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LJhich prior?

® The choice of a prior 1s a
crucial aspect of a Bayesian
analysis. There are two

classes of 1ssues
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an innocent assumption on a 0 01 02 03 04 05 06 07 08 09
quantity x (e.g., a flat
prior) can become a strong
statement on some function
of x (mind the Jacobian)




Objective priors

® We said that a prior 1s the
modeling on a-priori knowledge

. . . t distribution, n=5
(subjective prior)

: -
= Referance postenos
Reference prior, runcated st 20
e Jefireys posterior

ooooo

® When modeling 1gnorance, 1t was
suggested to 1nstead fix the prior
by a formal rule (objective prior)

@ We are trading the i1nstability of
a “democratic” flat function with
a desired property, e.g.,
Tnvariance under specific
reparameterization

Prior versus posterior

@ Often called non-informative
priors. Misleading name, since they
carry a lot of information (they
prefer certain values over others)
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Principle of Indifference

® The principle of 1ndifference https://en.wikipedia.org/wiki/Principle of indifference
states that 1n the absence of any

relevant evidence, agents should " on the box says the cube has a sid longth
distribute their credence (or between 3 and 5 cm.

'"degrees of belief') equally among » We don't know the actual side length, but we
all the possible outcomes under ;nr:ghsti r?]SSlumii lt(htitear':];/da|\l;aeli srsfiqgﬂly likely
consideration.  The infofnilart)ion on the label allows us to

calculate that the volume of the cube is between

@ Starting point for the first 27 and 125 cm3. We don't know the actual

writers on probability (Laplace, volume, .but we might assume that gll values are
Bernoulli . etc. ) igucar% likely and simply pick the mid-value of
* However, we have now reached the impossible
® The simplest example of non- conclusion that the cube has a side length of
informative priors 4 cm and a volume of 76 cm3

@® Obvious application 1n case of
discrete outcomes (dice, etc.)

@ Doesn’t work for continuous
variables: flat on what? =



https://en.wikipedia.org/wiki/Principle_of_indifference

@ Principle of Transformation Group

® Generalization of principle of
1ndi1fference, by E. T. Jaynes

® One should have an 1ndifferent

ChOZ)? e between equiva 7?” t Reparameterization invariance: consider two possible
pro ems (1.e. 4 equivalent parameterisations @ and ¢ of a given model. Assume that
quantities of interest) rather one is a smooth function of the other.

than between different outcomes
A reparameterization invariant prior is a prior that

@® In practice, given two quantities transforms under the usual rule of the change-of-variables

x and y, one looks for a prior f theorem
such that solving for f(x) or 0
f(y) gives the same result po(h) = py(6) %

® Reduces to principle of
1ndifference for a discrete
problem (which has to be
permutation invariant)

® The prior to choose depends on what
one 1s 1gnorant about




Jeffrey’'s prior

® The definition of Jeffrey’s
prior starts from Fisher
1nformation I1(0)

®1(0) measures the information
that a random value carries
about a parameter

® The Jeffrey’s prior 1s (up
to a normalization factor)
the sqgrt of the determinant
of the Fisher 1nformation
matrix

p(0) \/ det I(6)

Score: the partial derivative of the log Likelihood wrt the

parameters

0
glogff (x| 60)

The score has 0 expectation value

0
E [% log Z(x| 6’)] =

i 0
dxZ (x| (9)% log L (x|0) =

Y

2 P(x|0

deff (x| 0) o

ZL(x|6)

0 0
00 00

One can then write the score’s variance as

i p 27 P 2
[(0)=F _<£logff(x|6’)> | = [dfo(le)(EI()ng(le))




Jeffrey’'s prior

® (you can convince yourself
that) 1) transformation
rules guarantee the desired
1nvariance under
reparameterization

@ Jeffrey’s prior coincides
with the priors satisfying
the principle of
transformation group

@ But 1ts definition 1s
formally tight to
1nformation theory and 1t
offers the opportunity to
further generalisations

Mean of a Gaussian: consider a Gaussian likelihood with fixed o

(x — ﬂ)z
262

€

G(x|pu,o0) =
2o

d 2
(W) =E [(—logG(xw,a)> ] =FE (
dy

1
deG(x | 1, 0)(x = )

c4

d (x—p)?
du 202

)

So that p(u) < 1/I() = constant

E[(x — )] deG(x |1, 0)(x — ) = 2p — 1)!o?




