Data Analysis and Bayesian
Methods
Lecture 2

F S CERN
[Maurizio Plerint \/w




Lecture program

Introduction to  Data analysis in a Data analysis
Lecture probability and nutshell Bayesian inference Bayesian inference beyond hypothesis
statistics test




[ Mmultiple-ste rocess

77.2 6" (13 TeV 77.2f0" (13 TeV)
CMS 36.3fb' (13 TeV) 20000 ( ) @
; | ] | i = i ¢ Data Il WHbb = - ¢ Data
10° 2 Anti-k; (R =0.4) E o - CMS [ ggZHbb Bl ZHob & i CMS E% S+B uncertainty
o __CT14NNLO ® NP ® EW ] | Supplementary —vv.Hr B VV+LF o Supplementary ~
10° == 0 E 9 - . o} i B VH H-bb
i . ly| < 0.5 (x 10° : 215000 i I Single top = B \Z 7>
~ 102k m 0.5<|yl<1.0 (x107 - fm i [ W+bb O W+b 21000 . :
- - a 1.0<]y|<1.5 (x10? : ) I W-+udscg []Z+bb g B&% S+B uncertainty
= 10 £ ¢+ 1.5<|y| <2.0 (x10% E i []Z+b [ Z+udscg —~ I
Q E_ _EI %3_1 0000 - 53% S+B uncertainty — VH,H—bb mj_
- : < 2 *
107'F E ) 0]
102 F E
103 ¢ E;
107 F .
10°F E
10°F E
107 g
E : : : : o l l a . L l L L I L L l L L ] 1 1 | ] 1 1 | ] 1 1 | ] 1 1 | 1 1 1
100 200 300 1oooJet 200?69\/) 100 120 140 160 60 80 100 120 140 160
P, m(jj) [GeV] m(jj) [GeV]




A supervised Qroblem

@ Typically, HEP data analysis follows a top-down
supervised problem

@® One starts with a specific process 1n mind

@®A theoretical framework allows to predict the
experimental signature (qualitatively and
quantitatively) through a Monte Carlo simulation

® The data analysis 1s tailored on the process Rl il oo W e s
® PROS: maximise sensitivity (e.g., can work on I R U Y |
1mproving background rejection) o
® CONS: poor generalization. Performance loss 1f the e e B e e e
signal 1s different |
o )

0 q9-22,2y ]
B g9-Z2Z, 2y
B Z+X -

@®A supervised approach 1s i1deal when you have a target
1n mind, e.qg., Hi1ggs@LHC, WIMP underground, a
precision measurement of a Standard Model process

® For searches, one might need some additional tool
with a different perspective (see Friday lecture)
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ol T he program for these lectures

@ STEP 1: make sure that potentially 1nteresting
events enter your dataset (aka the trigger) Monday

@ STEP 2: define an event selection that selects Tuesday
a subset of your data, potentially enhanced
with signal

Wednesday and

® STEP 3: define a procedure to estimate the Thursday
amount of residual background events 1n your
selected sample Friday: a
degression on
@ STEP 4: extract the signal component (aka the signal
measurement) “agnostic”

; analyses
@ STEP 5: use the measurement to learn something Y
about nature (aka phenomenology)
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STEP 1: trigger selection




The need of a trigger

@ Ideally, one would I1ke to be able to R. Tenchini "Trigger @LEP"
store and analyse each individual events

e All systems, except TPC,
delivered signals suitable
for L1 trigger purpose (i.e
much faster than 11 us)

® In practice this 1s never done typically
because of limited resources (storage,
bandwidth, etc)

* L1 criterion was to require
the presence of at least
one single particle
candidate, charged or
neutral, from one or more

® Sometimes this 1s harmless

® In a clean environment, one just
needs to reject the obvious
background (e+e- colliders,

: t
underground experiments, ..) PYSEEm
® Sometimes it’s a challenge At LEP, the trigger
consisted 1n a set of
@At the LHC, one cannot store algorithms requiring some
everything activity, to reject beam-

gas 1nteractions and to

@Difficult choices have to be made discard/tag obvious noise

very early



https://indico.cern.ch/event/393093/contributions/1830018/attachments/786454/1078091/Triggers_at_LEP.pdf

How Bl

IS blg-?

® The amount of produced data 1s too
much to be stored

@® 1,000 times the data generated by

google searches+youtube+facebook
back 1n 2013

® Reduced to 5x(google
searches+youtube+facebook) after
first filtering

® Can only store 5% of those

1 KH=z
1MB/evt

Business email
Facebook

Google search
Youtube

Kaiser permanente
LHC stored data (*)
LHC LUl-filtered (*)
B _HC produced (*)

1

100 10000
PB/year

(*) Only two big experiments
(ATLAS and CMSs), only RAUWUJ data



Online vs Offline

@ STEP 1: make sure that potentially 1nteresting events enter your
dataset (aka the trigger)

@ STEP 2: define an event selection that selects a subset of your data,
potentially enhanced with signal

® These are actually two aspects of the same problem

® Both consists 1n applying a set of requirements to select a subset of
the events

® They differ 1n scope and for practical reasons
@ Efficiency vs Purity

® Accuracy vs Speed




@ Efficiency 1s the fraction of signal
events that would pass your selection

@® aka True positive rate, recall, etc.

