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Hypothesis Testing



๏You could exclude a signal 
hypothesis, given the 
observation 

๏H0: BKG-only  

๏H1: SIG+BKG 

๏limit setting:check if the 
data exclude H1 in favour of 
H0 

๏Establishing a signal: given 
the observation, reject H0 in 
favour of H1  with some level 
of confidence  

๏in HEP, the famous “5σ”

Hypothesis Testing
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๏The test statistics is any quantity 
with some discriminating power between 
H0 and H1  

๏The larger the separation between the 
two distributions, the better the 
test 

๏You need a model of your test 
statistics  

๏An analytical description 

๏A simulation-based template (e.g., a  
histogram) 

๏There will be nuisance parameters 
morphing this model in various ways 

๏The model might depend on some 
parameter of interest θ (e.g., 
resonance mass in a resonance search)

Λ(D |θ, α)

ν

The test statistics
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   Λ          



๏In your counting experiment 
you could use 

๏The distribution of the 
recorded energy, described 
with multiple-bin histogram 
(product of Poisson) 

๏The likelihood for a 
Poisson count above 
threshold 

๏… 

๏We will see what is usually 
adopted and why

The test statistics
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ℒ = P(n |λB + λS)G(λ̄S |λS, σλS
)G(λ̄B |λB, σλB

)



   Λ          

๏In your counting experiment, 
the expected signal depends on 
the mass of the particle and 
its cross section 

๏Assume a mass value 

๏For each mass value, assume a 
cross section and build the 
two distributions for your 
test statistic  

๏Your problem might be more 
complicated, requiring end-to-
end simulations to build your 
model numerically. But the 
principle stays the same

Trying to exclude a signal
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Your observation
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Λ

H1

H0

-2ln(Λobs)

   Λ          

   Λobs          
p-value = probability of having a result 
more extremal (i.e., more towards the 

tail) than the observed one



Observed CLs+b
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Λ

H1

H0

-2ln(Λobs)

CLs+b

   Λ          

   Λobs          

CL is HEP specific labelling 
Good to re ember, but not rigorous 

This is a p-value 



Observed CLb
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Λ

H1

H0

-2ln(Λobs)

CLb

   Λ          

   Λobs          

This is not a p-value 
(the p-value is 1-CLb)

CL is HEP specific labelling 
Good to re ember, but not rigorous 



Observed CLs
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Λ

H1

H0

-2ln(Λobs)

CLs+b

CLb
CLs=

   Λ          

   Λobs          

This is not a p-value 
(it’s a ratio of p-values)



Expected CLs
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Λ

H1

H0

-2ln(Λmedian)

CLs+b

CLb
CLs=

CLb=0.5 (by 
definition of 
median)

=2CLs+b

   Λ          

   Λmedian          



Λ

H1

H0

CLs+b

CLb
CLs=

CLs+b
=

0.16

16
%

34
%

34
%

16
%

Expected “1 sigma” CLs
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   Λ          

Λmedian+34%Λmedian-34%



๏At fixed mass value, and 
for a fixed cross 
section, compute 

๏observed CLs 

๏expected CLs @ median 

๏expected CLs ±1σ 

๏expected CLs ±2σ 

๏Then repeat, for the same 
mass value and changing 
the cross section

Build the CLs exclusion
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Cross section

0.4 1.8



Cross section

Observed

0.4 1.8

๏Doing so, you associate 
each mass value to a 
band/line of expected/
observed CLs as a 
function of the cross 
section 

๏For a 95% CL result, you 
would intersect the 
band/line with a 
horizontal line at 0.05

Build the CLs exclusion
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95% CLs

90% CLs



Cross section

Observed

0.4 1.8

๏The intercepted values 
determine the observed 
and expected limits for 
that mass value

Build the CLs exclusion
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95% CLs

90% CLs



Build the CLs exclusion
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Cross section

Observed

0.4 1.8

95% CLs

90% CLs

๏The intercepted values 
determine the observed 
and expected limits for 
that mass value



Build the CLs exclusion
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Cross section

Observed

0.4 1.8

95% CLs

90% CLs

๏The intercepted values 
determine the observed 
and expected limits for 
that mass value



๏Repeating the procedure for every mass value, one derives 
the exclusion plot that you typically see on papers