Jeffrey’'s prior

® (you can convince yourself
that) 1) transformation
rules guarantee the desired
1nvariance under
reparameterization

@ Jeffrey’s prior coincides
with the priors satisfying
the principle of
transformation group

@ But 1ts definition 1s
formally tight to
1nformation theory and 1t
offers the opportunity to
further generalisations

RMS of a Gaussian: consider a Gaussian likelihood with fixed u

(x — u)?

G(x|u,0) = e 27

d 2
[(c)=F [(d—log G(xLu,a))

O

s [(x—ﬂ)4 d
4 do

1 /d \° 1
0=2] = 2 (Ea_z) E [(x — /4)4] = —o*3!

So that p(0) x +/1(0) = l
o

E[(x — )] deG(x |1, 0)(x — ) = 2p — 1)!o?




INnformation and Entropy

® In Information theory, the Kullback-Leibler divergence
measures the relative entropy between two functions

p(X)] _ J T e P
o) PR R

Dy (p(x),q(x)) = E [10g
@ It’s not a distance between two functions

Dy (p(x), g(x)) # Dg;(qg(x), p(x))

@ But 1t can be generalized to the smooth and symmetric
Jensen-Shannon divergence (sometimes used 1n ML HEP
l1terature)

1
Dy, p(x), g(x)| = 5 [DKL (p(x), P) er g() ) + Dy, ( a(0). p(x) er q(x) )]
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INnformation and Entropy

® Consider a family of probability density functions,
characterized by different values of some parameter 0

@ Compute the KL divergence between two of these pdfs

fx]6,)
f(x|6,)

@ For small variation, i1.e., for small differences between 0,
and 6,, one can expand 6, around 6,

Dy (01, 65) = Dyy[f(x6,). fx | 02)] = de fx1log

@ It can be shown that the second therm of the expansion 1S
the Fisher 1nformation

A D(6,¢') __/f( 0) 7 (f(z;6)) ] de=[Z(0)]i,
Tt R M T b ey B
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@l Jayne’'s Maximum Entropy Principle

® The principle of maximum entropy states that the probability
distribution which best represents the current state of
knowledge about a system 1s the one with largest entropy

H{II) = — JH(Q)log 11(6)d6

® Based on this principle, one can build a prescription to
choose a prior 1n a Bayesian application

@ Notice that maximizing H(Il) corresponds to minimising the KL
diverge between II and a flat distribution

® In this respect, the MEP i1s a generalization of the
1ndifferent principle, based on information theory

12



Reference priors

® The KL divergence can be used as a metric to define a set of priors
(reference priors) which generalise Jeffrey’s priors

@ Given a likelihood &, one looks for the prior II that maximises the
expected distance between the prior and the posterior (as a way to
minimise the role of the prior 1n the i1nference)

® The KL divergence 1s used as a metric for the distance

® The maximisation has to be done across all possible experiment
outcomes, since the prior has to be chosen regardless of the
experiment result

10,1 = [ p(t) [ pl61) 1og ((99‘§)dedt = [ [»0 t)log - p())ded
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Bayesian Estimataor

@ Once the posterior 1s derived, all f0/x)
the 1nformation on the parameter
of 1nterest x 1s there

® We can then use 1t to make
estimates on 1t

@ Maximum A Posterior (MAP)
estimation: estimate the value

of x using the max of the % 0
posterior -
® Similar to max-1ikelihood N _ e
estimator in frequentists O™ = argmax H p(x|0)
statistics e = 00