@ Purity 1s a measure of how large 1is
the fraction of signal events 1n the
selected dataset

® Measured as S/B,S/\/B,S/\/S+B,
depending on the context

@Maximizing efficiency (what one would
do 1n a trigger) 1mplies a loose
selection

@Maximizing purity (what one would do
1n a data analysis offline) 1mplies a
tight selection

10



Accuracy vs Speed
@ When applying a selection, one pays
for the Timited detector resolution IDEAL :>%Wm%<:

® The amount of background leaking
1n the selected region i1s inflated
by poor resolution

® When working 1n real time one has
limited resources

DETECTOR LEVEL
A4

® l1mited computing power

@ l1ttle time to run complex
calculations

@ Detector performance are not
exploited at best

ONLINE RECONSTRUCTION

@ coarser algorithms, limited 1nput
information (e.g., no particle
tracking)

11



Turmn-on curve

® You have a discriminating quantity X
and two estimates of 1t

® Xoff. adhn accurate measurements of x

® Xon: a coarser measurement of x

Ox

@A turn-on curve models how the Xoff-Xon

distribution of Xorf 1s affected by a
CUt on Xon x0n>xT

@A typical analysis would work beyond
the turn-on

@ constant efficiency loss with Ko > Xp = Xy = X+ 8, > 45,
measurable uncertainty

@ some analysis could try to model
efficiency (e) along the curve and
reweigh events by 1/¢

Xoff

12



10M Big Data sizes in 2021 m -

5 100 T objects stored
inS3upto 2021 (5MB)
2 \
140 M hours/day ‘
M of streaming (1 GB)

71k B e-mails sent from
100k 2020-10 to 2021-09 (75 KB)

)
=3
@
N 240k photos/min. ~00ER
7 shared in 2021 {tota)
() 2 MB)
O 60k B spam 51.1k PB (
e-mails(5 KB) AGFEY | S E—_—
:: transfers in 2018 HL-LHC real
@ 1.9k PBfy data expected in 2026

. opbox '
1000 65k photos/min. \.
shared in 2021 LHC real
3 YouTuhe . 1200 PBAy

223 RS (2 MB) data in 2018 800 PB/y
d Se () HL-LHC Monte Carlo
O o~ e data expected in 2026

100 Y /asesy SRERY JJ 240 PBly
160 PB/Yy
5 720k hours/da
of video uploaded (¥ GB) ; 1978:'3 M_:;ew:s_e'szom 68 PBly 62 30;0 321“'(92‘)123!9"38? LHC Monte Carlo
+1. paid subs in in . datain 2018
. (1.5 GB and 500 GB, respectively) © Luca Clissa (2022)
10
source

STEP 2: data selection




LUhat you need to declde

@ What to cut on
®S vs B separation depends on the

discriminating quantity you use

® Depending on the quantity on
axis, selection can be more or
less efficient
@ How to cut

® l1near vs non-1linear cuts

@ Where to cut

@ trade-off between efficiency and
purity

14



LUhat you need to declde

@ What to cut on
x2 /\

®S vs B separation depends on the
discriminating quantity you use
® Depending on the quantity on
axis, selection can be more or
less efficient
@ How to cut

® l1near vs non-1linear cuts

@ Where to cut

@ trade-off between efficiency and
purity
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LUhat you need to declde

@ What to cut on
x2 /\

®S vs B separation depends on the
discriminating quantity you use
® Depending on the quantity on
axis, selection can be more or
less efficient
@ How to cut

® l1near vs non-1linear cuts

@ Where to cut

@ trade-off between efficiency and
purity

16



LUhat you need to declde

@ What to cut on
x2 /\

®S vs B separation depends on the
discriminating quantity you use
® Depending on the quantity on
axis, selection can be more or
less efficient
@ How to cut

® l1near vs non-1linear cuts

@ Where to cut

@ trade-off between efficiency and
purity
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LUhat you need to declde

@ What to cut on
x2 /\

®S vs B separation depends on the
discriminating quantity you use
® Depending on the quantity on
axis, selection can be more or
less efficient
@ How to cut

® l1near vs non-1linear cuts

® Where to cut

@ trade-off between efficiency and
purity
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LUJhat to cut on

@ An event selection 1s a multi-
dimensional problem

® Several quantities can discriminate
S vs B for different reasons

® Example:

@® Signal: long-1lived particles at LHC
decaying to electrons

® Signature: electrons displaced from
collision point

® Backgrounds

® Events with real electrons from
SM processes

® Fake events (random association
of a track to a calorimeter
deposit)
19

displaced
dilepton

B BSM
M lepton

M quark
photon

B anything

displaced
lepton




@ Th1s 1s the easiest case

e Charged Hadron {e.g.Pion)
— — — - Neutral Hadron {e.g. Neutron)
® e« e« Photon

I,',

\

X

I"