Build the CLs exclusion
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๏Sometimes observed line goes 
outside the band. This is the 
sign that something is going 
on 

๏A weak limit implies that 
the outcome is signal-like, 
so the signal can’t be 
excluded 

๏A strong limit implies the 
opposite: data fluctuated 
below the expectation 

๏People read this as evidence 
of a signal. But this is not 
a correct quantitative 
statement. A different 
procedure is needed in that 
case

How to read these plots wrongly
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๏To claim a discovery, one needs 
to exclude the possibility that 
background could mimic a signal 

๏To do so, one measures (with toy 
experiments? by hand?) the 
probability that a bkg-only 
sample gives a result as signal-
like as what was seen on data 

๏If a conventional threshold 
(decided a-priori, e.g., the 5σ 
threshold in HEP) is passed, a 
discovery is claimed 

Number of Sigmas
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Background p-value
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Λ

H1

H0

-2ln(Λobs)

   Λ          

   Λobs          
p-value = probability of having a result 
more extremal (i.e., more towards the 

tail) than the observed one



Λ

H1

H0

-2ln(Λobs)

Background p-value
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   Λ          

   Λobs          This is a much stronger evidence for a 
signal: result more on the tail of the 
bkg-only distribution, towards signal 

distribution



That’s how you’ll make your discovery
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๏The power of your test depends on how well separating the 
chosen Λ quantity is (the Energy distribution in our 
example) 

๏What’s the best Λ? In absence of systematic uncertainties 
(aka, simple hypotheses, more about this later), we have an 
answer

Which test statistics?
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๏Given a statistical model (e.g., our Poisson of known λ 
and unknown k), we can assess probabilities. Pr is a 
function of k 

๏Given a class of statistical models for k, function of 
unknown λ, we have a likelihood model 

๏A likelihood is a function of λ, given the observed k

[Reminder] Likelihood
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๏Let’s imagine a histogram of a 
quantity x and a curve b(x) predicting 
the amount of expected background 

๏for each bin centre xi we can 
compute bi=b(xi) 

๏the bi values will depend on a set 
of parameters that describe the 
curve y = b(x) 

๏In each bin, we observe some counting 
ni 

๏The likelihood of the model is given 
by

[Reminder] Likelihood
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ℒ( ⃗n | ⃗α ) = ∏
i

P(ni |bi( ⃗α )) = ∏
i

P(ni |b(xi | ⃗α )) = ∏
i

e−b(xi| ⃗α)b(xi | ⃗α )ni

ni!



๏A simple hypothesis is one in which the statistical 
model is fully specified (no nuisance parameters) 

๏In our example, we do know the α values for a BKG-only 
and and SIG+BKG model 

๏Whenever this is not the case, the likelihood ratio is 
not the strongest test statistics 

๏This is always the case, since there are always 
nuisance parameters determining systematic effects 

๏This doesn’t mean that the LR test statistics should not 
be used

Simple hypotheses
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๏In real life, many (all?) the a parameters might be unknown but we might have some 
information on them  

๏Theory parameters might be predicted by a calculation 

๏Experimental parameters (e.g., muon reconstruction efficiency) might be known from a 
control sample 

๏In this case, the model is extended multiplying the likelihood by the function that 
constraints α around some measured value ᾶ. This is where statistical interpretations 
diverge 

๏Frequentist: ᾱ is a measured value of α and the product of P and the likelihood is still 

a likelihood 

๏Bayesian: P(ᾱ) is a prior function of α and the product of P and the likelihood is a 

posterior probability function

(Reminder) Non-simple hypotheses
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∏
i

e−b(xi| ⃗α)b(xi | ⃗α )ni

ni!
→ ∏

i

e−b(xi| ⃗α)b(xi | ⃗α )ni

ni! ∏
j

𝒫(ᾱj |αj)

∏
i

e−b(xi| ⃗α)b(xi | ⃗α )ni

ni!
→ ∏

i

e−b(xi| ⃗α)b(xi | ⃗α )ni

ni! ∏
j

𝒫(αj | ᾱj)



๏One would then try to go back to a simple-hypothesis 
case, removing the dependence on the nuisance parameters 

๏Profiled likelihood:  

๏Marginalized posterior:  

๏In any case, when is Gaussian and narrow, the difference 
becomes small: even in Bayesian statistics one tends to 
use the maximum a-posteriori (MAP) approximation 

