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DARN, NOT SIGNIFICANT. | STATS EXAM GRADE PERFECT!

WE NEED MORE DATA. ARE YOU SURE
HAVE THEM EACH TRY WE'RE. DOING
YELLING INTO THE MIC ‘ SLOPE. HYPOTHESIS
A FEW MORE. TIMES. TESTING RIGHT?
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Hypothesis Testing
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Hypothesis Testing

® You could exclude a signal

; : c F ATLAS 2011-2012 [+ -
hypothesis, given the S F ; + 26 -
. é - \s=7TeV: det=4.6-4.8fb - .
observation = [ \s=8Tev:|Ldt-5859f" — Observed g
] LA e Bkg. Expected 4
o L /\
® Ho: BKG-only 2
S
@ Hi: SIG+BKG
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® Establishing a signal: given g o s\ 1,
the observation, reject Ho 1n - \/ E
. 10° = - 56
favour of Hi with some level - 3°
of confidence 10° ’ N
100 e | e -
@ 1n HEP, the famous “50” P =lew | HowsHozZ e
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T he test statistics

® The test statistics 1s any quantity
with some discriminating power between

HO and Hi
® The larger the separation between the D H:
two distributions, the better the -fé’
test G4000 |:| Ho
E
® You need a model of your test O
statistics AD|0O,a) E%
L
®An analytical description 82000
-
@A simulation-based template (e.g., a 3
h1stogram) a
® There will be nuisance parameters v 0
morphing this model i1n various ways -20

® The model might depend on some
parameter of i1nterest 6 (e.g.,
resonance mass 1n a resonance search)
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T he test statistics

@ In your counting experiment

you could use 9\ BL&
I
@ The distribution of the R
recorded energy, described 3
with multiple-bin histogram Q
(product of Poisson)
@ The l1keli1hood for a =
Poisson count above b
threshold
.. & = P(n| Az + )G | As, 6, )G | g, 0)

@eWe will see what 1s usually
adopted and why
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Trying to exclude a signal

@ In your counting experiment,
the expected signal depends on

the mass of the particle and
1ts Ccross section

@ Assume a mass value

ents

S

(-

(-

o
T T
() -

® For each mass value, assume a
cross section and build the
two distributions for your
test statistic

-Experim

N
-
-
-

Pseudo

® Your problem might be more
complicated, requiring end-to-

end simulations to build your -20 0
model numerically. But the A
principle stays the same
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Lour observation

AObS ng. "
L p-value = probability of having a result
- more extremal (i.e., more towards the
D A  tail) than the observed one
)
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Observed ClL s+1

Nobs

2

24000 D " CLs+b

£ o

< This s a p-value
"

92000

-

Q
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0 -20 0 ‘ 20

CL s HEP speclific labelling A
Good to re ember, but Nnot riggrous




Observed ClL

Nobs.

2.
54000 D " CLs
E
P .
< This s Nnot a p-value
LL] (the p-value is 1-ClL)
92000
>
D
N
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0 -20 0 20
CL s HEP speclific labelling A

Good to re ember, but Nnot r'u_:]%)rous



Observed ClL s

Nobs
-
CLs+b

..UEJ CLs=
54000 D " CLs
E
g
x This 1s not a p-value
I3 (it's @ ratio of p-values]
2000
-
D
N
an

0
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Expected CL s

Amgdian |

CLs+b
ﬂ CLs= =2CLs+b
54000 ’ CLs

0)

&
= CL»,=0.5 (by
4 definition of
X median)
o
O
2000
-
QO
0
N
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Expected "l sigma” CL s

/\median—34% /\median+34%

C Ls+b C Ls+b

N
-
-
-

CLp 0.16

-Experiments

Pseudo
N
o
(-]
(-]
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Buld the ClL s exclusion

@At fixed mass value, and
for a fixed cross
section, compute

@ observed (CLs

® expected (CLs @ median 10 —¢

® expected ClLs *1o ¢

® expected (CLs *20

2L

0.4 1.8

® Then repeat, for the same
mass value and changing
the cross section

Cross section

13



Buld the ClL s exclusion

@ Do1ng so, you associate
each mass value to a .
band/1ine of expected/ ‘
observed (CLs as a
function of the cross
section o 90% CLs

@ For a 95% CL result, you : w

would 1ntersect the
band/l11ne with a
horizontal l1ne at 0.05

CL.