"l,l
==—\====2
——r )

x T - X x T
"L

® Track displacement from primary
typically relies on the tracker

@ An electron ID score uses the
calorimeter 1nformation

=0

@® one can define two quantities which are
(to a large extent) 1ndependent

vertex

Cluster shape distribution

LUUJhat to cut on

19.7 b (8 TeV

E103§IIII|I |||||l|glllg
O - ¢ Data
o § CMS %tat. & syst. errors

s 10% e —>TT _
8 10 8 1 HF 3
» n mm Other EW
Q0 § =3 Top quark
100000 T (cv=0.1cm)
L ----tt(ct=1cm)

e —_T(ct=10cm)

02 03

2015, 13 TeV

0.16
0.14F
0.12F
0.10F
=0.08
0.06 -
0.04

0.02F

1

CMS
simulation preliminary
¢ < 1.479

. DY — ee signal
— QCD background

0 0.004

S

o)

0.012 0.016 0.020

mm

0.4 05
Electron d, [cm]



1-Dim vs M-Dim cut

59.5 fo! (13TeV) 2018

® Real problem and state-of-art a® | sesmI

§ [CMS ¢ Data
] ; S 0.031
solutions are typically more S , [Z—uur (MO) -
comp 7 -i ca ted g ot Béfre?tat. unc.

® There is no magic quantity ool

that gives optimal separation *wﬂwj;
(but you can try to build one) e

=
@ Severa7 quant-it-ies can be O v oy o
1 y Oinin
defined, based on same Tnputs st To0 20
and correlated & f
® Just using the quantity with "ok
best discrimination might not s
be optimal TE
@ Using more quantities can R ———— _—
improve separation oo o1 o

=1



Ul Different spproaches

@ CLI t- b ase d Se 7 ect -i On Variable Barrel (tight WP) Endcaps (tight WP)
Tinin <0.010 <0.035
| Agpseed| <0.0025 <0.005
. B | Ay | <0.022rad <0.024 rad
@ Se 7eCt d port-l on O-F the N H/E <0.026 +1.15GeV/Egc  <0.019 +2.06 GeV / Eg¢
d7 m Spa CE 4 th rough ) a set o f Iombined/ ET <0.029 4+ 0.51GeV/Etr <0.0445 4 0.963 GeV/Et
cuts on each quant-, ty 11/E —1/p| <0.16 GeV ! <0.0197 GeV !
Number of missing hits <1 <1
Pass conversion veto Yes Yes

® MVA-based selection 19.7 15" (8 ToV)

xlOB*vﬁ—ﬁl Y T T

. . S | CMS lao L
@ Combine quantities 1n a s | n |
single discriminator 8 | — Hom (mazscen | L 3
w &80 | =
¢ Data [f 50 V_’
. . . - A MG background \ o
@ N-dim Il1keli1hood (when o S
correlations are Kknown) ‘ L
@® Machine learning e.g., — 7 oA
BDT, NN, etc (when they Y T S T
P BDT
are nOt) noton 1D BOT score

2



CE/RW
\\_/

R Nnew approach: end-to-enac

@ Traditional approaches exploits high-level features (hilf) built based
on physics 1ntuition

@ With Deep learning, 1t 1s now possible to start from raw data and
engineer high-level quantities

® The hilf definition 1s optimized together with the task (electron vs
fake separation)
bird ]—> Poirg

sunset ]_> psunset

| 3—;=E—|—>n_ A |o
o
T o dog l pdog
— T o
) o
e g cat |—> Peu
. o
convolution + max pooling vec |4
nonlinearity | o -
I |
convolution + pooling layers fully connected layers  Nx binary classification

=3



CE{W
\\_/

(a

@Multi-task problem e
with single train m{g ®
O

R Nnew approach: end-to-enac
) ol. ® S

@ cluster energy
deposits i1nto 7
@ .. >\
photon/electron "N A
candidates O
o fu
J2 v}‘

@build hlf quantities
from the cluster

e o
Y (mm)

@ maximise the
separation between

signal and
background




How to

@ Typically, one puts a “flat cut” on each
quantity

® This quantity could be a physics-
inspired function

Q/g

@ Or an MVA score

® When doing so, one has to take care of
the 1mpact this has on other quantities

@ Example:

® jet tagging: identify which kind of
particle started a jet

@® Jet mass can do 1t, but the jet
substructure provides extra 1nformation

@ Usually one b builds an MVA, e.g., a
Neural Network

=5



CE{W
\\_/

[ dyet resonance search

@ Typically, one puts a “flat cut” on each
quantity

® This quantity could be a physics-
1nspired function

@ Or an MVA score

® When doing so, one has to take care of
the 1mpact this has on other quantities

@ Example:

® jet tagging: i1dentify which kind of
particle started a jet

@® Jet mass can do 1t, but the jet
substructure provides extra 1nformation

@ Usually one b builds an MVA, e.qg., a
Neural Network

26
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Mass sculpting

® Very often, a NN learns CMS Simulation Open Data 2016 (13 TeV)
. . . . ~Yr— T 1T T 1 T T T T T ]
information that 1s exploited g | 300 < jetpr <2000 GeV .
o o - : ; ’ < F 40 < jetmgp < 200 GeV
1n physics 1nspired quantities e I 1.0% mistagging rate ’
O L No tagging applied
@A cut on the MVA score can g 0 ntoraoion nptwar, BOT -
. . . = ) ... Deep double-b
learn kinematic and alert 1t Z oaf e e
g Z ... Deep double-b+

t.... Deepdouble-b+, DDT

® Th1s can affect background o
distribution. For 1nstance, : .
a jet ID cut can change the " : |
distribution of dijet mass,
creating a bump 1n the

O
w
| B

background :
® This can make a search for a T I T N 1

%0 80 80 100 120 140 160 180 200 220 240

new resonance more mgp [GeV]

complicated

=2/



Designed decorrelated taggers

CMS Simulation Preliminary

Th b1 ; sib] hi T ; /}_“ 1.2 o I | 4> I |IDT[=IELOL)-I6F;0IGIe\I/I _—
@ The problem 1s visible even w/o machine learning v : P Toe50800GeV 1
11— ¢ pT =800-950 GeV —
. . i T =950-1100 GeV  _
® Jet substructure before NNs was done with physics- ooF “’ oT = 1100-1250 GeV -
1nspired jet substructure [ TUDURUNIDUSS -
L =8=—0— —3— —
. . 0.6 == =3
@ Jet substructure shows a correlation with p=log(m*/p3), I =T
: B — ]
used in the search to extract the background 0.4/ =
: : - . . ol |
® The correlation 1s critical 1n the regime of a ° - -
typical search (p> —38) | I R R R E R A R
14 -12 -10 -8 -6 -4 -2 0
P
@ A tWO S tep ap p roa Ch CMS Simulation Preliminary
N 12_'"']""I'"'I""I""I""I""I""I""_
] ] a_ b &  pT =500-650 GeV _
@ Most of the dependence is linear and can be corrected % 1: P = 050800 GeV ]
— ¢  pl= -950 Ge —]
m . _
y DDT __ _ u pT =950-1100 GeV _
by hand, trading p for p”"" =log (—) (u=1 GeV) _ T 1100-1250 GeV -
PrH 0.8 - ~
: : : 0.6 -
® The residual dependent i1s removed trading t,, for - :
DDT __ - j
0.2 -
] DDT ] ] | |
@At that point, a flat cut on #,;°" 1s applied : :
0111111...I....I”HII...I....I.u.l....l.l.l

=283 pDD



Quantiule Regression

@ DDT approaches can be generalized to 6
non-Il1near dependencies using a y
learnable non-1linear function

® One can use machine learning to find
the contour defined by y> y;(x)

@y (x) 1s learned through a neural
network taking x as Tnput

® The training 1s performed using a i .  wen
. . . | o " erie
specific loss function w7/ 1 Ox(5%)
: Qx(25%)
Qx(50%)
Qx(75%)
Qx(95%)

Lly”, yi) = maxlq(y; - yi), (@ - 1)ly; - yP) [/

@ N-dim generalization: The big 44
advantage of this approach (as usual
with neural networks) 1s that x can
actually be a vector of Tnput 6

quantities ° ’ ) ° X
=29



https://www.wikiwand.com/en/Quantile_regression

Rdversarial learning

® When your quantity y 1s a trained _ B
algorithm you have a further option E(Of’e"") - Ef(ef) ["’"(ef’o"")
wrt quantile regression, DDT etc. 0, 0. — argminmaxE(0 0 )

fyUr o, 0, fyVr
® You can prevent y from learning x = o=
through an adversarial learning at zjiggﬁﬁg:i% """""" A
training time, minimizing the —— s
correlation between x and y while Lo
constructing vy 0
® BE CAREFUL: -

-1.0-05 0.0 05 1.0 1.5 2.0

@ this might alleviate the problem > 084
but not remove it . 0.,
25| s -

@ Adversarial traini ngs can be %z,ob T TN N N 1.0 i
tr'icky: two terms of the ) I S . ° 0.36
likelihood fighting against each i} N
other could introduce a training ogd | NN,
1nstability 30 G. Loupe ot al, https://arxiv.org/pdf/1611.01046.pdf



https://arxiv.org/pdf/1611.01046.pdf

Rdversarial learning

® When your quantity y 1s a trained

wrt quantile regression, DDT etc. O [ 300 < jetpr < 2000 GeV
Q@ [ 40 < jetmgp < 200 GeV
. % |~ Interaction network, AUC = 99.0% |
@ You can pl‘event y 'ICI‘0m 7ea I"n'lng X ;) === Interaction network, adversarial, AUC = 98.6% .
- - - == |nteraction network, QCD reweight, AUC = 98.3% /
th ro_ug_h an _adve I‘S.al:'-l a 7 ] 7earn 1 ng at é —— |nteraction network, DDT, AUC = 98.5% /
training time, minimizing the 8 o1l " Deepdoubleb, AUC = 97.2% o
. . = - === Deep double-b, mass decor., AUC = 96.5% / // a
correlation between x and y while = Y/
constructing vy
@ BE CAREFUL:
1072
@ this might alleviate the problem :
but not remove 1t : Pt
®Adversarial trainings can be - 7
tricky: two terms of the L L B e 7 S T 1.0
l1kelihood fighting against each Tagging efficiency (H — bb)
other could 1ntroduce a training
instability 31 E. Moreno et al. https://arxiv.org/abs/1909.12285



https://arxiv.org/abs/1909.12285

UJhere to cut

@ The cut threshold 1s
chosen maximizing some
figure of merit of
purity.

