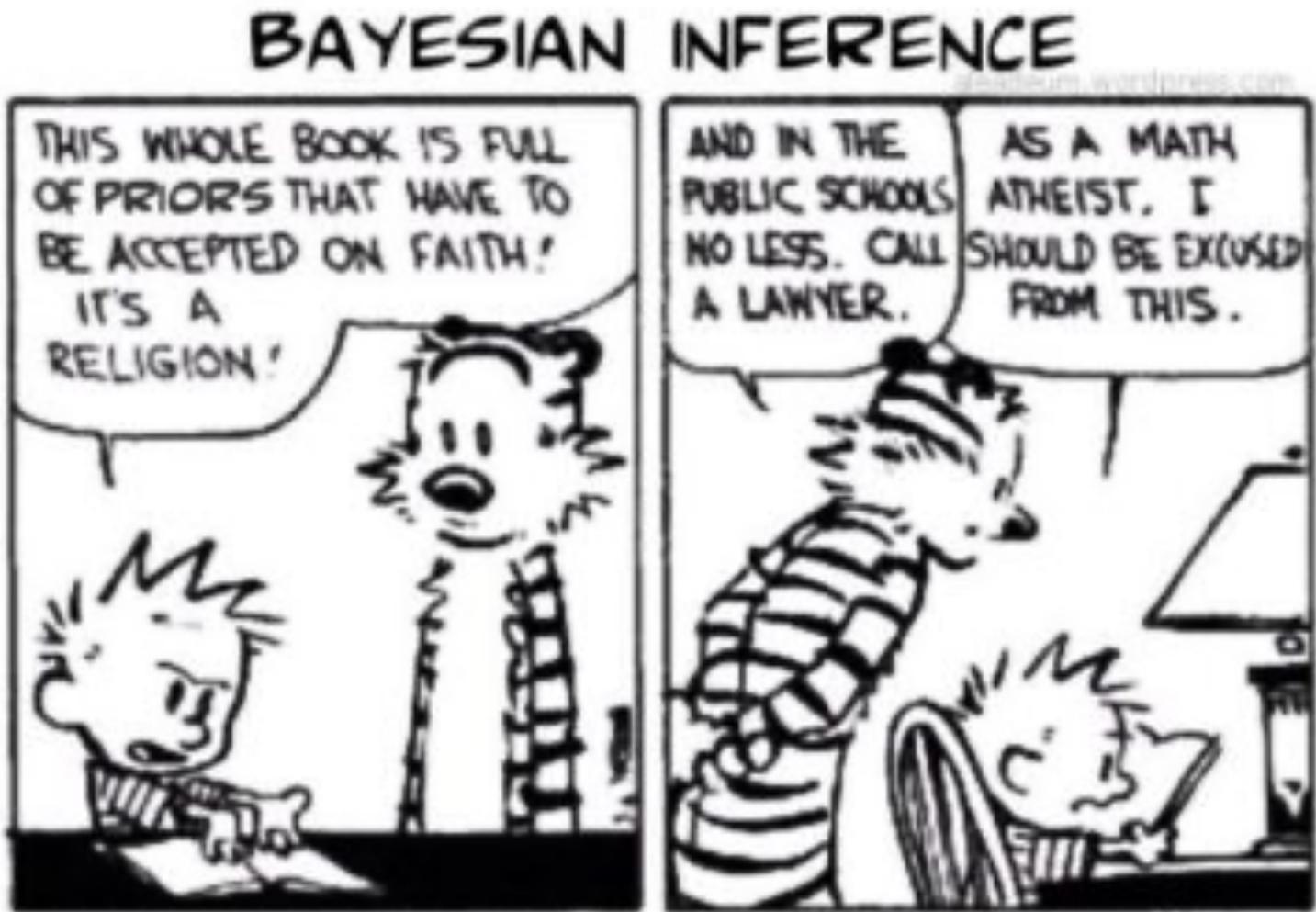
Data Analysis and Bayesian Methods Lecture 4

Maurizio Pierini



Uhich Prior?

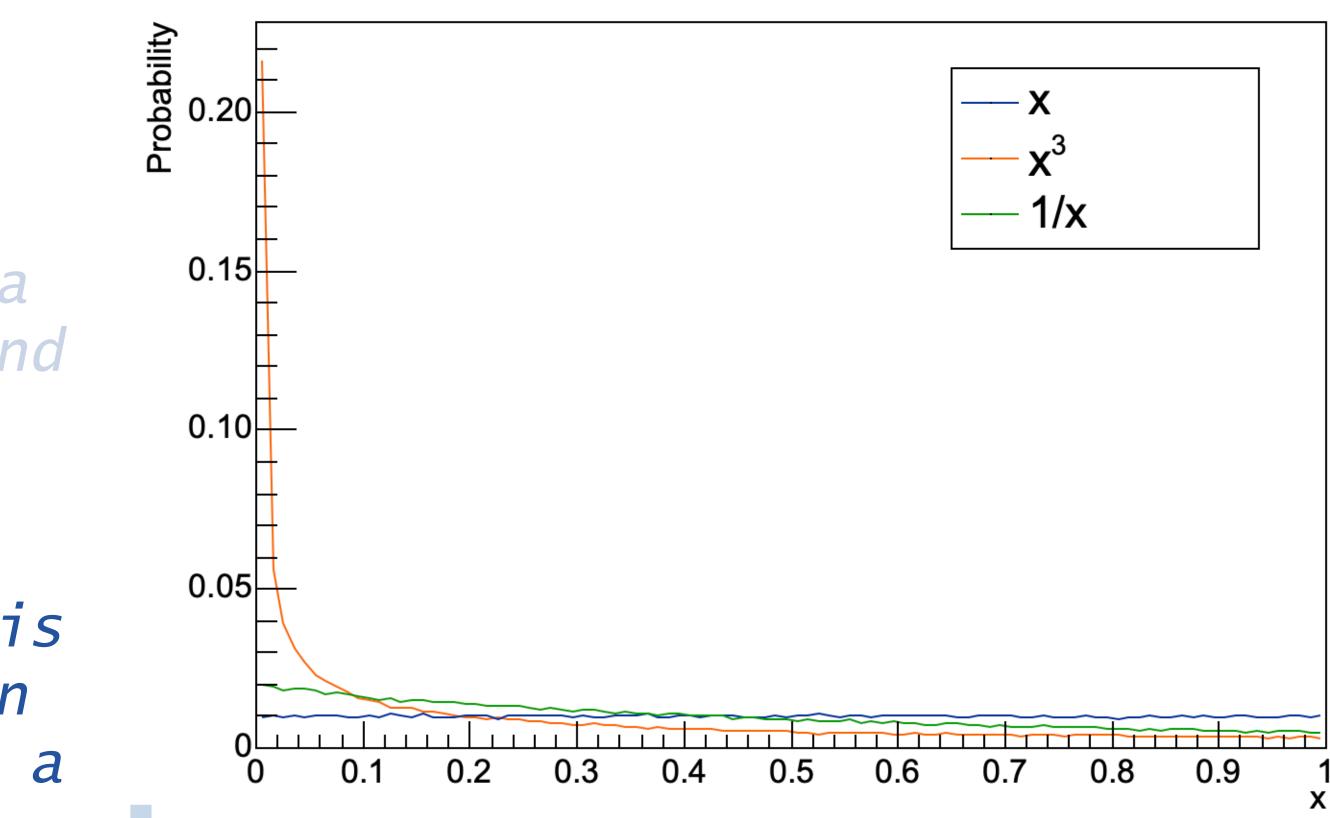
• The choice of a prior is a crucial aspect of a Bayesian analysis. There are two classes of issues

Modeling knowledge: when something is known about a quantity, one needs to find a prior that models that know1edge

