a 
background-only distribution to mimic a 
signal


๏Chances to discover are maximal when the 
signal would induced the largest possible 
excess wrt bkg-only distribution


๏Expected yield in presence of a signal: S+B


๏Expected yield in absence of a signal: B


๏  is the RMS in absence of a 
signal
σB = Var[kB] = B

Number of sigmas
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♯σ =
E[kS + kB] − E[kB]

Var[kB]
=

S

B

Two main issues:

• Bad behavior for small exerted background

• Computing the expected significance requires to 

specify a signal cross section (but the optimal can be 
found w/o)

G. Punzi, arXiv:0308063

https://arxiv.org/pdf/physics/0308063.pdf


๏A given threefold defines the following qualities


๏True-positives: Class-1 events above the threshold


๏True-negatives: Class-0 events below the threshold


๏False-positives: Class-0 events above the threshold


๏False-negatives: Class-1 events below the threshold

Data Science Selection metrics
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๏Starting ingredients are true positive (TP) and true negative 
(TN) rates


๏Accuracy: (TP+TN)/Total


๏The fraction of events correctly classified


๏Sensitivity: TP/(Total positive)


๏AKA signal efficiency in HEP


๏Specificity: TN/(Total negative)


๏AKA mistag rate in HEP


๏Depending on which quantity you prioritise, you would cut at a 
different place

Classifier metrics

39



Receiver operating characteristic



๏One can use the ROC curve to quantify a 
selection power without a specific cut 
choice 


๏Can be used to compare with N-dim cut 
based algorithms


๏Can be used to compare different 
algorithms (architectures, input 
features, etc)


๏In practice, one selects a working point 
to use for a specific search


๏Where to cut depends on the specific 
case


๏Custom figures of merits are used to 
choose

Selection power
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๏A ROC curve and the area under 
the curve (arc) are often used 
to comprare classifiers


๏This is an unquestionable 
criterion when there is 
separation


๏This is extremely misleading 
when the separation is less 
obvious (e.g., crossing lines)


๏What matters is which 
classifier is better where you 
intend to cut not in average

Think Beyond the ROC
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Background Estimate



๏The full likelihood including 
systematics has three terms


๏The “real” likelihood


๏The constraint on the signal 
expected yield (typically from MC 
or similar data, e.g., Z ee for  
H γγ) (*)


๏The constraint on the background 
expected yield. This is where 
troubles start

→
→

Back to our counting experiment
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ℒ = P(n |λB + λS)G(λ̄S |λS, σλS
)G(λ̄B |λB, σλB

)

(*) In the following slides I will drop the signal, since the discussion is 
about controlling the bkg uncertainty 



๏Monte Carlo simulation


๏One could predict the background with 
simulation. Not reliable per se 
(uncertainty on simulation accuracy 
difficult to estimate). 


๏A good baseline for a more accurate 
prediction


๏Fitting the uncertainties


๏Sometime one can estimate uncertainties 
of the simulation and model them through 
nuisance parameters


๏Data/MC agreement is then improved with 
profiling while fitting for the signal


๏ Uncertainties on nuisances propagates 
to uncertainties on signal through 
correlation

MC-based background estimate
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๏A typical plots shown 
by experiment is the 
“impact plot”


๏It shows the pull 
of the nuisance 
parameters


๏And the impact that 
the nuisance 
variation has on 
the parameter of 
interest  (e.g., 
the signal yield)

̂r

Nuisance pulls
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๏A control region:


๏One can use a bkg control 
region bridging the observed 
yield to the signal region 
using simulation


๏A 2D sideband


๏One can use two independent 
quantities to define the signal 
region and scale background 
from nearby sideband (ABCD) 


๏Connecting the bins


๏One can fit the background 
across adjacent bins with a 
smooth function

Data-driven methods

48



๏Given a background function f(x) 
describing the background shape 
distribution in x, one can predict 
the expected background


๏The function has parameters α that 
one has to determine


๏Cannot trust Monte Carlo in a 
data driven method


๏Can use profile the α in the fit


๏One has to choose a robust function 
and attach some systematic 
uncertainty to the choice