ℒ(D |α)𝒫(ᾱ |α) → ℒ̂(D | α̂) = max
α

ℒ(D |α)𝒫(ᾱ |α)

ℒ(D |α)𝒫(ᾱ |α) → ∫ dαℒ(D |α)𝒫(α | ᾱ)

(Reminder) Removing nuisance parameters
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๏When using a max-like approximation, one goes back to simple 
hypotheses. The likelihood ratio is then  

๏The NP Lemma does not guarantees that this is the optimal 
choice 

๏It is also very demanding computationally  

๏For hypothesis testing, one needs to generate “toy samples” 
and profile the likelihood at each toy to build the test 
statistics distribution 

๏This might be a 1000-dim minimisation to be repeated N times

Back to simple hypothesis
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ℒ̂(D |H1)
ℒ̂(D |H0)

=
ℒ̂(D |μ = μ̄)
ℒ̂(D |μ = 0)

Signal yield (and shape) fixed to specific signal under test 

Signal yield =0, i.e., BKG-only hypothesis



๏At the LHC, one typically uses a 
different test statistics 

๏It can be demonstrated that for 
large-enough samples this test 
statistics assumes a specific 
analytical shape independent of 
nuisance (Wilks’ theorem) 

๏Its p-values, CLs etc can be 
computed analytically in a few 
seconds, w/o running any toy-MC 
minimisation

The LHC Test Statistics
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̂ℒ̂(D |μ = μ̄)
ℒ̂(D)

=
maxα ℒ(D |μ = μ̄, α)𝒫(ᾱ |α)

maxα,μ ℒ(D |μ, α)𝒫(ᾱ |α)
 with(*)  0 ≤ μ ≤ μ̄

(*) It's more complicated than that when the max on μ is outside the fit range. 
See "Practical Statistics for the LHC" by K. Cranmer for more details

https://s3.cern.ch/inspire-prod-files-f/fe85dc6bd026c535cb3ebb734cb90cd0
https://s3.cern.ch/inspire-prod-files-f/fe85dc6bd026c535cb3ebb734cb90cd0


๏You are not expected to be doing this by hand 

๏ROOT has specific packages (RooFit+RooStat) for this  

๏Experiments have software tools built on it that 
implement most of the routine statistical applications 
that you need to survive: 

๏ATLAS PyHf  

๏CMS Combine 

๏But it is important to have clear in mind what is going 
on in these softwares (particularly when you have to 
debug the outcome)

Hypothesis testing in practice
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https://iris-hep.org/projects/pyhf.html
https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/


Bayesian Inference



๏Bayes’ rule starts from the probability of two dependent events 

๏Bayesian applications use this rule of probability to make statements on 
the true values of the parameters on which a likelihood model depends on 

๏  is the probability model (the likelihood) of the data , function of 
a parameter of interest  

๏  is the posterior probability for  given the data D 

๏  is the prior on 

p(D |θ)
θ

p(θ |D) θ

π(θ) θ

Bayesian Statistics
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p(θ |D) =
p(D |θ)π(θ)

∫ dθp(D |θ)π(θ)

P(A ∩ B) = P(A |B)P(B) = P(B |A)P(A)

P(B |A) =
P(A |B)P(B)

P(A)
=

P(A |B)P(B)
∑B P(A |B)P(B))



Example: a global fit in HEP
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๏The CKM matrix determines how 
flavor mixing happens in charged 
current transitions 

๏A 3x3 complex matrix with 4 
degrees of freedom 

๏One is a phase (weak phase) that 
cannot be removed and determines 
CP violation 

๏All flavor-mixing processes 
depends on various combinations of 
these four parameters 

๏One can combine them and extract 
the  CKM parameter values 

๏One can use the redundancy (more 
observables than parameters) to 
test the consistency of the SM



๏The CKM matrix is unitary, 
which imposes relations 
between its complex values 

๏In particular, if one looks 
at 3rd to 1st generation 
transitions, all terms have 
the same order in λ 

๏They identify a triangle 
with measurable angles 
(i.e., large CP violating 
effects)

The unitarity Triangle
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๏The ratio of the 
semileptonic decays of the 
B meson give access to a 
combination of , , and  

๏The apex of the UT has to 
be within a circle 
centred at (0,0) 