Modeling ignorance: this is where troubles start. Even an innocent assumption on a quantity x (e.g., a flat prior) can become a strong statement on some function of x (mind the Jacobian)

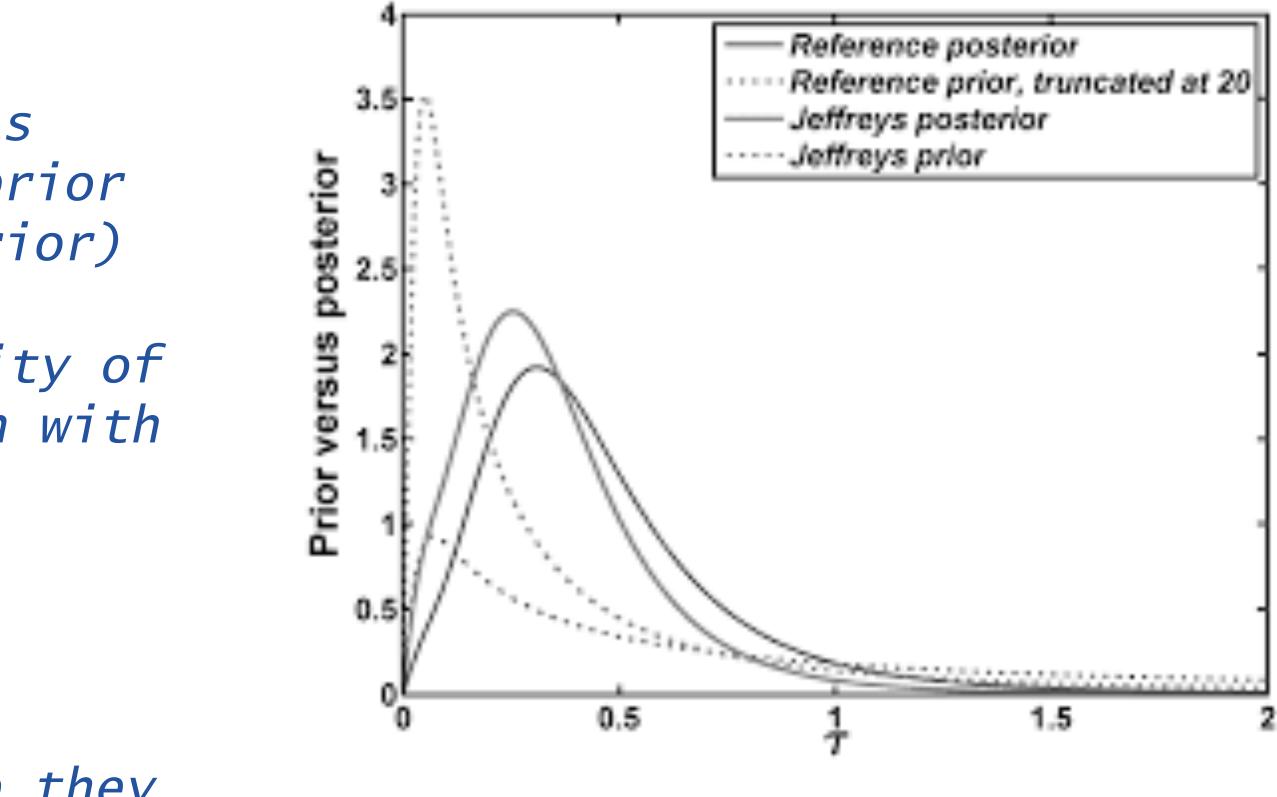
Uhich prior?

З



- We said that a prior is the modeling on a-priori knowledge (subjective prior)
- When modeling ignorance, it was suggested to instead fix the prior by a formal rule (objective prior)
 - We are trading the instability of a "democratic" flat function with a desired property, e.g., invariance under specific reparameterization
- Often called non-informative priors. Misleading name, since they carry a lot of information (they prefer certain values over others)

Objective priors



t distribution, n=5

Principle of Indifference

- The principle of indifference states that in the absence of any relevant evidence, agents should distribute their credence (or 'degrees of belief') equally among all the possible outcomes under consideration.
 - Starting point for the first writers on probability (Laplace, Bernoulli, etc.)
 - The simplest example of noninformative priors
 - Obvious application in case of discrete outcomes (dice, etc.)
- Doesn't work for continuous variables: flat on what?

https://en.wikipedia.org/wiki/Principle_of_indifference

- Suppose there is a cube hidden in a box. A label on the box says the cube has a side length between 3 and 5 cm.
- We don't know the actual side length, but we might assume that all values are equally likely and simply pick the mid-value of 4 cm.
- The information on the label allows us to calculate that the volume of the cube is between 27 and 125 cm³. We don't know the actual volume, but we might assume that all values are equally likely and simply pick the mid-value of 76 cm³.
- However, we have now reached the impossible conclusion that the cube has a side length of 4 cm and a volume of 76 cm³

Principle of Transformation Group

• Generalization of principle of indifference, by E. T. Jaynes

- One should have an indifferent choice between equivalent problems (i.e., equivalent quantities of interest) rather than between different outcomes
- In practice, given two quantities x and y, one looks for a prior f such that solving for f(x) or f(y) gives the same result
- Reduces to principle of indifference for a discrete problem (which has to be permutation invariant)

• The prior to choose depends on what one is ignorant about

Reparameterization invariance: consider two possible parameterisations θ and ϕ of a given model. Assume that one is a smooth function of the other.

A reparameterization invariant prior is a prior that transforms under the usual rule of the change-of-variables theorem

$$p_{\phi}(\phi) = p_{\theta}(\theta) \left| \frac{d\theta}{d\phi} \right|$$

• The definition of Jeffrey's prior starts from Fisher information $I(\theta)$

(•) $I(\theta)$ measures the information that a random value carries about a parameter

• The Jeffrey's prior is (up to a normalization factor) the sqrt of the determinant of the Fisher information matrix

 $p(\theta) \propto \sqrt{\det I(\theta)}$

Jeffrey's prior

Score: the partial derivative of the log Likelihood wrt the parameters

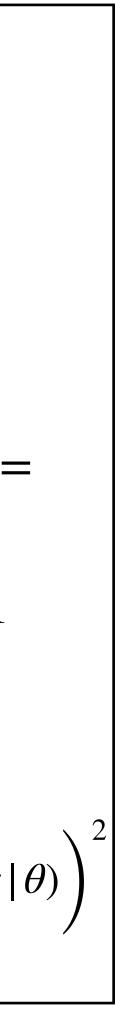
 $\frac{\partial}{\partial \theta} log \mathscr{L}(x \mid \theta)$

The score has 0 expectation value

$$E\left[\frac{\partial}{\partial\theta}\log\mathcal{L}(x\,|\,\theta)\right] = \int dx\mathcal{L}(x\,|\,\theta)\frac{\partial}{\partial\theta}\log\mathcal{L}(x\,|\,\theta) + \int dx\mathcal{L}(x\,|\,\theta)\frac{\partial}{\partial\theta}\mathcal{L}(x\,|\,\theta) = \frac{\partial}{\partial\theta}\int dx\mathcal{L}(x\,|\,\theta) = \frac{\partial}{\partial\theta}\int dx\mathcal{L}($$

One can then write the score's variance as

$$I(\theta) = E\left[\left(\frac{\partial}{\partial\theta}\log\mathcal{L}(x\,|\,\theta)\right)^2\right] = \int dx \mathcal{L}(x\,|\,\theta) \left(\frac{\partial}{\partial\theta}\log\mathcal{L}(x\,|\,\theta)\right)^2$$



(you can convince yourself) that) $I(\vec{\theta})$ transformation rules guarantee the desir invariance under reparameterization