Observed

in2 b Lo Ly 1y
0.4 1.8

Cross section
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Buld the ClL s exclusion

® The intercepted values 1
. O
determine the observed '
and expected limits for
that mass value -

Observed

90% CLs

1.8

Cross section




Buld the ClL s exclusion

® The intercepted values 1
. O
determine the observed '
and expected limits for
that mass value

Observed

90% CLs

1.8

Cross section

110 | 6



Buld the ClL s exclusion

® The 1ntercepted values
determine the observed
and expected limits for
that mass value

90% CLs

1.8

Cross section
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Buld the ClL s exclusion

® Repeating the procedure for every mass value, one derives
the exclusion plot that you typically see on papers

3 10—~ _ T~ T -
c | ATLAS 2011-2012 [+ 1o -
E - \s=7TeV: det=4.6-4.8 fo’ t+ 20 _
7 : \'s =8 TeV: fl_dt=5.8-5.9 ip? — Observed :
4 | N Bkg. Expected

O

o 1 B\ e

o~

LO

o)

107k CLS Limits —
110 150 200 300 400 500
m, [GeV]
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@ How to read these plots wrongly

® Sometimes observed I|ine goes
outside the band. This 1s the

Sign that Something 7.5 going (L) SII\/ISI | | | | | | | | | | |V§I=I7-|:e\l/,||_=li.-)lmI ;rb-l \:§I=8I-I-Ie\l/,|_|=l5I3Tb-l_

N 1E —=— (Observed =

on = S Expected (68%) | =
O 107 & ‘ ------- Expected (95%) |—= 05%

@A weak Timit implies that < s =
the outcome is signal-like, < 102g A A o997
so the signal can’t be ) 3: 99 99/

exc luded = 10 e/ =

. . . . 2 10-4 ;— ~\s —;

@A strong 11mit 1mplies the n = =

opposite: data fluctuated O ,o5L . _

below the expectation 1’ E . =

O 4oL —

® People read this as evidence 75 =

1 1 ; 10 == v Lo v v b b s e Ny T

ngiriégﬁa7&a5¥§t22;§e7s not 110 115 120 125 130 135 140 145
q m, (GeV)

statement. A different
procedure 1s needed 1n that
case
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Mumber of Sigmas

@ o claim a discovery, one needs E 1S " e
to exclude the possibility that a 5o
background could mimic a signal 8 =0

@ o do so, one measures (with toy 3
experiments? by hand?) the L e -

. . | e_8Tov Hovyy+H-—>ZZ .\\_70
probab771ty that a bkg—on7¥' L o R S I T T
sample gives a result as signal- - S (@Y

. = ATLA +
like as what was seen on data T Flra-scsonts. 1201208

@ IT a conventional threshold
(decided a-priori, e.g., the 5o
threshold 1n HEP) 1s passed, a
discovery 1s claimed

110 115 120 125 130 135 140 145 150
my [GeV]

=0



Backaground p-value

AObS g n
L p-value = probability of having a result
. more extremal (i.e., more towards the
D A  tail) than the observed one
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Background p-value

Nobs This is a much stronger evidence for a
. signal: result more on the tail of the

bkg-only distribution, towards signal

D H1 RN
o B dlstrbutlon o
S4000 D
£
O
Q.
>
Lt
82000
-
QO
)
0O

0 -20 0 20

A
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That's how you’ll make your discovery

1 CMS \s=7TeV,L=51fb" \s=8TeV,L=531b"

5 i _ . __,’; 1o
g 2 / o 20
L 107 - —

(_l — _|30
g - =

3 107° £ J4co

_6 - o
107 ¢ =
10° - _
60
~ | === Combined obs. “‘. —
10_10 —|====Exp.forSMH | T _
| =——s=7Tev | Tt B
10-12 _—+ ? [ = |8T|evl [ T 1T 1 II_I ? /Y:Y |+ |HI% |ZZ| - | ~I~~T~‘L—_ 70
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@l Which test statistics?