๏It’s a CP-conserving 
quantity: the boundary has 
to cross  because one 
cannot establish CP 
violation just with this 
measurement 

ρ̄ η̄ λ

η̄ = 0

CP conserving observables: Vub and Vcb
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๏Meson oscillation frequencies (also CP 
conserving) probe a different function 
of , , and  

๏two circles of different size, entered 
at (1,0) 

๏The oscillation frequencies also depend 
on form factors, derived from theory 
(latticeQCD, typically)

ρ̄ η̄ λ

CP conserving observables: Meson Oscillations
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๏Working in an over constrained 
global analysis, one can learn a 
lot by looking at subset of the 
observables 

๏One can predict the top mass from 
B physics 

๏One can establish CP violation 
with CP conserving process 

๏.. 

๏Global analyses are a powerful tool 
test standard models 

๏of particle physics (UT analysis, 
EW precision, Higgs couplings) 

๏of cosmology (ΛCDM)

The power of a global analysis
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CP violating observables: α, β, γ
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๏At B factories, one can measure the three angles of the UT 
with different processes  

๏Some of these processes are tree-level (-> New Physics should 
not enter). Some are loop-mediated (could have virtual 
effects from NP



๏The four unknowns are 
determined using a MC-
based Bayesian 
application 

๏Values of (A, λ, , ) 
are sampled from 1D 
flat priors in a range 

๏Experimental quantities 
are computed from them 

๏The experimental 
likelihood is evaluated 

๏The likelihood value is 
used to wait the entry 
when filling a  
histogram

ρ̄ η̄

A global fit
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ℒ( ⃗xexp |A, λ, ρ̄, η̄) = ∏
i

Gi(xi(A, λ, ρ̄, η̄) |xexp,i, σexp,i)

P(A, λ, ρ̄, η̄ | ⃗xexp) = ℒ( ⃗xexp |A, λ, ρ̄, η̄)Π(A)Π(λ)Π(ρ̄)Π(η̄)



๏The four unknowns are 
determined using a MC-
based Bayesian 
application 

๏Values of (A, λ, , ) 
are sampled from 1D 
flat priors in a range 

๏Experimental quantities 
are computed from them 

๏The experimental 
likelihood is evaluated 

๏The likelihood value is 
used to wait the entry 
when filling a  
histogram

ρ̄ η̄

A global fit
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ℒ( ⃗xexp |A, λ, ρ̄, η̄) = ∏
i

Gi(xi(A, λ, ρ̄, η̄) |xexp,i, σexp,i)

P(A, λ, ρ̄, η̄ | ⃗xexp) = ℒ( ⃗xexp |A, λ, ρ̄, η̄)Π(A)Π(λ)Π(ρ̄)Π(η̄)



๏In our case, the math is even simpler, since the 
likelihood is formally symmetric for probability exchange 
(i.e., the exchange of the measurement and the observable) 

๏First iteration: Flat prior and Gaussian likelihood 

๏Second iteration: use a Gaussian prior and forget about 
the first measurement in the likelihood

Prior Update
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P(λ) ∝ e−
(λexp − λ)2

2σ2 Π(λ) = e−
(λexp − λ)2

2σ2

Π(λ) ∝ e−
(λexp − λ)2

2σ2



Example of prior update 
• no prior information on counting  expectation use a flat prior


• a measurement of n counts, described by a Poisson likelihood  


• The posterior is a function of x   


• At the next measurement one can

• use a flat prior and as a likelihood the product of the two likelihoods

• use the first posterior as an updated prior and a likelihood only the second 

measurements

• The result is the same

x ∈ [0,1] →

ℒ(n |x) =
xne−x

n!

P(x |n) ∝ xne−x ∝ Gamma(x |n + 1,1)

๏Sometimes sampling 
from flat prior can 
be inefficient 

๏e.g., λ is known to 
a high precision 
( ) 

๏its determination 
factories from the 
rest 

๏So one can directly 
sample from the 
experimental 
Gaussian 

๏This is an example of 
prior update

λ = 0.22534 ± 0.00089

Efficient MC generation
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Gamma(x |k, θ) =
xk−1e−x/θ

Γ(k)θk

Γ(z) = ∫
∞

0
tz−1e−tdt



๏Sometimes a loose prior can result in 
inefficient sampling when the likelihood 
is narrow 