Interpretation of the second state of the s with the priors satisfyin the principle of transformation group

• But its definition is formally tight to information theory and it offers the opportunity to further generalisations

Jeffrey's prior

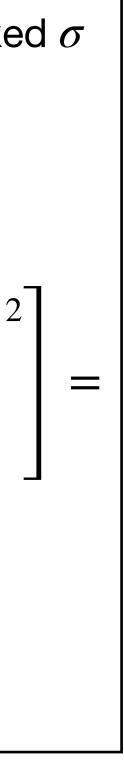
Mean of a Gaussian: consider a Gaussian likelihood with fixed

$$G(x \mid \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$I(\mu) = E\left[\left(\frac{d}{d\mu}\log G(x \mid \mu, \sigma)\right)^2\right] = E\left[\left(\frac{d}{d\mu}\frac{(x-\mu)^2}{2\sigma^2}\right)^2\right]$$

$$E\left[\frac{(x-\mu)^2}{\sigma^4}\right] = \frac{1}{\sigma^4}\int dx G(x \mid \mu, \sigma)(x-\mu)^2$$
So that $p(\mu) \propto \sqrt{I(\mu)} = \text{constant}$

$$E[(x-\mu)^{2p}]\int dx G(x \mid \mu, \sigma)(x-\mu)^{2p} = (2p-1)!\sigma^{2p}$$



(you can convince yourself) that) $I(\vec{\theta})$ transformation rules guarantee the desir invariance under reparameterization

I Jeffrey's prior coincides with the priors satisfyin the principle of transformation group

• But its definition is formally tight to information theory and it offers the opportunity to further generalisations

Jeffrey's prior

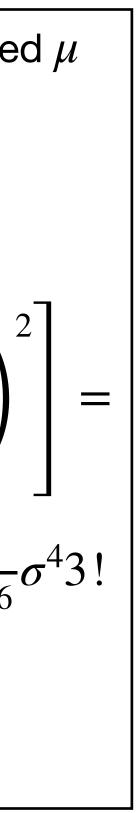
RMS of a Gaussian: consider a Gaussian likelihood with fixe

$$G(x | \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$I(\sigma) = E\left[\left(\frac{d}{d\sigma}\log G(x | \mu, \sigma)\right)^2\right] = E\left[\left(\frac{d}{d\sigma}\frac{(x-\mu)^2}{2\sigma^2}\right)^2\right]$$

$$E\left[\frac{(x-\mu)^4}{4}\frac{d}{d\sigma}\sigma^{=2}\right] = \frac{1}{4}\left(\frac{d}{d\sigma}\sigma^{-2}\right)^2 E\left[(x-\mu)^4\right] = \frac{1}{\sigma^6}$$
So that $p(\sigma) \propto \sqrt{I(\sigma)} = \frac{1}{\sigma}$

$$E[(x - \mu)^{2p}] \int dx G(x \mid \mu, \sigma)(x - \mu)^{2p} = (2p - 1)!\sigma^{2p}$$



Information and Entropy

 $D_{KL}(p(x), q(x)) = E \left| \log \frac{1}{2} \right|$

• It's not a distance between two functions $D_{KL}(p(x), q(x)) \neq D_{KL}(q(x), p(x))$

• But it can be generalized to the smooth and symmetric Jensen-Shannon divergence (sometimes used in ML HEP *literature*)

$$D_{SJ}[p(x), q(x)] = \frac{1}{2} \left[D_{KL}\left(p(x), \frac{p(x) + q(x)}{2}\right) + D_{KL}\left(q(x), \frac{p(x) + q(x)}{2}\right) \right]$$

In Information theory, the Kullback-Leibler divergence measures the relative entropy between two functions

$$g\frac{p(x)}{q(x)}\Big|_{p} = \int dx \ p(x)\log\frac{p(x)}{q(x)}$$

Information and Entropy

• Consider a family of probability density functions, characterized by different values of some parameter θ

• Compute the KL divergence between two of these pdfs

 $D_{KL}(\theta_1, \theta_2) = D_{KL}[f(x \mid \theta_1),]$

and θ_2 , one can expand θ_1 around θ_2

• It can be shown that the second therm of the expansion is the Fisher information

$$\left(rac{\partial^2}{\partial heta_i^\prime\,\partial heta_j^\prime}D(heta, heta^\prime)
ight)_{ heta^\prime= heta}=-\int f(x; heta)igg(rac{\partial^2}{\partial heta_i^\prime\,\partial heta_j^\prime}\log(f(x; heta^\prime))igg)_{ heta^\prime= heta}\,dx=[\mathcal{I}(heta)]_{i,j}\,dx$$

$$f(x \mid \theta_2)] = \int dx f(x \mid \theta_1) \log \frac{f(x \mid \theta_1)}{f(x \mid \theta_2)}$$

 \bullet For small variation, i.e., for small differences between θ_1

The principle of maximum entropy states that the probability distribution which best represents the current state of knowledge about a system is the one with largest entropy

choose a prior in a Bayesian application

• Notice that maximizing $H(\Pi)$ corresponds to minimising the KL diverge between Π and a flat distribution

In this respect, the MEP is a generalization of the indifferent principle, based on information theory

Jayne's Maximum Entropy Principle

 $H(\Pi) = - \int \Pi(\theta) \log \Pi(\theta) d\theta$

• Based on this principle, one can build a prescription to

Reference priors

• The KL divergence can be used as a metric to define a set of priors (reference priors) which generalise Jeffrey's priors

- minimise the role of the prior in the inference)
 - The KL divergence is used as a metric for the distance
 - experiment result

$$I(\Theta, T) = \int p(t) \int p(\theta|t) \log \frac{p(\theta|t)}{p(\theta)} d\theta dt = \int \int p(\theta, t) \log \frac{p(\theta, t)}{p(\theta)p(t)} d\theta dt$$

13

 \odot Given a likelihood \mathscr{L} , one looks for the prior Π that maximises the expected distance between the prior and the posterior (as a way to

• The maximisation has to be done across all possible experiment outcomes, since the prior has to be chosen regardless of the

Unat old we measure:

• Once the posterior is derived, all the information on the parameter of interest x is there