@ In the 11imit of large
statistics, l1keli1hood becomes
narrow, prior less 1mportant,
and the two estimators converge Prior

15




Credible Intervals

® By 1ntegrating the posterior
one can define a credible
interval

—- 68.2% Credible Interval

@® Not uniquely defined

@Can 'integ[‘ate around the == - 95.4% Credible Interval
median, the MAP estimator,
etc

2.0
2.0

@ Different strategies adapt
to different distribution

1.5
1.5

01 x)
(0 1 x)

1.0
1.0

0.5
0.5

@e.g., don’t use the
median for bur-modal

0.0
0.0

d -i S t ' -i b U t -i ons 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6
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MAP Hypothesis Testing

@ As for frequentist statistics, one can use Bayesian statistics
to decide between two hypotheses

® Two hypotheses (Ho and Hi) and their probability models p(D]
Ho) and p(D/|Hz1)

® Us1ng Bayesian probability

_ P(D|Hyp(H,) _ P(DIH))p(H))
p(Hy|D) = P(D) p(H|D) = P(D)

@ Maximum A Posteriori (MAP) test:
® Choose the hypothesis with largest p(H|D)

@ Th1s choice minimises the probability of a mistake

17



Tuyupeland T

® In a hypothesis test

He |l errors

® Type I error (false positive) consists 1n Probability of making Type | and Type Il errors
rejecting the null hypothesis Ho (e.g., there
1s no new physics) when Ho 1s true

@Type II error (fa75e negat-ive) Consists 1n Null hypothesis (Ho)
rejecting the alternative hypothesis Hi distribution

(e.g., there 1s new physics) when Hi 1s true

Alternative hypothesis
(H,) distribution

® The two errors have different implications

®A Type II error corresponds to missing a
discovery. With more data and a stronger
evidence, the discovery 1s just postponed

Type Il error rate Type | error rate

@®A Type I error corresponds to a false claim,
that would ruin your scientific reputation

@ HEP 1s (rightfully) a very conservative field:
the community 1s willing to expose itself to

Type II errors 1n order to minimise the chance

of a Type I error o




MiuiNnimum Cost Hypothesis Test

@A MAP hypothesis testing gives same weight to the two
errors

® One might have different costs for the two euros

@ C,y: cost of choosing H1 when HO 1s true
@ Cy,: cost of choosing HO when H1 1s true

@ In that case, one would choose between HO and H1
weighting for the costs. In that case one would choose
the maximum between

p(Hy| D)C p(H, | D)Cy,

19



Bayes Factor

® Bayesian evidence: i1ntegral of a posterior model over all
the parameters of the hypothesis (i.e., the denominator 1n
posterior formula)

py(D) = JdaPM(D |l a)P(ox)

® Bayes factor 1s the ratio of evidences and 1t’s used to
select among different hypotheses

- Py (D) | daPy, (D |a)P(a)

K=—\ "2 = "~ 7
Py,(D) | dpPy,(D|B)P(B)

=0



MY GOD ... THIS WILL MEAN A HALF-DOZEN

PAPERS, A THESIS OR TWO, AND A PARAGRAPH
IN EVERY TEXTBOOK ON QUEUING THECRY'!

0\
A -~

GREAT. WHILE YOURE F) lNGSWFFCAN\OU
GET OUTLOOK. To SYNC. WITH OUR NEM PHONES?

f@%

Efficient strateqgy for =
Bayesian analysis




Example: The EUJ fit

® Exploit the over-constrained EW sector (dictated by rigid
symmetry structure) to perform consistency tests of the SM with
EW precision observables

® Set of 1nput parameters (a scheme): GF, a, mZ, mH, mt, aS(mZ2),
Aahad(5)

® Compute EW precision observables as functions of these
quantities

@ Z-pole observables
® W observables

® Compare computations to experimental data to learn the values
of the

@ Thput quantities

® Extend relations to include BSM effects and determine bounds on
New Physics

@ Obligque parameters: S, T, U, ..