๏Example: εK 

๏Experimentally well known 

๏But the theoretical expression depends 
on parameters from Lattice QCD, which 
have broader theoretical prior 

๏Solution: invert the role of the 
observable and the input 

๏Use the lattice QCD determination in 
the likelihood 

๏Use prior update to write the prior on 
εK in the global fit as the posterior 
of its standalone determination 

๏Optimizing the strategy is part of your 
judgment call

MC efficiency: observable vs unknown 
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|ϵK | = CϵA2λ6η̄[−η1S(xc) + η2S(xt)(A2λ4(1 − ρ̄)) + η3S(xc, xt)]B̂K



๏Sometimes a loose prior can result in 
inefficient sampling when the likelihood 
is narrow 

๏Example: εK 

๏Experimentally well known 

๏But the theoretical expression depends 
on parameters from Lattice QCD, which 
have broader theoretical prior 

๏Solution: invert the role of the 
observable and the input 

๏Use the lattice QCD determination in 
the likelihood 

๏Use prior update to write the prior on 
εK in the global fit as the posterior 
of its standalone determination 

๏Optimizing the strategy is part of your 
judgment call

MC efficiency: observable vs unknown 
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B̂K =
|ϵK |

CϵA2λ6η̄[−η1S(xc) + η2S(xt)(A2λ4(1 − ρ̄)) + η3S(xc, xt)]



Which Prior?



๏The choice of a prior is a 
crucial aspect of a Bayesian 
analysis. There are two 
classes of issues 

๏Modeling knowledge: when 
something is known about a 
quantity, one needs to find 
a prior that models that 
knowledge 

๏Modeling ignorance: this is 
where troubles start. Even 
an innocent assumption on a 
quantity x (e.g., a flat 
prior) can become a strong 
statement on some function 
of x (mind the Jacobian)

Which prior?

48

x = 0.5 ± 0.1(stat + sys) ± 0.1(th)

In HEP, this is the issue of modeling 
TH uncertainties



๏The choice of a prior is a 
crucial aspect of a Bayesian 
analysis. There are two 
classes of issues 

๏Modeling knowledge: when 
something is known about a 
quantity, one needs to find 
a prior that models that 
knowledge 

๏Modeling ignorance: this is 
where troubles start. Even 
an innocent assumption on a 
quantity x (e.g., a flat 
prior) can become a strong 
statement on some function 
of x (mind the Jacobian)

Which prior?

49



๏We said that a prior is the 
modeling on a-priori knowledge 
(subjective prior) 

๏When modeling ignorance, it was 
suggested to instead fix the prior 
by a formal rule (objective prior) 

๏We are trading the instability of 
a “democratic” flat function with 
a desired property, e.g., 
invariance under specific 
reparameterization 

๏Often called non-informative 
priors. Misleading name, since they 
carry a lot of information (they 
prefer certain values over others)

Objective priors
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๏The principle of indifference 
states that in the absence of any 
relevant evidence, agents should 
distribute their credence (or 
'degrees of belief') equally among 
all the possible outcomes under 
consideration. 

๏Starting point for the first 
writers on probability (Laplace, 
Bernoulli, etc.) 

๏The simplest example of non-
informative priors 

๏Obvious application in case of 
discrete outcomes (dice, etc.) 

๏Doesn’t work for continuous 
variables: flat on what?

Principle of Indifference
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• Suppose there is a cube hidden in a box. A label 
on the box says the cube has a side length 
between 3 and 5 cm.


• We don't know the actual side length, but we 
might assume that all values are equally likely 
and simply pick the mid-value of 4 cm.


• The information on the label allows us to 
calculate that the volume of the cube is between 
27 and 125 cm3. We don't know the actual 
volume, but we might assume that all values are 
equally likely and simply pick the mid-value of 
76 cm3.


• However, we have now reached the impossible 
conclusion that the cube has a side length of 
4 cm and a volume of 76 cm3

https://en.wikipedia.org/wiki/Principle_of_indifference

https://en.wikipedia.org/wiki/Principle_of_indifference


๏Generalization of principle of 
indifference, by E. T. Jaynes 

๏One should have an indifferent 
choice between equivalent 
problems (i.e., equivalent 
quantities of interest) rather 
than between different outcomes 

๏In practice, given two quantities 
x and y, one looks for a prior f 
such that solving for f(x) or 
f(y) gives the same result 

๏Reduces to principle of 
indifference for a discrete 
problem (which has to be 
permutation invariant) 

๏The prior to choose depends on what 
one is ignorant about

Principle of Transformation  Group

52

Reparameterization invariance: consider two possible 
parameterisations  and  of a given model. Assume that 
one is a smooth function of the other.  