• We can then use it to make estimates on it

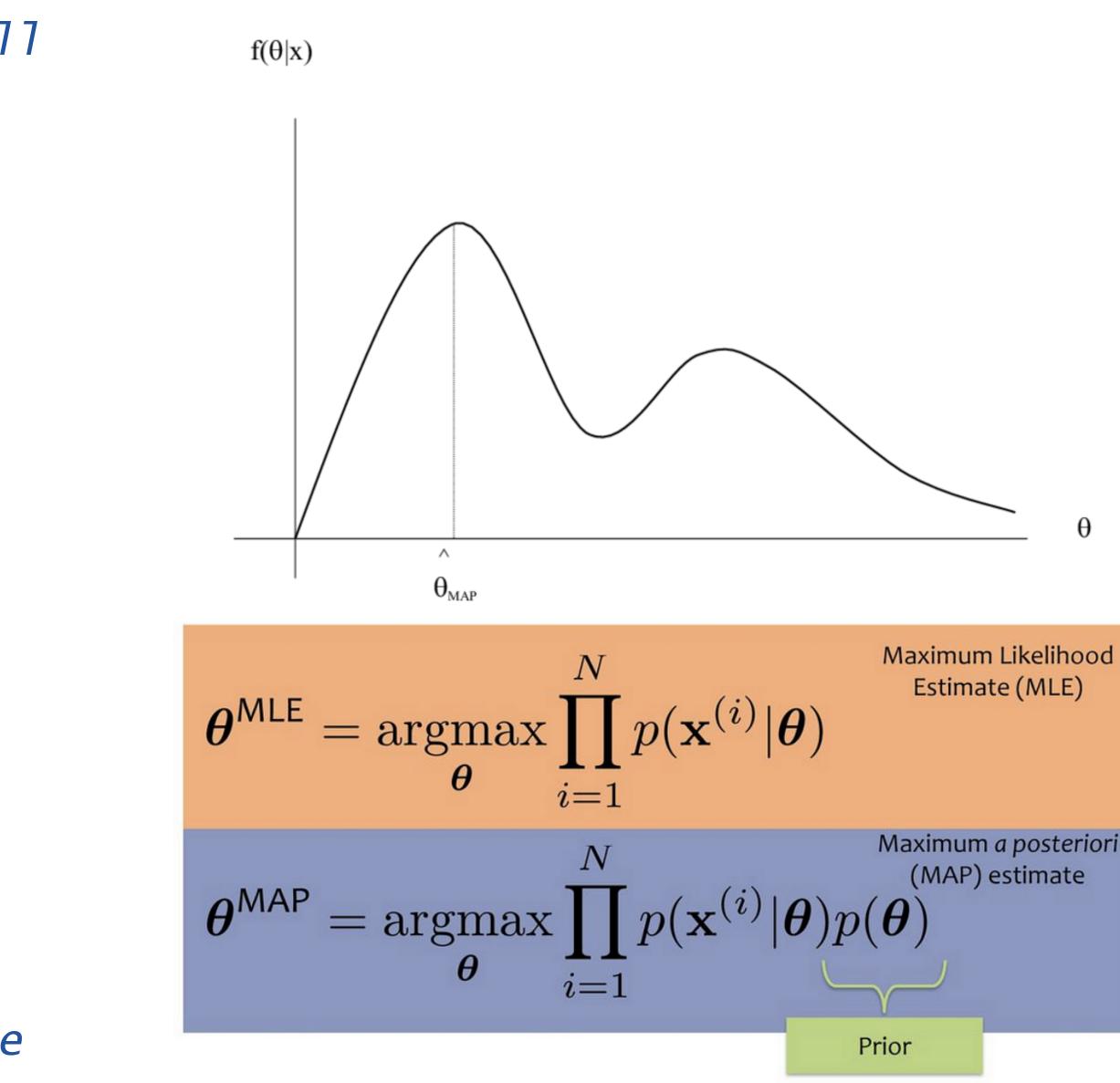
Maximum A Posterior (MAP) estimation: estimate the value of x using the max of the posterior

• Similar to max-likelihood estimator in frequentists statistics

• In the limit of large statistics, likelihood becomes narrow, prior less important, and the two estimators converge

15

Bayesian Estimator



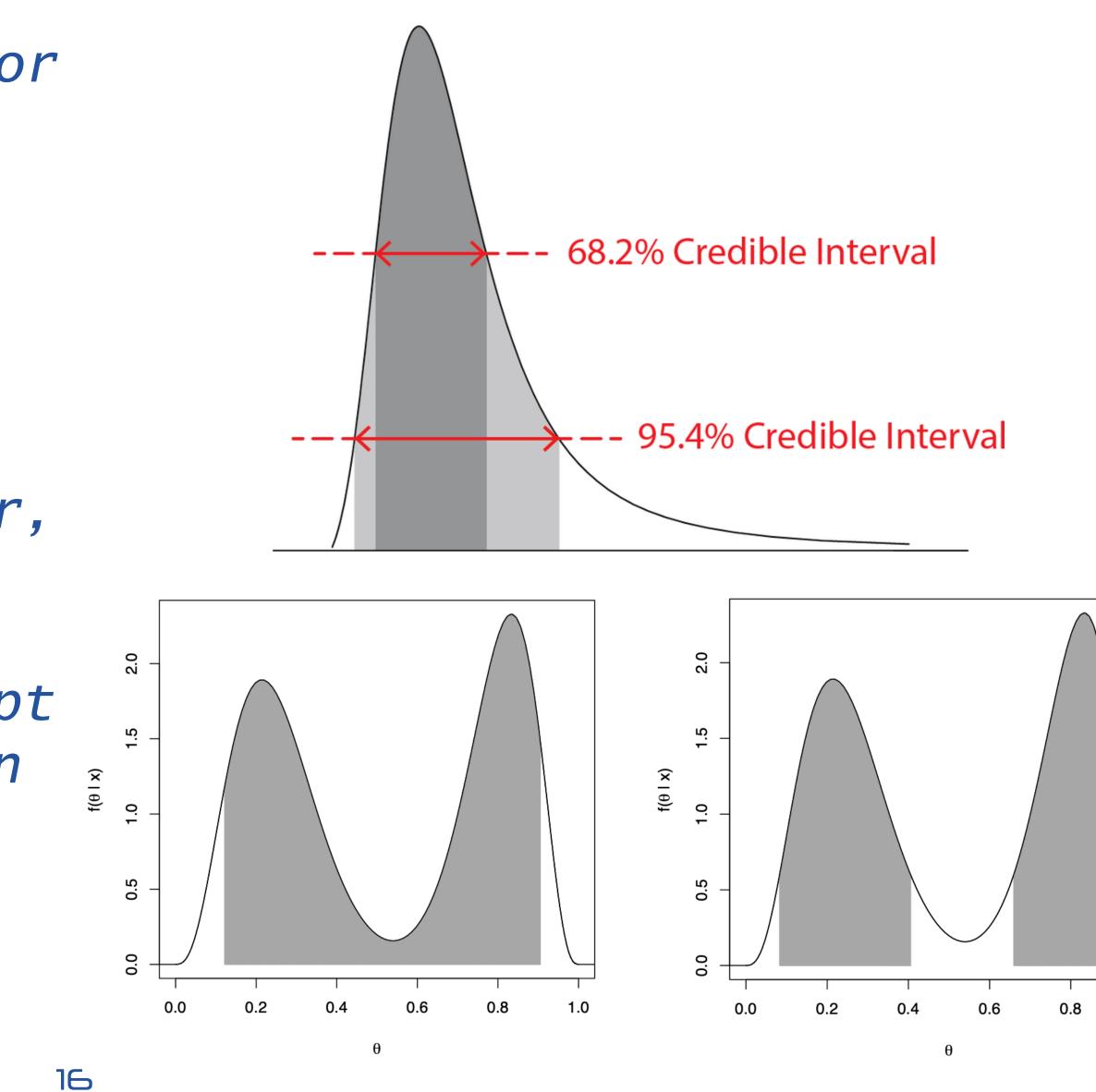
Credible Intervals

 By integrating the posterior one can define a credible interval

Not uniquely defined

- Can integrate around the
 median, the MAP estimator,
 etc
- Different strategies adapt
 to different distribution

• e.g., don't use the median for bur-modal distributions



to decide between two hypotheses

 H_0) and $p(D|H_1)$

• Using Bayesian probability

$$p(H_0 | D) = \frac{P(D | H_0)p(H_0)}{P(D)}$$

Maximum A Posteriori (MAP) test:

• Choose the hypothesis with largest p(H|D)

• This choice minimises the probability of a mistake

- As for frequentist statistics, one can use Bayesian statistics
 - Two hypotheses (H₀ and H₁) and their probability models p(D)

$$p(H_1 | D) = \frac{P(D | H_1)p(H_1)}{P(D)}$$

• In a hypothesis test

- Type I error (false positive) consists in Probability of making Type I and Type II errors rejecting the null hypothesis H_0 (e.g., there is no new physics) when H₀ is true
- Type II error (false negative) consists in Null hypothesis (H_o) Alternative hypothesis rejecting the alternative hypothesis H_1 distribution (H₁) distribution (e.g., there is new physics) when H_1 is true 1-β 1-α • The two errors have different implications • A Type II error corresponds to missing a discovery. With more data and a stronger ß