—>

Probability

@ Usually people set cuts
that maximizes S/\/B,
when optimizing for a

discovery <

® Where 1s this coming
from?

32
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Ul Counting Experiment

. . . 0.40 | I I I
@® Given a population of N data entries "
(events) 0.35
- . 0.30
@®@Apply a cut with efficiency &, one
expect eN events surviving — 0.25
: |
@® The number of observed events 1s 5/0-20
distributed according to a Poisson A 015
distribution
0.10
@ centred at S=esNs for signal 0.05
B=egNg T k .
@ centred at B=egNs for background 0.00 0 . 10 T 0
® The total number of events is centred k
around S+B e—/l,lk_ E[k] = A
. ] P(k|A) = ——
®A Poisson converges quickly to a k! le”[k] — )

Gaussian with mean A and RMS /A

33



[umber of sigmas

® When we talk about an observation, we &

quantify 1ts strength in number of sigmas 1
-
® The difference between the observed and =
expected yield, 1n units of the uncertainty «
o 34.1% 34.1%
® The uncertainty 1s that of a bkg-only .
distribution
-
o

@One 1s minimizing the probability of a
background-only distribution to mimic a

signal E[kS n kB] B E[kB] - S

® Chances to discover are maximal when the :’jﬂ -——— V0
signal would induced the largest possible S Varlk \f
excess wrt bkg-only distribution V [ B] B

® Expected yield 1n presence of a signal: S+B Two main issues:
 Bad behavior for small exerted background

® Expected yield 1n absence of a signal: B « Computing the expected significance requires to
specify a signal cross section (but the optimal can be
@0z =+/Varlkz] =+\/B is the RMS in absence of a found w/o)
signal G. Punzi, arXiv:0308063
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https://arxiv.org/pdf/physics/0308063.pdf

Data Sclence Selection metrics

@A given threefold defines the following qualities
® True-positives: (Class-1 events above the threshold
® True-negatives: (Class-0 events below the threshold
@ False-positives: (Class-0 events above the threshold
® False-negatives: (Class-1 events below the threshold

N\

|
|

Probability

35



Data Sclence Selection metrics

@A given threefold defines the following qualities
@ True-positives: Class-1 events above the threshold
® True-negatives: (Class-0 events below the threshold
@ False-positives: (Class-0 events above the threshold
® False-negatives: (Class-1 events below the threshold

N\

|
|

Probability
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Data Sclence Selection metrics

@A given threefold defines the following qualities
@ True-positives: Class-1 events above the threshold
® True-negatives: (Class-0 events below the threshold
@ False-positives: (Class-0 events above the threshold
® False-negatives: (Class-1 events below the threshold

N\

|
|

Probability

3/



Data Sclence Selection metrics

@A given threefold defines the following qualities
@ True-positives: Class-1 events above the threshold
® True-negatives: (Class-0 events below the threshold
@ False-positives: (Class-0 events above the threshold
® False-negatives: (Class-1 events below the threshold

N\

|
|

Probability
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Classifler metrics

@ Starting 1ngredients are true positive (TP) and true negative
(TN) rates

@ Accuracy: (TP+TN)/Total

® The fraction of events correctly classified
® Sensitivity: TP/(Total positive)

@® AKA signal efficiency 1n HEP
® Specificity: TN/(Total negative)

@® AKA mistag rate 1n HEP

® Depending on which quantity you prioritise, you would cut at a
different place

39



@M Receiver operating characteristic

probability gen
AUC = 0.99 g
0.0 Sensitivity = 0.00
Specificity = 1.00 N
z
0 ?’,é
0 1
o
| U °
»
T
o
X-
Q
.00




Selection pouwer

® One can use the ROC curve to quantify a
selection power without a specific cut

choice P —
2 il | I S ' 2 rrrjrrrrjrrrrrrre
& [ttevents i .",".}'3
. . k. A el >1 = ,’.,’, ‘.-" 1'. ‘
@ Can be used to compare with N-dim cut g [P0 56 A
based algorithms R | B e ‘
0 f‘ DCCDCSV 1
@ Can be used to compare different El—gzzmg :
algorithms (architectures, input * “

features, etc) o

| | TTTTI
o ——— A*J‘L

™71

® In practice, one selects a working point R :
to use for a specific search w3r' A ‘///
1 - . ¥ ]

1 } _— - | - 4 WS WS WS - .S 1 .- 1 S S .S 1 .- i
03 0.4 0.5 0.6 0.7 08 0% 1
b-jet elficiency