® The power of your test depends on how well separating the

chosen N quantity 1s (the Energy distribution 1n our
examp le)

@ What’s the best AN? In absence of systematic uncertainties

(aka, simple hypotheses, more about this later), we have an
answer

type I error per unit increase of power‘. Another interpretation 1s that these are the points
providing the strongest evidence in favor of H; over Hy. The statistic

109~ i

is called the likelihood ratio statistic, and the test that rejects for small values of L(X)
is called the likelihood ratio test. The Neyman-Pearson lemma shows that the likelihood
ratio test is the most powerful test of H, against H;:

Theorem 6.1 (Neyman-Pearson lemma). Let Hy and H, be simple hypotheses (in which the
data distributions are either both discrete or both continuous). For a constant ¢ > 0, suppose
that the likelihood ratio test which rejects Hy when L(x) < c¢ has significance level a. Then

for any other test of Hy with significance level at most «, its power against Hi is at most
the power of this likelihood ratio test.

=24



IReminder] Likelihood

\ee=A
k!

@ Given a statistical model (e.g., our Poisson of known A
and unknown k), we can assess probabilities. Pr 1s a
function of k

Pr(X=k) =

@ Given a class of statistical models for k, function of
unknown A, we have a li1kelihood model

@A l1kelihood 1s a function of A, given the observed k

=5



IReminder] Likelihood

30

@Let’s 1magine a histogram of a
quantity x and a curve b(x) predicting

the amount of expected background 21

. 20 F
@ for each bin centre xi we can

compute bi=b(xi) |

® the bi values will depend on a set
of parameters that describe the
curve y = b(x)

101

@® In each bin, we observe some counting
Nni

® The l1kelihood of the model 1s given
by

_b(xi‘&)b Ay
L(n]a) = Hp(ni‘bi(a))) = HP(ni\b(xi\E’)) = Hw

n:!
i l

26



Simple hypotheses

@A simple hypothesis 1s one 1n which the statistical
model 1s fully specified (no nuisance parameters)

® In our example, we do know the a values for a BKG-only
and and SIG+BKG model

® Whenever this 1s not the case, the likeli1hood ratio 1s
not the strongest test statistics

® Th1s 1s always the case, since there are always
nuisance parameters determining systematic effects

@ Th1s doesn’t mean that the LR test statistics should not
be used

=2/



(Reminder) Mon-simple hypotheses

@ In real 1i1fe, many (all?) the a parameters might be unknown but we might have some
Tinformation on them

® Theory parameters might be predicted by a calculation

® Experimental parameters (e.g., muon reconstruction efficiency) might be known from a
control sample

@ In this case, the model 1s extended multiplying the li1kelihood by the function that
constraints a around some measured value . This 1s where statistical 1nterpretations
diverge

@ Frequentist: a 1s a measured value of a and the product of L and the likelihood is still

a likeli1hood e_b(xila‘)b(x \7)”

| ; —b(xla) n,
H n.!z )H b(x‘a) H@(a‘a)

l ! l

@ Bayesian: L(a) is a prior function of a and the product of ?and the l1kelihood 1s a

e—b(xilﬁ)b(xi | )" e —D(x; |“)b(x o
[ — - T1- H@(a | ))

l : l

posterior probability function

=8



(Reminder) Removing nuisance parameters

@® One would then try to go back to a simple-hypothesis
case, removing the dependence on the nuisance parameters

o Profiled Tikelihood: Z(D|a)P@|a) - L(D| &) = max L(D|a)P(a|a)

@Marginah'zed posterior: LD|a)P(a|a) — JdafZ(D\a)@(alo‘c)

® In any case, when 1s Gaussian and narrow, the difference
becomes small: even 1n Bayesian statistics one tends to
use the maximum a-posteriori (MAP) approximation

|



Back to simple hypothesis

® When using a max-11ke approximation, one goes back to simple
hypotheses. The li1keli1hood ratio 1s then

Y(D|H) LD

H = /Z) Signal yield (and shape) fixed to specific signal under test

¥(D|\Hy) LD

H = O) Signal yield =0, i.e., BKG-only hypothesis

® The NP Lemma does not guarantees that this 1s the optimal

choilce

@It 1s also very demanding computationally

® For hypothesis testing, one needs to generate "“toy samples”
and profile the likelihood at each toy to build the test
statistics distribution

@® Th1is might be a 1000-dim minimisation to be repeated N times

30



The LHC Test Statistics

@ At the LHC, one typically uses a

different test statistics 10 errr e —
A Ef s=10,b=10,1=1
FDIp =) max, LD|u=jia)Pala) £
Z(D) max, N2 (D | u, x)P(a| a) 0N T~ o :
with® 0 < u < g 10°F N N WJ) E
@ It can be demonstrated that for 107F e ™ E
large-enough samples this test 104E Ny .
statistics assumes a specific F E
analytical shape independent of L
nuisance (Wilks’ theorem) 10°F
@ Its p-values, CLs etc can be E S o
computed analytically in a few 10'80""5'"'16"'15"'26"'25"36 35 40
seconds, w/o running any toy-MC q
minimisation 0

() It's more complicated than that when the max on p is outside the fit range.