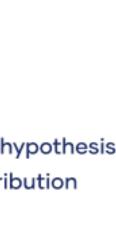
- evidence, the discovery is just postponed
- A Type I error corresponds to a false claim, that would ruin your scientific reputation

• HEP is (rightfully) a very conservative field: the community is willing to expose itself to Type II errors in order to minimise the chance of a Type I error

Type I and Type II errors

Type II error rate

Type I error rate



Minimum Cost Hypothesis Test

errors

One might have different costs for the two euros

 OC_{10} : cost of choosing H1 when H0 is true

 $O C_{01}$: cost of choosing HO when H1 is true

In that case, one would choose between HO and H1 the maximum between

 $p(H_0 | D)C_{10}$

• A MAP hypothesis testing gives same weight to the two

- weighting for the costs. In that case one would choose
 - $p(H_1 | D)C_{01}$

 Bayesian evidence: integral of a posterior model over all
 the parameters of the hypothesis (i.e., the denominator in posterior formula)

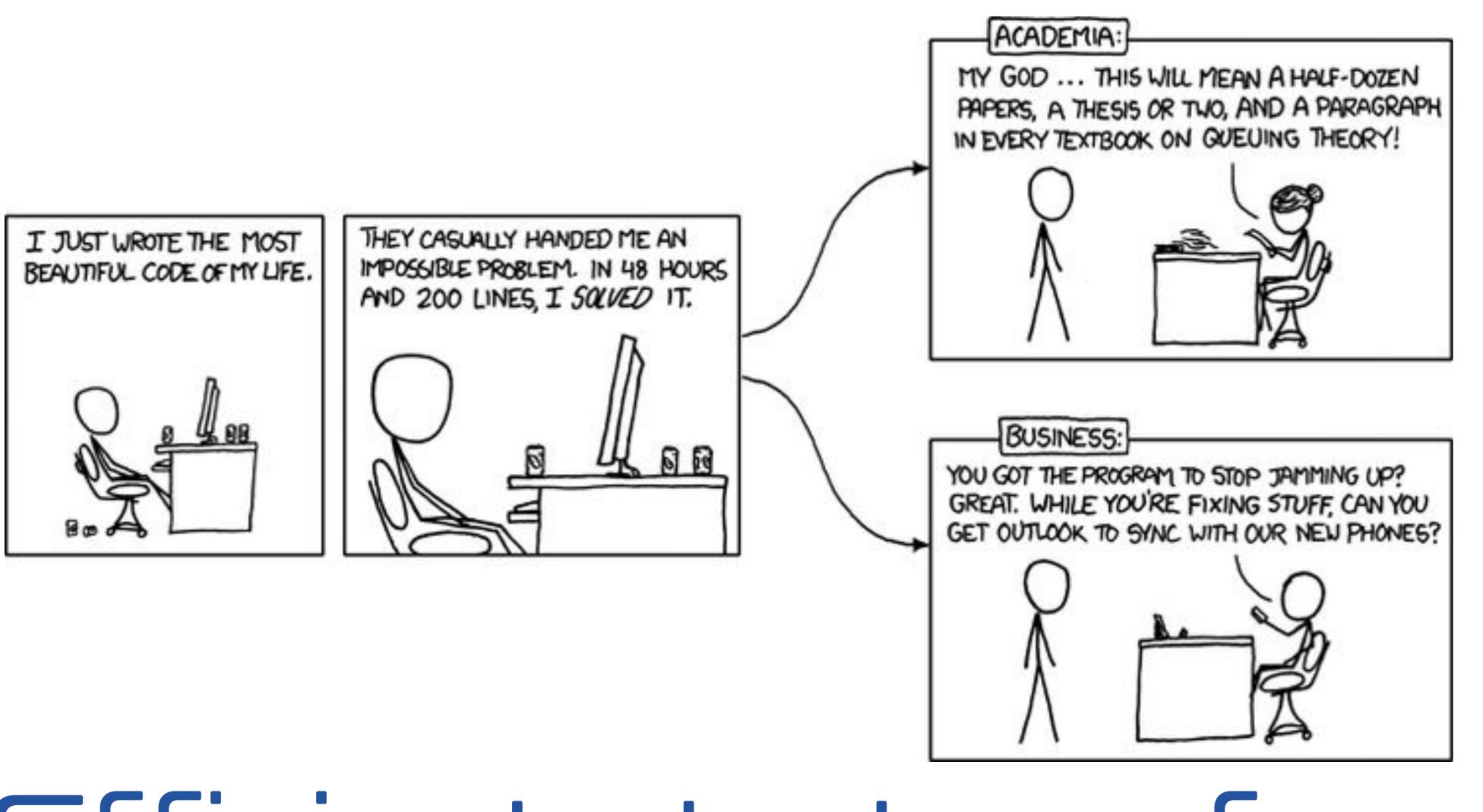
 $p_M(D) =$

• Bayes factor is the ratio of evidences and it's used to select among different hypotheses

Bayes Factor

$$\int d\alpha P_M(D \mid \alpha) P(\alpha)$$

 $K = \frac{P_{M_1}(D)}{P_{M_2}(D)} = \frac{\int d\alpha P_{M_1}(D \mid \alpha) P(\alpha)}{\int d\beta P_{M_2}(D \mid \beta) P(\beta)}$