® Where to cut depends on the specific
case

@® Custom figures of merits are used to
choose

4]



Ol Think Beyond the ROC

@A ROC curve and the area under
the curve (arc) are often used

to comprare classifiers
. . . 081 ’ Classifier A|
® Thi1s 1s an unquestionable -t
criterion when there 1s Z el
separation g
] _ ) ] o 0.4
@ Th1is 1s extremely misleading i
when the separation 1s less 02|
obvious (e.g., crossing lines) ;
® What matters 1s which 0 0.2 04 0.6 0.8

classifier is better where you Fali-out [ ]
1intend to cut not 1n average

A =



l
i
| ‘\
C A
j ﬁ

Backgrounao estimate




Back to our counting experiment

@ The full likelihood 1ncluding (
systematics has three terms BKE& Sig

@ The “real” Ili1kelihood

® The constraint on the signal
expected yield (typically from MC
or similar data, e.g., Z—ee for

H-vyy) (%)

CounwnTS

'..n_
,ll-ll-.‘\

L=,

® The constraint on the background =53 é_,
expected yield. This 1s where b
troubles start

L = P(n| 1y + A)GUs| A5, 6, )G | A, 5, )

(*) In the following slides I will drop the signal, since the discussion 1s

about controlling the bkg uncertainty
14




MC-based background estimate

CMS 2.3 fb" (13 TeV)

@ Monte Carlo simulation 3 10° '+ Data
2 0 B tt+jets

i : 2 B W+jets

® One could predict the background with g B Other

—L

simulation. Not reliable per se
(uncertainty on simulation accuracy 10°
difficult to estimate).

1072

8142_ .................................................................................................................................................
@ A gOOd base77ne for a more accur'ate 3.1-21; ..................................................................................................................................................
pred-ict-ian %08; ............................................................................................................

0 0.6F e —— ———

400 1000 2000 3000

@ Fitting the uncertainties My [GeV]
CMS \s=7TeV,L=511f";Vs=8TeV,L=19.7 fb’
y . . . > ek ' o Data | -
® Sometime one can estimate uncertainties 3% my=126 GeV 5
of the simulation and model them through ®30f L S .
nuisance parameters 25k E
> F | :
i i _ I 20 E
@ Data/MC agreement 1s then improved with E T :
profiling while fitting for the signal F | 1) E
1of I ] i -
. . . C il ek ]
@ Uncertainties on nuisances propagates 5 B il i | =
to uncertainties on signal through oLt TR |t R
Corre7at-ion 80 100 200 300 400 600 800

45 m,, (GeV)



@A typical plots shown
by experiment 1s the
“Impact plot”

@ It shows the pull
of the nuisance
parameters

@® And the 1mpact that
the nuisance
variation has on
the parameter of
interest 7 (e.g.,
the signal yield)

CMS_scale_t_tautau_8TeV

CMS_eff_t_tt_8TeV
CMS_htt_tt_tauTau_1jet_high_highhiggs_8TeV_ZTT_bin_12
CMS_htt_tt_tauTau_1jet_high_highhiggs_8TeV_ZTT_bin_11

QCDscale_ggH1in

CMS_htt_QCDSyst_tauTau_vbf_8TeV

pdf_gg
CMS_htt_tt_tauTau_1jet_high_highhiggs_8TeV_ZTT_bin_13
CMS_htt_QCDSyst_tauTau_1jet_high_highhiggs_8TeV
CMS_htt_tt_tauTau_vbf_8TeV_ZTT_bin_6
CMS_htt_QCDSyst_tauTau_1jet_high_mediumhiggs_8TeV
CMS_htt_extrap_ztt_tauTau_1jet_high_mediumhiggs_8TeV
CMS_htt_extrap_ztt_tauTau_vbf 8TeV
CMS_htt_tt_tauTau_1jet_high_mediumhiggs_8TeV_ZTT_bin_12
CMS_htt_tt_tauTau_1jet_high_mediumhiggs_8TeV_ZTT_bin_20
CMS_htt_zttNorm_8TeV

lumi_8TeV
CMS_htt_tt_tauTau_1jet_high_mediumhiggs_8TeV_ZTT_bin_13
CMS_htt_tt_tauTau_1jet_high_highhiggs_8TeV_ZTT_bin_14
CMS_htt_scale_met_8TeV

QCDscale_ggH2in
CMS_htt_WNorm_tauTau_1jet_high_highhiggs_8TeV
CMS_htt_tt_tauTau_1jet_high_highhiggs_8TeV_ZTT_bin_6
CMS_htt_tt_tauTau_1jet_high_highhiggs_8TeV_ZTT_bin_5
pdf_ggbar

UEPS

CMS_htt_tt_tauTau_vbf 8TeV_ZTT _bin_9
CMS_htt_tt_tauTau_1jet_high_highhiggs_8TeV_ZTT_bin_21

CMS_htt_tt_tauTau_vbf_8TeV_ZTT_bin_7

CMS_htt_extrap_ztt_tauTau_1jet_high_highhiggs_8TeV :

—— Fit [ ]+1o Impact

x Pull -1o Impact
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[uisance pulls