See "Practical Statistics for the LHC" by K. Cranmer for more details
31



https://s3.cern.ch/inspire-prod-files-f/fe85dc6bd026c535cb3ebb734cb90cd0
https://s3.cern.ch/inspire-prod-files-f/fe85dc6bd026c535cb3ebb734cb90cd0

Hypothesis testing 1N practice

® You are not expected to be doing this by hand
® ROOT has specific packages (RooFit+RooStat) for this

® Experiments have software tools built on 1t that
1mp lement most of the routine statistical applications
that you need to survive:

®ATLAS PyHf

® CMS Combine

@ But 1t 1s 1mportant to have clear 1n mind what 1s going
on 1n these softwares (particularly when you have to
debug the outcome)

32


https://iris-hep.org/projects/pyhf.html
https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/

BAYESIAN VERSUS FREQUENTIST

' DON'T KNOW WY WE
STILL HAVE THIS

wELL OK THEN
TAKING ALL THESE

WAIT A MINUTE -
IS THAT YOUR

“DEBATE* EACH YEAR. BIRSED CON? CONSDERATION
HEADS!
I KNOW PRIOR
TS A BIT PASSE e AR
CONSTRUCTION!
WANT TO TOSS e T,
FOR ITi /
oA
; meoueﬂﬂsf

REVBMGS coos

Bayesian Inference




Bayesian Statistics

@ Bayes’ rule starts from the probability of two dependent events
P(ANB) = P(A|B)P(B) = P(B|A)P(A)

P(A|BP(B)  P(A|B)P(B)

P(B|A) = P(A) Y, P(A|B)P(B))

® Bayesian applications use this rule of probability to make statements on
the true values of the parameters on which a likelihood model depends on

p(D | 0)7(6)
| dop(D | 0)m(6)

@pD|0) 1s the probability model (the likelihood) of the data , function of
a parameter of interest 0

p@|D) =

@p@|D) 1s the posterior probability for 60 given the data D

@n(@) 1s the prior on 6

34
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Example: a global fit In HEP

® The CKM matrix determines how
flavor mixing happens 1n charged
current transitions V. ¢ VA
b th , {8 5

@A 3x3 complex matrix with 4
degrees of freedom B, W- W+ B, W+

o

l-’r—

@ One 1s a phase (weak phase) that _. - _
cannot be removed and determines \
CP violation

@®All flavor-mixing processes
depends on various combinations of 1—A2/2 )\ AN3(p — in)

these four parameters Ve = _)\ 1 — X\2/2 A2 + OO

3 - 2
@ One can combine them and extract AN (1 —P—“?) — A\ 1

the CKM parameter values

® One can use the redundancy (more
observables than parameters) to
test the consistency of the SM

35




® The CKM matrix 1s unitary,
which 1mposes relations
between 1ts complex values

X — .
zz’ Visz:k — Yk

® In particular, 1f one looks
at 3rd to 1st generation
transitions, all terms have
the same order 1n A

Vaud Vgp + Vea Vg + Via Vi, = 0

(0,0) (1,0)

® They 1dentify a triangle
with measurable angles
(1.e., large CP violating
effects)

36



CP conserving observables: Vus and Ves

® The ratio of the ‘é&b Y -y
semileptonic decays of the ol 1 =5
B meson give access to a ST =

combination of p,i, and ]

® The apex of the UT has to
be within a circle
centred at (0,0)

@ It’s a CP-conserving
quantity: the boundary has
to cross =0 because one
cannot establish CP
violation just with this
measurement

3/



CP conserving observables: Meson Osclullations

® Meson oscillation frequencies (also CP T
conserving) probe a different function ;
of p,i, and A i

0

@ two circles of different size, entered

0.5

at (1,0) 5

® The oscillation frequencies also depend ~ ~* * o & 1
on form factors, derived from theory =F
(latticeQCD, typically) :
G2 0.5:-
Amg = 6727”?4/ neS(z:) A*X° [(1 - p)* +7°] mp, fz,Bs, o




@ The power of a global asnalysis

® Working 1n an over constrained
global analysis, one can learn a
lot by looking at subset of the
observables

® One can predict the top mass from
B physics

@ One can establish CP violation
with CP conserving process

® ..