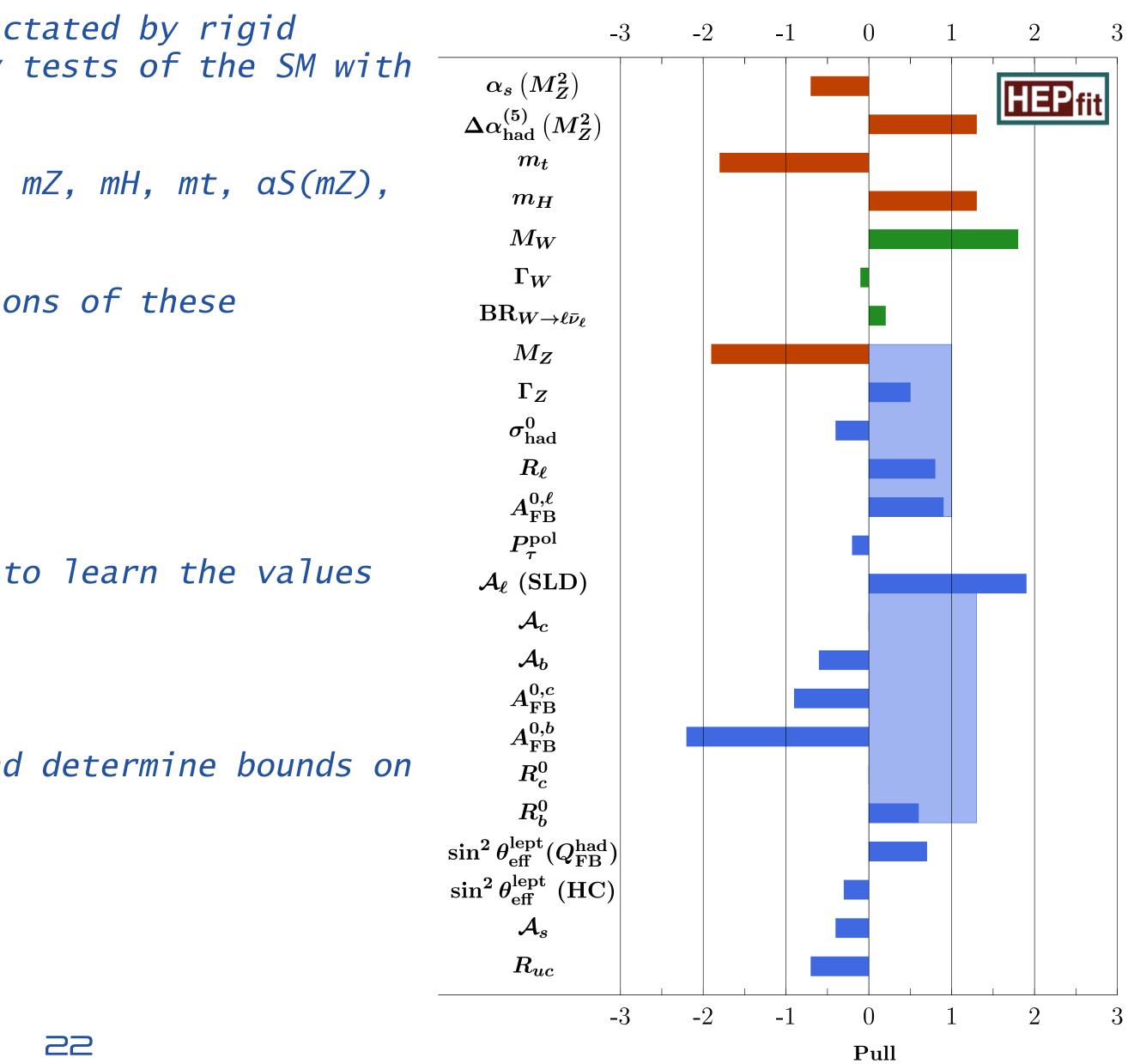


Efficient strategy for a Bayesian analysis

- Exploit the over-constrained EW sector (dictated by rigid symmetry structure) to perform consistency tests of the SM with *EW precision observables*
- Set of input parameters (α scheme): GF, α , mZ, mH, mt, α S(mZ), $\Delta \alpha had(5)$
- Compute EW precision observables as functions of these quantities
- Z-pole observables
- W observables
- Compare computations to experimental data to learn the values of the
- input quantities
- Extend relations to include BSM effects and determine bounds on New Physics
- Oblique parameters: S, T, U, ...
- Effective interactions: SMEFT

• …

Example: The EUJ fit



 α , G_F, α _s(M_Z), M_Z, M_H, m_t, $\Delta \alpha$ _{had}⁽⁵⁾ • Input parameters fixed • Observables LEP, Tevatron, and LHC

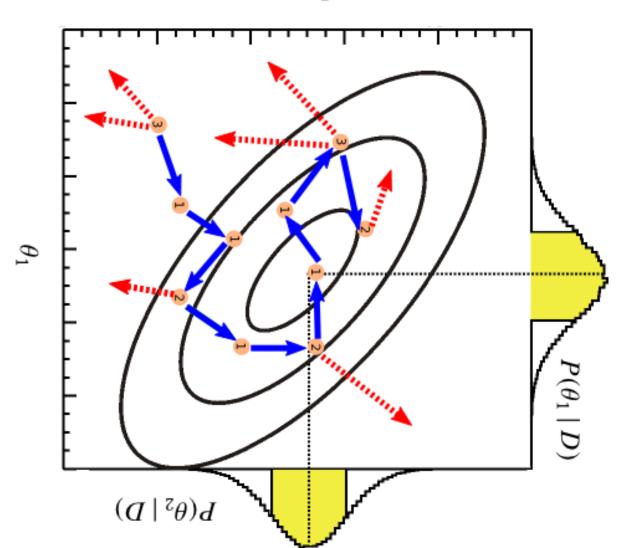
• EW precision observables

• top mass

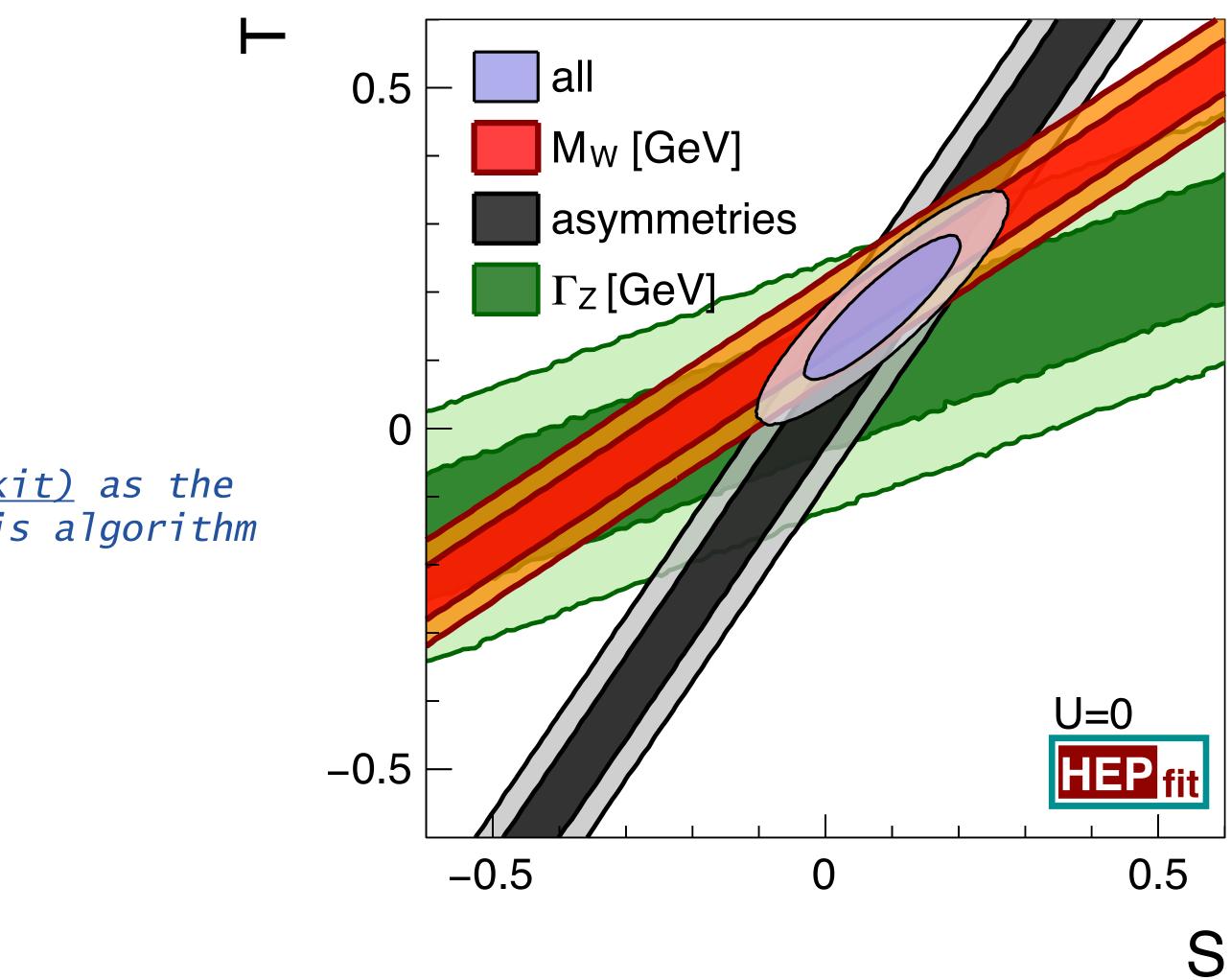
• W mass

• Higgs couplings

• HEPfit uses <u>BAT (Bayesian Analysis Toolkit)</u> as the underlying engine for MCMC with Metropolis algorithm