Smooth fit

49

E[ni] = f(xi |α)

ℒ̂ = max
α ∏

i

P(ni | f(xi |α))



๏PROS:


๏Simple to use (e.g., in bump hunts)


๏Very little use of MC simulation (typically top test function 
choice, but data control regions can be used for that


๏CONS:


๏Modeling the un certainty on the functional choice not 
trivial


๏Choice of function tend to be problematic on tail


๏With large statistics, poor goodness-of-fit for bkg-only 
hypothesis can compromise analysis robustness

Smooth fit

50



๏Typically used in 
searches (e.g., SUSY)


๏Several control 
regions enriched of 
specific backgrounds


๏Z->ll for Z->nn bkg


๏l+jets without b-tag 
jets for W+jets


๏l+jets with b-tag 
jets for tt

MC-assisted prediction

51
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Table 1: Number of events selected at each step of the analysis and for the following values of
E

miss
T ; E

miss
T > 250, 300, 350, 400, 450, 500, 550 GeV. Backgrounds are obtained from MC and

normalised as described in the text. Also shown are the number of events generated for each
process and the corresponding cross section used.

Selection W+jets Z+j Z(nn)+j tt̄ QCD Single top Total
Cross section (pb) 229.0 34.1 588.3 225.2 1904.8 113.5
Generated 1.27e7 2.6e6 1.05e7 6.92e6 2.29e7 7.05e6 6.3e7
Preselection 255647 20348 106463 50520 46076 7334 486389
NJets  2 183861 15056 80792 8585 15238 2723 306254
Df(j1, j2) < 2 166743 13798 75397 7150 585 2217 265890
Muon veto 73439 800 75395 2639 562 868 153703
Electron veto 54236 531 75374 1603 543 610 132898
Tau veto 52098 491 74870 1506 526 573 130064
E

miss
T > 250 GeV 16528 120 28818 470 177 156 46269

E
miss
T > 300 GeV 6031 40 11999 175 76 52 18373

E
miss
T > 350 GeV 2486 17 5469 72 23 20 8087

E
miss
T > 400 GeV 1109 7 2679 32 3 7 3837

E
miss
T > 450 GeV 537 4 1406 13 2 2 1964

E
miss
T > 500 GeV 277 1 766 6 1 1 1053

E
miss
T > 550 GeV 136 1 429 3 0 0 569

Table 2: Event yields for the Z(µµ) data control sample and the backgrounds from MC.
Z+jets W+jets Z(nn) tt̄ Single t QCD All MC Data

E
miss
T > 250 3405.2 0.5 0.0 27.4 10.6 0.0 3444 3626

E
miss
T > 300 1493.7 0.0 0.0 8.8 4.1 0.0 1507 1485

E
miss
T > 350 696.2 0.0 0.0 4.4 3.1 0.0 704 663

E
miss
T > 400 344.9 0.0 0.0 0.6 0.3 0.0 346 323

E
miss
T > 450 177.1 0.0 0.0 0.0 0.0 0.0 177 173

E
miss
T > 500 97.1 0.0 0.0 0.0 0.0 0.0 97 84

E
miss
T > 550 54.4 0.0 0.0 0.0 0.0 0.0 54 47

using:

N(Z(nn)) =
N

obs � N
bgd

A ⇥ e
· R

✓
Z(nn)
Z(µµ)

◆
(1)

where N
obs is the number of dimuon events observed, N

bgd is the estimated number of back-
ground events contributing to the dimuon sample, A is the acceptance, e is the selection ef-
ficiency for the event, and R is the ratio of branching fractions for the Z decay to a pair of
neutrinos and to a pair of muons. The acceptance A is defined as the fraction of simulated
events that pass all signal selection requirements (except muon veto) and have two muons
with pT > 20 GeV/c and |h| < 2.1 and with an invariant mass within the Z mass window. The
selection efficiency e is defined as the fraction of events passing acceptance cuts that have two
reconstructed muons with pT > 20 GeV/c and |h| < 2.1 and with an invariant mass within the
Z mass window. The muon selection efficiency is also estimated from simulation but corrected
to account for differences in the measured efficiency between data and MC.