@ Global analyses are a powerful tool
test standard models

@ of particle physics (UT analysis,
EW precision, Higgs couplings)

@ of cosmology (ACDM) 5



P violating observables: g, B, v

@At B factories, one can measure the three angles of the UT
with different processes

® Some of these processes are tree-level (-> New Physics should
not enter). Some are loop-mediated (could have virtual
effects from NP

1=

T

1

0.5

-0.5 B




A global it

® The four unknowns are P, |A, AP, T = G.(x(A, A, p, i) | %, - )
determined using a MC- o - H Aexp.i> Oexp,

based Bayesian
application P(A, 4, p, 7 ‘xexp) =7 (xeXp‘A A, p, HIA)L(A)I(p)11(7)

= F
o i UTs ¢
® Values of (A, A, 5, i) 1 suLnTﬁ‘f%tr_la
are sampled from 1D X
flat priors 1n a range

® Experimental quantities
are computed from them

® The experimental
l1kel1hood 1s evaluated

@ The l1kelihood value 1s
used to wait the entry
when fi1lling a
h1stogram

4]



A global it

® The four unknowns are PG |A A7) = G(x(A, 1, p, i) | )
determined using a MC- ex”‘ & H P Xexp.is Oexp.

based Bayesian

application P(A, 4,p, 1 ‘xexp) — (xeXp | A, 4, p, DA TI(A)IT(p)I1(7)
> T Loy
@ Values of (A, A, p, 77) [z " \UTfit] [z i 1
are sampled from 1D g e g summerte
7C7at pr_iors _in 3 range E 20-_SM prediction E : SM prediction
2 2
® Experimental quantities & | e |
are computed from them 2 1o o :
) 10—
® The experimental _
l1kel1hood 1s evaluated 0, g _ g, S o
. . . P n
O The 77k€77l’?00d V&]UE 1S Parameter SM Prediction
used to wait the entry _ 0153 + 0.013
hen filling a = i
W 0 0.343 + 0.011

h1stogram

A =



Prior Update

@ In our case, the math 1s even simpler, since the
l1kel1hood 1s formally symmetric for probability exchange
(1.e., the exchange of the measurement and the observable)

@ First i1teration: Flat prior and Gaussian likelihood

(/lexp _ /1)2 (/Iexp T /1)2

PA) xe 22 TI(A))=e 27

® Second 1teration: use a Gaussian prior and forget about
the first measurement in the Ilikelihood

(ﬁexp _ /1)2

[I(l) xe 22

43



Efficient (MIC generation

® Sometimes sampling
from flat prior can
be 1nefficient

@¢e.g., A 1s known to
a high precision
(A =0.22534 = (0.00089)

@ 1ts determination
factories from the
rest

® So one can directly
sample from the
experimental
Gaussian

@ This 1s an example of
prior update

Example of prior update

 no prior information on counting expectation x € [0,1] — use a flat prior

x"e™

X

. ameasurement of n counts, described by a Poisson likelihood Z(n|x) = '
n!

 The posterior is a function of x P(x|n) x x"e™ «x Gamma(x|n + 1,1)

* At the next measurement one can
e use a flat prior and as a likelihood the product of the two likelihoods
* use the first posterior as an updated prior and a likelihood only the second
measurements 05

* The result is the same e 1,0,'9 —20 -
k=2.0,0=2.0 :

0.4 k=3.0,6=2.0 E

xk=le=40 - — k=5.0,0=1.0 -

Gamma(x |k, 0) = - k=9.0,0=0.5 :
(k)6 03 F k=7.5,0=1.0 E

00 - k=0.5,0=1.0 -

['(z) = J r~~le~!dt 02 F =

0 é :