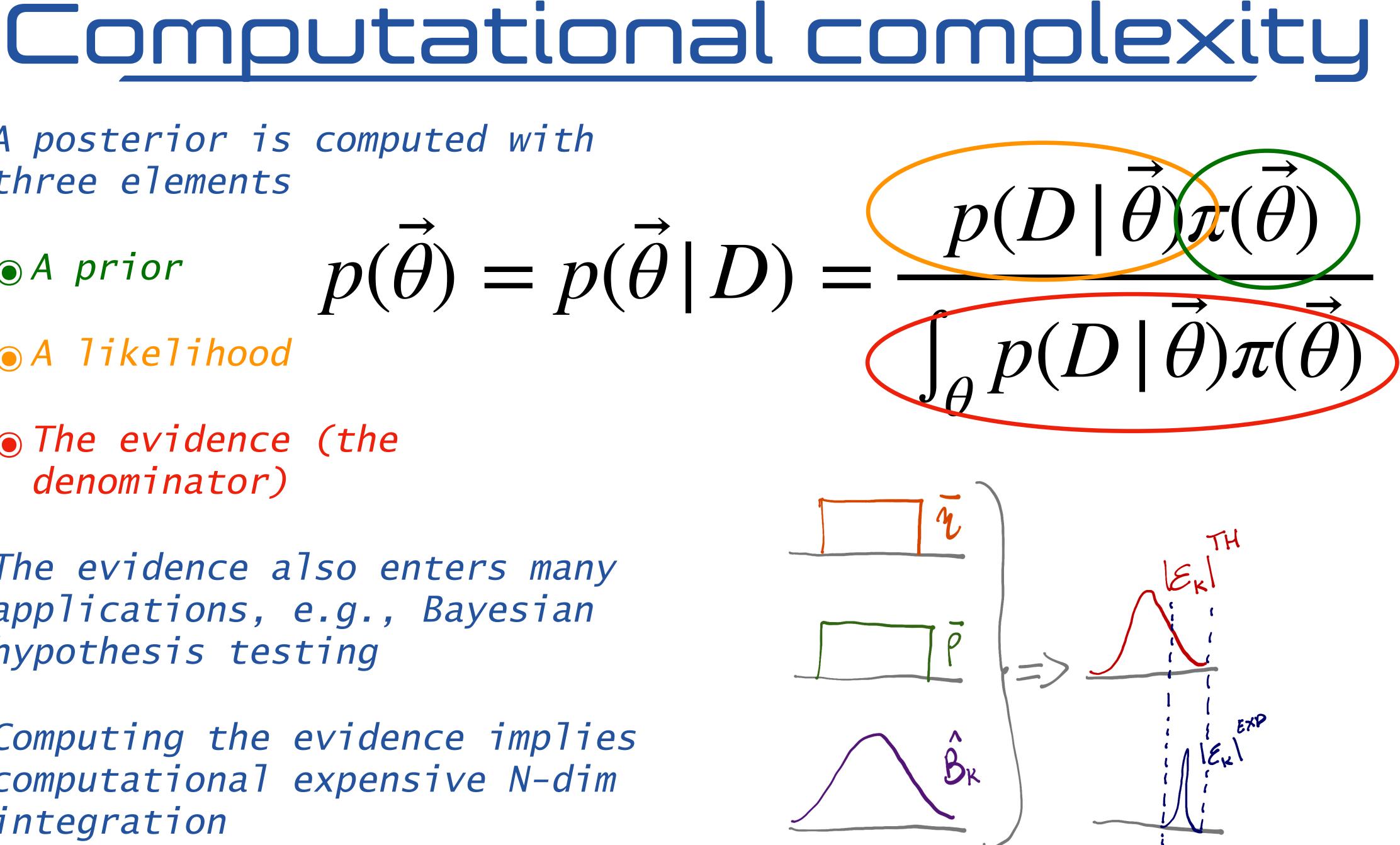


<u>Example: The EUJ fit</u>



 A posterior is computed with
 three elements

A prior



A likelihood

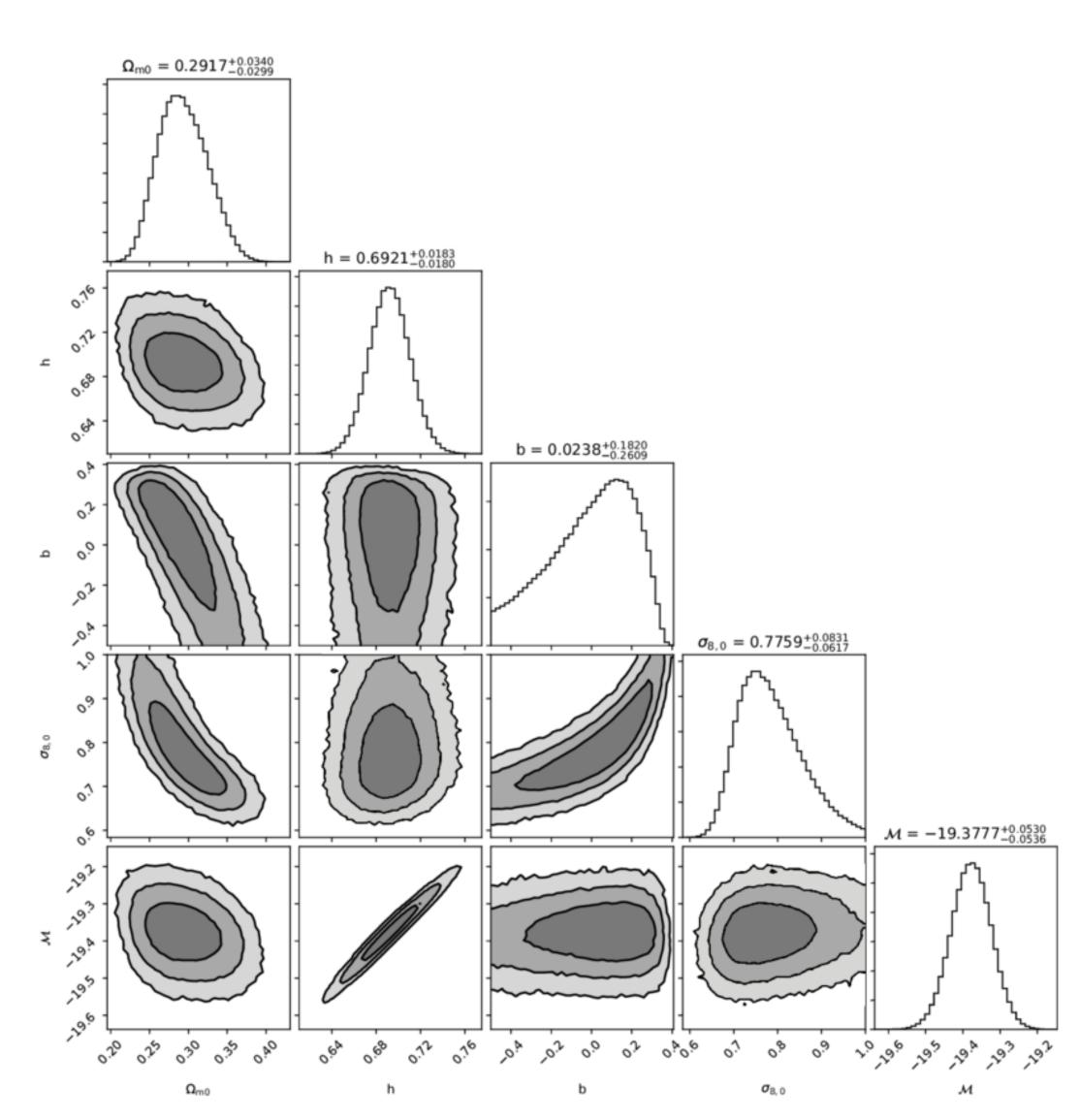
• The evidence (the denominator)