@ Effective 1nteractions: SMEFT

@ ... o0

-2

-1

0

sin? 9'°P* (Qhad
sin? 9'°P* (HC)
As
Ry




@) Example: The EW fit

o, GF,O(‘S(MZ)I MZ/ MH) My, AOLhad(S)

fixed
® Observables LEP, Tevatron, and LHC —

@® Input parameters

® EW precision observables
@ top mass

@ W mass

@® H1ggs couplings

® HEPfit uses BAT (Bayesian Analysis Toolkit) as the
underlying engine for MCMC with Metropolis algorithm

(ale)d =3

0.5

-0.5

a all

- I Mw [GeV]
- asymmetries



https://bat.github.io

Computational complexity

@A posterior 1s computed with

three elements -
R (1L C))
@A prior p(g) — p(e | D) p—
(], p(D|O)x(0
® The evidence also enters many

)
R m
applications, e.qg., Bayesian -

hypothesis testing _" l? _ /\

® Computing the evidence implies A e
computational expensive N-dim /\&K ‘\i‘—
integration AV

=24

@ The evidence (the
denominator)




Sampling Methods

Quo = 0.2917+99340

@ At low dimension, the 1ntegration
might be affordable

@At high dimension, the 1ntegral SRR
might be 1ntractable -\ |

@ In this case, sampling approaches
are typically adopted to speed up
the computation .

b = 0.0238+31829

0g.0 = 0.7759+33831

@ With the UT analysis, we already
saw a MC-based i1ntegration based
on random sampling from a low
dimension (~10) distribution

M= -19.377743 3232

@ With higher dimensionality,
smarter sampling techniques might
be used (e.g., Markov Chain Monte
Carlo)

=5



Sampling Methods

NIGIOQO

O—CC¢(@—0-0-0(0 @
Unnormalised distribution Samples Statistics or estimations
whose normalisation factor that can be obtained with MCMC and that can be computed based on
computation is intractable without proceeding to the normalisation the generated samples

@With a sampling method, we give up the i1dea of deriving a normalized posterior

® Instead, the target 1s to sample from the unnormalised distribution and use
the sampled dataset to derive parameters estimates

@ mean values, credibility i1ntervals, etc.
® typically using histograms

@ MCMCs are computational effective ways to do so

26



Markov Chalns

@ o explain Markov Chain techniques, we
need a few concepts

@A _random process: an ordered
sequence of random variables, the
ordered being given by some i1ndex T
(typically some discrete time 1ndex)

Discrete time and discrete space

@A Markov process: a random process — . "t
1n which the knowledge of the value
taken by the process at some To
doesn't provide 1nformation about
the evolution of the process at T>Tp

@® A _homogenous discrete time Markov
chain 1s a Markov process 1n which * .
the space state at discrete time 1s
also discrete I T
® In practice, one can discretize a | oo

continuous problem by using a Monte

Carlo technique -

P( future | present, past ) = P( future | present, M)

arkon propertt 1

Continuous time and discrete space
random process (queue length evolution)




Some Nnotation

@E={e,e,....,ey} 15 the state
space

@ When I write e, the i
1ndex runs across the
discrete states of the
state space

@®@X={x,%,...,xy} 1S the array
of values assumed by x at
different discrete time
instances

@ When I write x;,, the 1ndex

j labels the value taken
by X at time T.