0.1 [ =

0O 2 4 6 8 10 12 14 16 18 20

ava




MC efficiency: observable vs unkNnown

® Sometimes a loose prior can result 1n lex| = C.AZA[—1,S(x) + mSC)AZAH = §)) + 138 x) 1B

1nefficient sampling when the Ii1kelihood
1S narrow

® Example: ek
; l v T
£

® Experimentally well known

® But the theoretical expression depends

on parameters from Lattice QCD, which -

have broader theoretical prior \ (
F | _ (

" (

@ Solution: 1nvert the role of the
observable and the Tnput

l
@ Use the lattice QCD determination 1n A :
the Tikelihood b | RV A
K (] ¢
® Use prior update to write the prior on ( f
gk 1n the global fit as the posterior I :
{

of 1ts standalone determination
{

@ Optimizing the strategy i1s part of your
judgment call
45
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® Sometimes a loose prior can result 1n
1nefficient sampling when the Ii1kelihood
1S narrow

® Example: ek
® Experimentally well known
® But the theoretical expression depends
on parameters from Lattice QCD, which

have broader theoretical prior

@ Solution: 1nvert the role of the
observable and the Tnput

@ Use the lattice QCD determination 1n
the l1kelihood

® Use prior update to write the prior on
gk 1n the global fit as the posterior
of 1ts standalone determination

@ Optimizing the strategy i1s part of your
judgment call

46

MC efficiency: observable vs unkNnown

A | €x |
K C.A27— i, S(x,) + 1S )A224(1 = p)) + 155(x,., X))]

1]

M EXO

D

Al j 1 R
\f\&\ ) KL&K



BAYESIAN INFERENCE

OF PRIORS THAT Wk 1O

BE ACCEPTED O FAITM Y
\rs A

LUJhich Prior?




LJhich prior?

® The choice of a prior 1s a
crucial aspect of a Bayesian
analysis. There are two
classes of 1ssues

@ Model1ng knowledge: when
something 1s known about a
quantity, one needs to find
a prior that models that
knowledge

Probability

h

P, this 1s the iIssue of modeling

TH uncertainties

x = 0.5 £0.1(stat + sys) £ 0.1(zh)

X
-
Q

w

rFit

Gaussian x Gaussian convolution

N
o

15

10

Gaussian x Flat convolution

o

0.1

02 03 04 05 06 07 08 09 1

X



LJhich prior?

® The choice of a prior 1s a
crucial aspect of a Bayesian
analysis. There are two

classes of 1ssues

Probability
o
S
| I N |
.
X X

0.15.

0.10

i
0.05
@ Model1ng 1gnorance: this 1s -

where troubles start. Even | |
OIIIIIIIIIIIIIIII_IWW'AI_T—‘I_I_\T—I\TT_

e S ———

an innocent assumption on a 0 01 02 03 04 05 06 07 08 09
quantity x (e.g., a flat
prior) can become a strong
statement on some function
of x (mind the Jacobian)

219



Objective priors

® We said that a prior 1s the
modeling on a-priori knowledge

. . . t distribution, n=5
(subjective prior)

: -
= Referance postenos
Reference prior, runcated st 20
e Jefireys posterior

ooooo

® When modeling 1gnorance, 1t was
suggested to 1nstead fix the prior
by a formal rule (objective prior)

@ We are trading the i1nstability of
a “democratic” flat function with
a desired property, e.g.,
Tnvariance under specific
reparameterization

Prior versus posterior

@ Often called non-informative
priors. Misleading name, since they
carry a lot of information (they
prefer certain values over others)

50



Principle of Indifference

® The principle of 1ndifference https://en.wikipedia.org/wiki/Principle of indifference
states that 1n the absence of any

relevant evidence, agents should " on the box says the cube has a sid longth
distribute their credence (or between 3 and 5 cm.

'"degrees of belief') equally among » We don't know the actual side length, but we
all the possible outcomes under ;nr:ghsti r?]SSlumii lt(htitear':];/da|\l;aeli srsfiqgﬂly likely
consideration.  The infofnilart)ion on the label allows us to

calculate that the volume of the cube is between

@ Starting point for the first 27 and 125 cm3. We don't know the actual

writers on probability (Laplace, volume, .but we might assume that gll values are
Bernoulli . etc. ) igucar% likely and simply pick the mid-value of
* However, we have now reached the impossible
® The simplest example of non- conclusion that the cube has a side length of
informative priors 4 cm and a volume of 76 cm3

@® Obvious application 1n case of
discrete outcomes (dice, etc.)