A reparameterization invariant prior is a prior that 
transforms under the usual rule of the change-of-variables 
theorem 


θ ϕ

pϕ(ϕ) = pθ(θ)
dθ
dϕ



๏Generalization of principle of 
indifference, by E. T. Jaynes 

๏One should have an indifferent 
choice between equivalent 
problems (i.e., equivalent 
quantities of interest) rather 
than between different outcomes 

๏In practice, given two quantities 
x and y, one looks for a prior f 
such that solving for f(x) or 
f(y) gives the same result 

๏Reduces to principle of 
indifference for a discrete 
problem (which has to be 
permutation invariant) 

๏The prior to choose depends on what 
one is ignorant about

Principle of Transformation  Group
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Translation invariance: consider a likelihood of  of the form





where  is a parameter. Consider a transformation

 







The likelihood is invariant under this transformation





Solving for  or for  give two equivalent problems. One would 
then look for a prior  such that





which holds for a constant 


x

ℒ(x |μ) = f(x − μ)

μ

x → x + b = ̂x
μ → μ + b = ̂μ

ℒ( ̂x |μ) =
dx
d ̂x

f(x − μ) = f((x + b) − (μ + b)) = ℒ( ̂x | ̂μ)

μ ̂μ
Π

Π(μ + b) = Π( ̂μ) =
dμ
d ̂μ

Π(μ) = Π(μ) ∀b

Π(μ)



๏Generalization of principle of 
indifference, by E. T. Jaynes 

๏One should have an indifferent 
choice between equivalent 
problems (i.e., equivalent 
quantities of interest) rather 
than between different outcomes 

๏In practice, given two quantities 
x and y, one looks for a prior f 
such that solving for f(x) or 
f(y) gives the same result 

๏Reduces to principle of 
indifference for a discrete 
problem (which has to be 
permutation invariant) 

๏The prior to choose depends on what 
one is ignorant about

Principle of Transformation  Group
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Scale invariance: a parameter  is a scale parameter when the 
likelihood has the form 





Consider a translation 






The likelihood is invariant under the rescaling of the parameter





Solving the problem for  or for  should be equivalent. We 
then look for a function such that





which holds for 


Notice that the normalization factors will be different (because 
each prior will be normalized to 1 in its definition domain)

σ

ℒ(x |σ) =
f(x/σ)

σ

x → ax = ̂x
σ → aσ = ̂σ

ℒ( ̂x |σ) =
dx
d ̂x

ℒ(x |σ) =
f(x/σ)

aσ
= ℒ( ̂x | ̂σ)

σ ̂σ

Π(aσ) = Π( ̂σ) =
dσ
d ̂σ

Π(σ) =
1
a

Π(σ)

Π(σ) ∝
1
σ



Back to the box problem
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We are looking for a function  such that 





A function of the kind  would provide a solution to this equation. For instance for n=3 we obtain





 can be fixed normalizing the prior for 





which implies         and     


One can now verify that the two priors would result in the same result, when solving the problem for  or . For instance


Π(x)

Π(L) =
dLn

dL
Π(Ln) = nLn−1Π(Ln)

Π(Ln) =
Kn

Ln

K1

L
= 3L2 K3

L3

K1 L ∈ [3,5]

1 = ∫
5

3
dL

K1

L
= K1 log(

5
3

)

Π(L) =
1

log(5/3)L
Π(V ) =

1
3 log(5/3)V

L L3

P(L < 4) = ∫
4

3

dL
L log(5/3)

=
log(4/3)
log(5/3)

P(V < 64) = ∫
64

27

dV
3V log(5/3)

=
3 log(4/3)
3 log(5/3)

=
log(4/3)
log(5/3)



๏We described LHC-style hypothesis testing 

๏We discussed Bayesian inference with a physics example 
(the extraction of the CKM matrix from flavor 
measurements) 

๏We discussed the choice of the prior

Summary
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