@A typical plots shown
by experiment 1s the
“Impact plot”

@ It shows the pull
of the nuisance
parameters

@ And the 1mpact that
the nuisance
variation has on
the parameter of
interest 7 (e.g.,
the signal yield)

O NS WON -

CMS_scale_t_tautau_8TeV

CMS_eff_t_tt_8TeV
CMS_htt_tt_tauTau_1jet_high_highhiggs_8TeV_ZTT_bin_12
CMS_htt_tt_tauTau_1jet_high_highhiggs_8TeV_ZTT_bin_11
QCDscale_ggH1in

CMS_htt_QCDSyst_tauTau_vbf_8TeV

pdf_gg
CMS_htt_tt_tauTau_1jet_high_highhiggs_8TeV_ZTT_bin_13
CMS_htt_QCDSyst_tauTau_1jet_high_highhiggs_8TeV
CMS_htt_tt_tauTau_vbf_8TeV_ZTT_bin_6
CMS_htt_QCDSyst_tauTau_1jet_high_mediumhiggs_8TeV
CMS_htt_extrap_ztt_tauTau_1jet_high_mediumhiggs_8TeV
CMS_htt_extrap_ztt_tauTau_vbf 8TeV
CMS_htt_tt_tauTau_1jet_high_mediumhiggs_8TeV_ZTT_bin_12
CMS_htt_tt_tauTau_1jet_high_mediumhiggs_8TeV_ZTT_bin_20
CMS_htt_zttNorm_8TeV

lumi_8TeV

CMS_htt_tt_tauTau_1jet_high_mediumhiggs_8TeV_ZTT_bin_13
CMS_htt_tt_tauTau_1jet_high_highhiggs_8TeV_ZTT_bin_14
CMS_htt_scale_met_8TeV

QCDscale_ggH2in
CMS_htt_WNorm_tauTau_1jet_high_highhiggs_8TeV
CMS_htt_tt_tauTau_1jet_high_highhiggs_8TeV_ZTT_bin_6
CMS_htt_tt_tauTau_1jet_high_highhiggs_8TeV_ZTT_bin_5
pdf_qqgbar

UEPS

CMS_htt_tt_tauTau_vbf_8TeV_ZTT_bin_9
CMS_htt_tt_tauTau_1jet_high_highhiggs_8TeV_ZTT_bin_21

CMS_htt_tt_tauTau_vbf_8TeV_ZTT_bin_7

CMS_htt_extrap_ztt_tauTau_1jet_high_highhiggs_8TeV

—o— Fit
x Pull

[ ]+1o Impact
-1o Impact
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Data-driven methods

@A control region:

@® One can use a bkg control
region bridging the observed
yield to the signal region
using simulation

@A 2D sideband

@® One can use two T1ndependent

quantities to define the signal

region and scale background
from nearby sideband (ABCD)

@® Connecting the bins

@ One can fi1t the background
across adjacent bins with a
smooth function

Inverted p
isolation

Standard p
isolation

48

CMS 2.3 (13 TeV)
"UE) 10°% & M, [Gev) Multijet 0 b-tag
q>) [500, 600] . [600, 700] . [700, 900] . [900, 1200] . [1200, 1600] . [1600, 4000]
10EE o Sty ek
1
o L|
1072

.tf+jets . QCD

vv
. Other

Data / pred. [Method A]

Transfer

A

factors

\B

Application of

C

Control region

transfer factors

/ﬁ\D

Signal region

Same-sign
™ & M pair

Opposite-sign
™ & M pair

’>" 4 I [ [ | ]
o 107} —e— CMS Data (2.9 pb) =
O] 2 — Fit §
3 .
.8- 107 B\ [ ] 10% JES Uncertainty =
~ S\ QCD Pythia + CMS Simulation E
- 1 02 L ----- Excited Quark -
% - — -~ String \s=7TeV R
T 10k m<258&An|<1.3
1 E " (0.5 TeV
107F
10%F
3
107°E
104k | L 5

| | I | | | | I | |
1500 2000
Dijet Mass (GeV)

| I | | | | | |
500 1000



Smooth it

I I L DL n
% 10%} —e— CMS Data (2.9 pb') E
O — Fit -
| ] 10% JES Uncertainty =
----- QCD Pythia + CMS Simulation ;
----- Excited Quark =
— - String \s=7TeV -

M<25&JAn|<1.3 -3

® Given a background function f(x)
describing the background shape =
distribution 1n x, one can predict ©
the expected background

] 107F
® The function has parameters a that 102k
one has to determine 0%k '
] 10'4;111.1111“1.1111111.1“5
@ Cannot trust Monte Carlo 1n a >00 1000 15‘[’)‘?]et MiZZO(GeV)
data driven method
® Can use profile the a 1n the fit E[nl] =f(xl- ‘ 05)

@® One has to choose a robust function A
and attach some systematic < = max I IP(ni\f(Xi\Ol))
uncertainty to the choice a i

219



Smooth Lt

@ PROS:
@ Simple to use (e.g., 1n bump hunts)