@ Doesn’t work for continuous
variables: flat on what? =



https://en.wikipedia.org/wiki/Principle_of_indifference

@ Principle of Transformation Group

® Generalization of principle of
1ndi1fference, by E. T. Jaynes

® One should have an 1ndifferent

ChOZ)? e between equiva 7?” t Reparameterization invariance: consider two possible
pro ems (1.e. 4 equivalent parameterisations @ and ¢ of a given model. Assume that
quantities of interest) rather one is a smooth function of the other.

than between different outcomes
A reparameterization invariant prior is a prior that

@® In practice, given two quantities transforms under the usual rule of the change-of-variables

x and y, one looks for a prior f theorem
such that solving for f(x) or 0
f(y) gives the same result po(h) = py(6) %

® Reduces to principle of
1ndifference for a discrete
problem (which has to be
permutation invariant)

® The prior to choose depends on what

one 1s 1gnorant about
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@ Principle of Transformation Group

Translation invariance: consider a likelihood of x of the form

® Generalization of principle of

indifference, by E. T. Jaynes Ll ) = flx — )

® One _5h0U7d have an _-’.”d-’. fferent where u is a parameter. Consider a transformation
choice between equivalent
problems (1.e., equivalent x> x+hb=x%x
quantities of 1nterest) rather U= u+b=i

than between different outcomes
The likelihood is invariant under this transformation
@® In practice, given two quantities
x and y, one looks for a prior f P31y — dx
such that solving for f(x) or (Xlp) = di
f(y) gives the same result

Jx—p) =((x+b) = (u+ b)) = ZL(x| )

Solving for u or for ji give two equivalent problems. One would

@ Reduces to principle of then look for a prior IT such that
1ndifference for a discrete

problem (which has to be

- _ |9
permutation invariant) [I(p + b) =1I() = |—

r [I(u) = 1(u) Vb
1

® The prior to choose depends on what

one is ignorant about which holds for a constant 11(x)
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@ Principle of Transfaormation Group

_ _ _ _ Scale invariance: a parameter o is a scale parameter when the
@ Generalization of principle of likelihood has the form
1ndifference, by E. T. Jaynes f(x/o)
Z(x|o) =
o
® One should have an 1ndifferent Consider a translation
choice between equivalent X—=ax=2X
problems (1.e., equivalent c— a6 =06
quantities of 1nterest) rather
than between different outcomes The likelihood is invariant under the rescaling of the parameter
In practice, given two quantities - dx J(x/o) S A
@ p ’ g q - QCZ(X‘G)= — OCZ(X‘G)z =§Z(X‘G)
x and y, one looks for a prior f dx ao
such that solving for f(x) or
f(y) gives the same result Solving the problem for ¢ or for 6 should be equivalent. We
then look for a function such that
® Reduces to principle of
indifference for a discrete ) do 1
: II(ao) = 11(0) = | — | I1(6) = —1l(o
problem (which has to be (a0) (0) dé (0) a (0)
permutation invariant)
1
: hich holds for I1 —
® The prior to choose depends on what which holds for I1(c) o G
one 1S 1gnorant about Notice that the normalization factors will be different (because
=>4 |each prior will be normalized to 1 in its definition domain)




Back to the box problem

We are looking for a function I1(x) such that

dL" B
(L) = (L") = nL"~TI(L")
dL
A function of the kind II(L") = L—Z would provide a solution to this equation. For instance for n=3 we obtain
ﬁ — 3 L2§
L L3

K, can be fixed normalizing the prior for L € [3,5]

~5

1 JL g (5)
— — T O —
), L 1108 3

1
which implies 1I(L) = and II(V) =
log(5/3)L 31og(5/3)V

One can now verify that the two priors would result in the same result, when solving the problem for L or L. For instance

4
P(L < 4) = [ dL  log(4/3)

64
dVv 31log(4/3 log(4/3
5 Llog(5/3)  log(5/3)

-, 3V1og(5/3) ~ 3log(5/3)  log(5/3)

=




SumMmmary

® We described LHC-style hypothesis testing

® We discussed Bayesian 1nference with a physics example
(the extraction of the CKM matrix from flavor
measurements)

® We discussed the choice of the prior
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