J =8



Markov Chaln evolution

®A Markov chain 1s fully 0

specified by two 1ngredients )

max

/Initial sample (6)

\accepted

@® The i1nitial probability
distribution of being 1n a
certain state at T=0

pog=s5)=¢qy(s) VseE

@ The transition probability O
kernel = probability model . rejected ! Posterior
to transition from state x “min e ' distributi
o state x’ Prior distribution p(0) IStEta\u;lon
P9y

Px,.,=s,.|x,=s,)=p(s,,5,.1) Vs,s5,.,€EEXE

|



Chaln properties

Reducibility k-periodicity recurrence/transience

transient: a state (e.g., 1,2,3 here
below) is transient if there is a >0
probability not to go back to it

Reducible chain: some state cannot 2-periodicity: it takes 2n steps to go

be reached from other states back to a given state
YOF @ 010 Ol O,
e
0.4
0 5T lo 6 @
N\
0

1.0 ( ) 1.0 ( )
- ﬁ ﬁ
0.5 0.5
5

recurrent: a state is recurrent (e.qg., 4
and 5 above) if we know that we will
go back to it

®

(8)=
o S
— @?@

Tl

15
()

Irreducible chain: all states can 3-periodicity: it takes 3n steps to go
be reached from any other states back to a given state

©
®

[
)

0.7
0.4

0.8
5

10.6
0.5

0

I
S



Statlionary distribution

@A pdf =(x) over the space of states X 1S5 a

stationary distribution 1f 1t relates to the
probability transition kernel as

() = ), a)px,x)
xeX

@n(x) = probability of being at x’ a the o 0-5

1.0

0.4

current step

0.6
- Zﬂ(x)p(x,x’) = probability of being at x’ a E———
xeX _ . _1 o
the next 1teration '
® By definition, a stationary distribution does o
not evolve 1n time positive recurrent:
recurrent within a
@ An 1rreducible Markov chain has a stationary finite time (as
probability distribution 1f and only 1f all of opposed to zero

1TSs states are positive recurrent. r'ecur'r'ent)




MCMC and Posterior

® We have a target function f(x) that we want to “learn” and then sample from (our
posterior)

® We want to build a Markov Chain whose stationary solution 15 f(x)

® Once we have such a chain, we can sample a random sequence of states from the
chain, long enough to reach the steady state solution

@A fraction of those generated sates are then kept

sO O

\ch)>©

Build a Markov Chain Generate a sequence from Keep some well chosen states
whose stationary distribution is the that Markov Chain long enough from that sequence as samples
distribution we want to sample from to reach the steady state to be returned

32



Reversioult

Oner can show that y(x) is a stationary

distribution
® We need an algorithm to
build the Markov Chain p(x’, x)y(x’) = px, x)y(x)
that has our target pdf
as stationary J p(x’,X);/(X’)dx=[ p(x, x)y(x)dx
distribution s E

: ’ L X)dx = , X' d
@ To do so, we can exploit y(x)Lp(x xax [Ep(xx)y(x) i

reversibility

y(x') = J px, x")y(x)dx
E

which is the definition of stationary distribution for

@A MC 1s reversible 1f

there exist a function a continuous x.
v(x) such that If the chain is irreducible, then this distribution is
unigue

px'=s ' x=85)y(x'=s5)=pkxx=s5x"=5)y(x =) Vs,s' € E

33



[Metropolis-Hasting

® We want to sample values from a function
o(), from which we cannot normally sample
from (but we can evaluate the function)

@ The 1nitial 1ngredients are
@ the target function g()

@®A suggested transition to a new state
x, sampled from a transition
probability h: x~hX, (very often, a
Gaussian kernel 1s used)

® For a given suggested transition,

h(x, X
r=min(l gLOR(X, Xy) ) 1s the probability

"g(Xp)h(X,, x)

to accept the suggested transition,
34

L(D)
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Approximated L(D)

1) Draw new parameter @' close
to the old @

2) Calculate L(®')

3) Jump proportional to L(®")/L(D)



[Metropolis-Hasting

® Based on this, the transition will be -0 "o

@X,—> X, _.,=x with probability r
@X, - X, =X, with probability 1—r

® The transition probability 1s then

g(Ph(p, a) )

k(a, ) =1 h(a, f) = h(a, f) min (1,

g(@h(a, p) - ==
- - _ - Approxnmated L(D)
® The reversibility condition 1s verified
1) Draw new parameter @’ close
— totheold ®
9(@)k(a,6) = gfa)h(a, pymin (1, TLTLEL) — min g(a)hte, ,90MB.) | 5y Caleulate LO
— 4(B)h(B, @) min (1, 952322;5 ﬁi) — 9(B)k(B, ) 3) Jump proportional to L(®)/L(D)