@ Very little use of MC simulation (typically top test function
choice, but data control regions can be used for that

@® CONS:

@ Modeling the un certainty on the functional choice not
trivial

® Choice of function tend to be problematic on tail

@ With large statistics, poor goodness-of-fit for bkg-only
hypothesi1s can compromise analysis robustness

50



(MC-assisted prediction

@ Typically used 1n
searches (e.g., SUSY)

® Several control
regions enriched of
specific backgrounds

@Z->11 for Z->nn bkg

® I+jets without b-tag
jets for W+jets

® I+jets with b-tag
jets for tt

51



Ul MC-assisted prediction

® Common li1kelihood 1s defined for signal region (SR) and control regions
(CRs)

@® Monte Carlo samples are added as additional control regions

® expected yields 1n various data regions are connected, using functions of
corresponding MC expected yields

® The profiles likelihood 1s obtained maximizing over the As

@® One has to add signal and i1ts uncertainties, as discussed already

/1SR l
Z = HP SR(nSR,i | /ISR,i)P CR(nCR,i | /ICR,i) ASR’ B ACR l/l

CR,i

L - L= maXHPSR(nSRzMCRzX SRz CRz)

MCy. MC | 1MC\ DMC
PCR(nCR l ‘ ACR l) X PSR (nSR l | ;LSR z)P (nCR l ‘ /ICR l

52




MC-assisted prediction

® PROS:

@ more robust vs MC simulation since only ratios of MC
yields are used

® Generalizes very well to multi-bin fits

® CONS

@Available MC statistics becomes a crucial factor that
can limit the precision

@ MC modeling can be different 1f extrapolation 1s across
regions with different kinematic properties (e.g., from
low-momentum to high-momentum)
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ABCD method

5 100

. . = ReglonC F{eglonA(S|gnaI region)
@ Similar to our 1nitial s0F !
counting experiment, :
but 2D I
50 -
.. .. 0=
® Two quantities defining 0= - -
ABCD plane are o
7ndependent -FOI" the 065030~ 4050 60 70II|180HH90HIi00
background 2

L = P(ny | Ay)P(ng| Ag)P(ng| A)P(np | Ap)
@ Selection factorizes,

so one can obtain a bkg
prediction from data M= AcXkep =Ac X kp_p = /IC/I

. . D
using three sidebands

A Ap
L (ny) = max P(n, | A-— )P(nBMB)P(nCMC)P(nDMD)
ApsAcAp /ID

=41




® PROS CMS,

Jet 0,

pt =2.62 TeV
eta = 0.357 BT AT
phi = 0.346 / .» 5 Sy

® In principle very clean methods

® Easy to n-bin generalization
(ABCD per bin)

@® CONS
® In practice, difficult to find s a5
two uncorrelated quantities G e Som s 5018851 2015 COT L
(but notable cases exist)
. . 8 Transfer| factors
® Residual correlation hard to = A~ | g
. . N
model (with MC?) and associated ‘Whenever ®
systematic can be limiting signature has o
.’Ca Ct or to events Wlth ' Application of| transfer factors
independent ID a C 7 T D
TT: Control region Signal region
® transfer factor can depend on L

other quantities (e.g., pr etc.) Fail ID1 Pass ID1
55




LUhen using what

® SM process measurements typically use MC-based profile
l1ikelihood fits

@ With background control regions added to make fit

robots CMS 2.3 " (13 TeV)
£10% & m_1cev: Multijet 0 b-tag
@Searches for new resonhances typica77y use bump hunts with L%J so,sool , 600,700 , [700,900] , [900,1200] , [1200,1600] , [1600,4000]
functional fit of the background 10 -_ " et 5 i i
® Systematic on function choice is becoming factor, so ’
the other methods are becoming popular here too o T Hll
® Searches for exotics (e.g., long-lived particles) use ABCD 102 5 5 5
Vomhod A pred. o MeModBered [ I i L 1 1 | i [

a lot -

@ Usually exploiting exotic-signature ID for ABCD plance

® Searches with traditional objects 1n final states
(leptons, jets, MET) use MC-assisted data-driven
predictions

Method B / Method A

©C a N W & O

® SUSY, Dark Matter searches, etc.

@®All methods have hidden assumptions and associated
systematics

® Robustness comes from using (and comparing) different
methods 55




Summary

® We reviewed how to define an event selection
@ what to cut on
@ how to cut
@ where to cut
@ We saw the 1mplications of online vs offline selection

@ We discuss a few of the most popular background
prediction methods
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Backup




efficiency, cross section, luminosity

@At collider, the expected number of events (S or B) 1s the
product between

® The number of produced events for a given process N=o¢%,
where ¥ 1s the luminosity and ¢ 1S the cross section

® The probability of a sample from a given process to pass the
cuts (1.e., the efficiency € we defined before)

® In other experimental setups, the luminosity 1s traded for the
corresponding time (e.g., time of exposure of a target of a
given size, etc.)

@c 1S computed from theory, & 1s measured at the experiment

® But what 1f ¢ 1s not known (e.g., 1n searches for new physics)?
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