The final prediction for the number of Z(nn) events is given in Table 3. The uncertainty on the
prediction includes both statistical and systematic contributions. The sources of uncertainty
are: (i) the statistical uncertainty on the number of Z(µµ) events in the data and simulation, (ii)
uncertainty from backgrounds, (ii) uncertainties on the acceptance from PDF uncertainties and



๏Common likelihood is defined for signal region (SR) and control regions 
(CRs)


๏Monte Carlo samples are added as additional control regions


๏expected yields in various data regions are connected, using functions of 
corresponding MC expected yields


๏The profiles likelihood is obtained maximizing over the λs 


๏One has to add signal and its uncertainties, as discussed already

MC-assisted prediction
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ℒ = ∏PSR(nSR,i |λSR,i)PCR(nCR,i |λCR,i) λSR,i = λCR,i
λMC

SR,i

λMC
CR,i

ℒ → ℒ = max
λ ∏PSR(nSR,i |λCR,i × λMC

SR,i /λ
MC
CR,i)

PCR(nCR,i |λCR,i) × PMC
SR (nMC

SR,i |λMC
SR,i)P

MC
CR (nMC

CR,i |λMC
CR,i)



๏PROS: 


๏more robust vs MC simulation since only ratios of MC 
yields are used


๏Generalizes very well to multi-bin fits 


๏CONS


๏Available MC statistics becomes a crucial factor that 
can limit the precision


๏MC modeling can be different if extrapolation is across 
regions with different kinematic properties (e.g., from 
low-momentum to high-momentum)

MC-assisted prediction
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๏Similar to our initial 
counting experiment, 
but 2D


๏Two quantities defining 
ABCD plane are 
independent for the 
background 


๏Selection factorizes, 
so one can obtain a bkg 
prediction from data 
using three sidebands

ABCD method
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ℒ = P(nA |λA)P(nB |λB)P(nC |λC)P(nD |λD)

λA = λC × kC→A = λC × kD→B = λC
λB

λD

ℒ̂(nA) = max
λB,λC,λD

P(nA |λC
λB

λD
)P(nB |λB)P(nC |λC)P(nD |λD)



๏PROS


๏In principle very clean methods


๏Easy to n-bin generalization 
(ABCD per bin)


๏CONS


๏In practice, difficult to find 
two uncorrelated quantities 
(but notable cases exist)


๏Residual correlation hard to 
model (with MC?) and associated 
systematic can be limiting 
factor


๏transfer factor can depend on 
other quantities (e.g., pT etc.)

ABCD method
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Whenever 
signature has 
to events with 

independent ID
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๏SM process measurements typically use MC-based profile 
likelihood fits


๏With background control regions added to make fit 
robots


๏Searches for new resonances typically use bump hunts with 
functional fit of the background


๏Systematic on function choice is becoming factor, so 
the other methods are becoming popular here too


๏Searches for exotics (e.g., long-lived particles) use ABCD 
a lot


๏Usually exploiting exotic-signature ID for ABCD plance


๏Searches with traditional objects in final states 
(leptons, jets, MET) use MC-assisted data-driven 
predictions


๏SUSY, Dark Matter searches, etc.


๏All methods have hidden assumptions and associated 
systematics


๏Robustness comes from using (and comparing) different 
methods 

When using what
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๏We reviewed how to define an event selection


๏what to cut on


๏how to cut


๏where to cut


๏We saw the implications of online vs offline selection


๏We discuss a few of the most popular background 
prediction methods

Summary
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Backup
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๏At collider, the expected number of events (S or B) is the 
product between


๏The number of produced events for a given process , 
where  is the luminosity and  is the cross section


๏The probability of a sample from a given process to pass the 
cuts (i.e., the efficiency ε we defined before)


๏In other experimental setups, the luminosity is traded for the 
corresponding time (e.g., time of exposure of a target of a 
given size, etc.)


๏  is computed from theory,  is measured at the experiment


๏But what if  is not known (e.g., in searches for new physics)?

N = σℒ
ℒ σ

σ ℒ

σ

Efficiency, cross section, luminosity
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