35



Sampling Process

® Once the chain 1s defined, we can simulate a random sequence of state across 1t

® One has to guarantee that steady state conditions are reached. This 1s done
removing the first N samples (during time)

® One has to avoid taking two consecutive states, since they are correlated.
Instead, one should wait a few steps (lag) before selecting the extra element of

the chain
Burn-in time Lag
The chain is not considered to have reached the These states are too correlated with X,
steady state yet and, so, these states do not so they can't be kept as we want to
follow the target probability distribution generate (almost) independent samples

36



H simple example

® Example: sampling from an exponential (the target)

target = function(x){
return(ifelse(x<0,0,exp(-x)))

}

Initial condition

X = rep(0,10000)

proposed transition x[1] = 3 #initialize; I've set arbitrarily set this to 3

for(i in 2:10000)({
current x = x[1i-1]
acceptance probability proposed _x =

current x + rnorm(1l,mean=0,sd=1)
-+ A = target(proposed x)/target(current x)

if(runif(1l)<A){

X[1] = proposed X # accept move with probabily min(1l,A)
} else {

X[1i] = current x # otherwise "reject" move, and stay where we are
}

}

Notice that the choice of a symmetric kernel for the exchange of the two arguments allows to simplify the definition

of the acceptance rate. The transition is accepted with a probability = ratio of the probabilities of the old and newly
proposed states

3/




Summary

® We reviewed various generalisation of the principle of
1ndifference to choose an objective prior, based on
1nformation theory

® We discussed how to extract 1nformation from a posterior
@ estimator
@ credibility 1nterval
® hypothesis testing

@ We discussed how to use Markov Chain Monte Carlo to
sample from an intractable posterior

38






Glbbs Sampling

O The G1bbs Samp I ng me th(?d The initial condition is some arbitrary set of values 5(0)
1s based on the assumption

that, even 1f the jO'iI‘It One also needs the i-th full conditional posterior distribution
probability 1s 1ntractable,
the conditional
distribution of a 57.”979 For a generic iteration
dimension given the others
can be computed.

7(0,10_,) = 10,10, ...,0._1,0..1,...,00y) Vi€[lK]

l

Step1l. draw HSSH) ~ (6, |9§S),9§f), et Hﬁ?,y)

Step 2. draw Hés“) ~ (6, |9§8+1),9§8), e ,Hﬁ?,y)

@ F1rst we randomly choose an
1nteger d among the K
dimensions of 6. Then we
sample a new value for that
dimension according to the .
corresponding conditional Step K. draw 000 ~ m(8c |0+, 00D .. gD o)
probability given that all
the other dimensions are
kept fixed

Stepi. draw OZ(.SH) ~ (0 |9g8+1) : 9g8+1), SR Oz(sjl) ; 951)1, e ,92),3/)

Step 1—|—1 draw 9(8+1) ~ 7'('(92'.{_1 |9gs+1) y Hgs+1), e ,92(°S+1) 3 9(8) T aO(S) ) y)

i+1 i+29°




Glbbs Samplin
R R e

7-‘-(91 |9—17 y)
[(61;0_1) = H(6-1) — H(9—1|91)k

91 e 7T(01 |9—17 Y)

o
7-‘-(02‘9—27)7) 2 ®
1(6,;0_,) = H(6_,) — H(6_,6) 4

Oy ~ m(02|0_2,Y)
kJ m(0x|0_xk,Y)

Or—1 ~ m(Ok—1|0_(k-1),¥)| 1(0k;0-g) = H(6_g) — H(0_g|0k)

4]