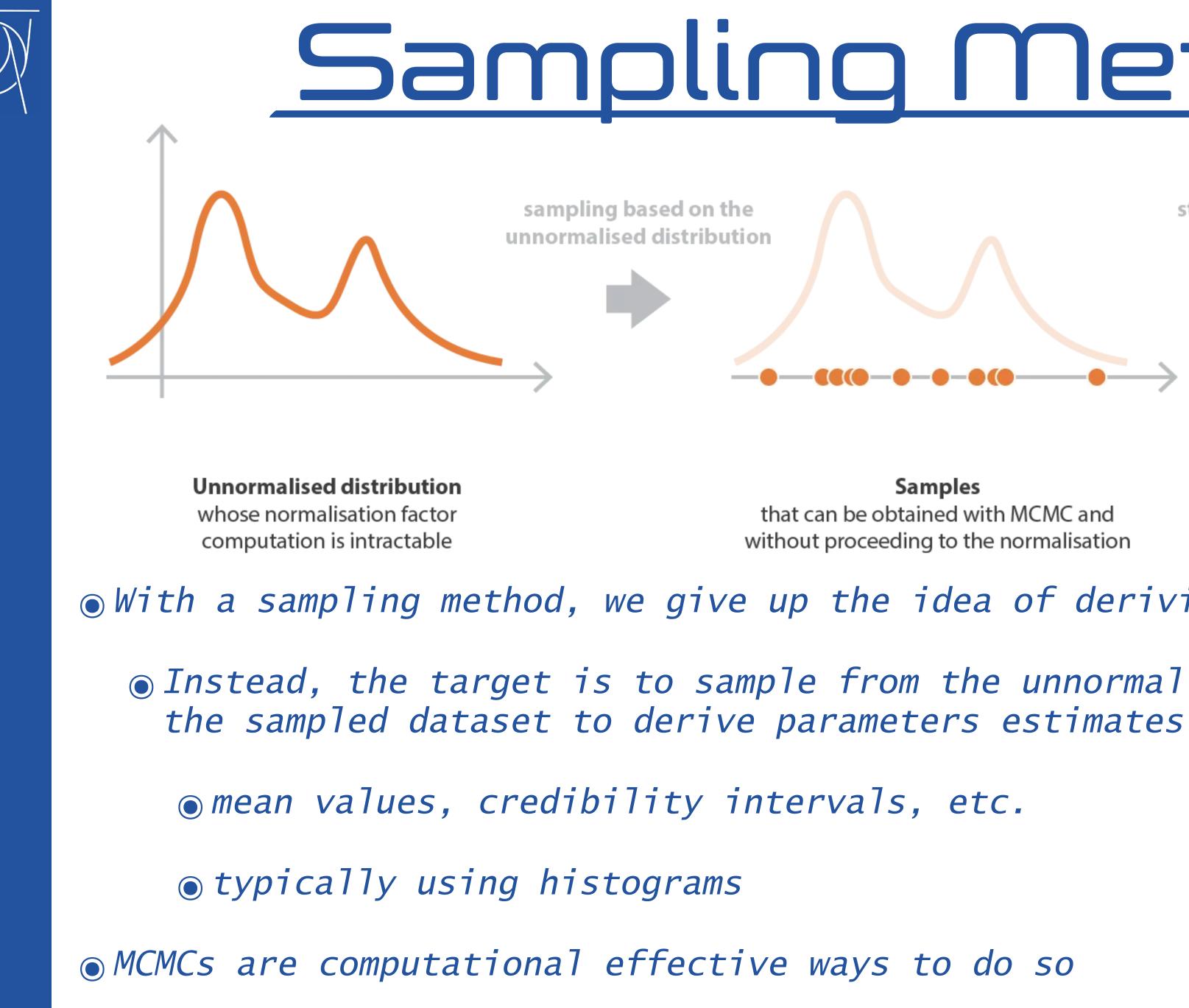
• The evidence also enters many applications, e.g., Bayesian hypothesis testing

• Computing the evidence implies computational expensive N-dim integration

- At low dimension, the integration might be affordable
- At high dimension, the integral might be intractable
 - In this case, sampling approaches are typically adopted to speed up the computation
 - With the UT analysis, we already saw a MC-based integration based on random sampling from a low dimension (~10) distribution
 - With higher dimensionality, smarter sampling techniques might be used (e.g., Markov Chain Monte Carlo)

<u>Sampling Methods</u>





Sampling Methods

statistics/estimations from samples

Samples that can be obtained with MCMC and without proceeding to the normalisation

Statistics or estimations that can be computed based on the generated samples

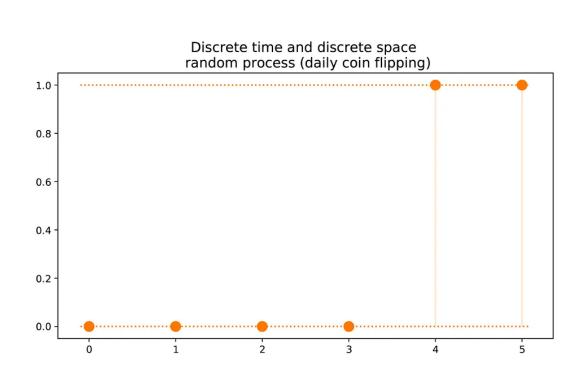
• With a sampling method, we give up the idea of deriving a normalized posterior

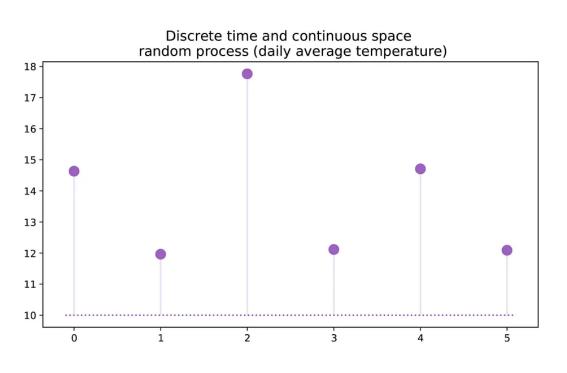
Instead, the target is to sample from the unnormalised distribution and use

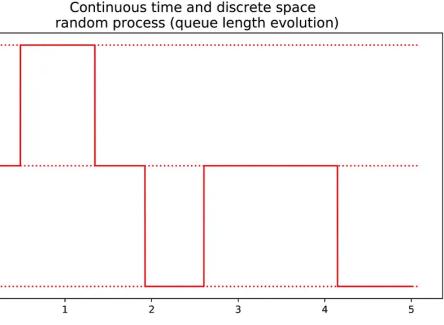
To explain Markov Chain techniques, we need a few concepts

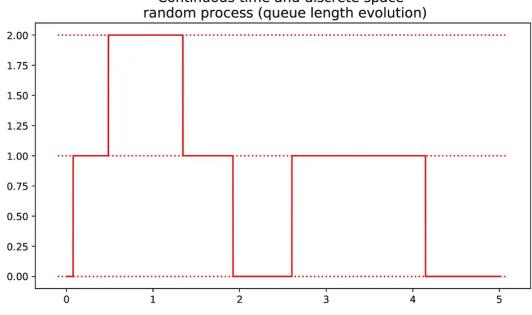
- A random process: an ordered
 sequence of random variables, the ordered being given by some index T (typically some discrete time index)
- <u>A Markov process</u>: a random process in which the knowledge of the value taken by the process at some T_0 doesn't provide information about the evolution of the process at $T>T_0$
- A homogenous discrete time Markov
 A homogenous discrete time
 A ho chain is a Markov process in which the space state at discrete time is also discrete
- In practice, one can discretize a continuous problem by using a Monte Carlo technique

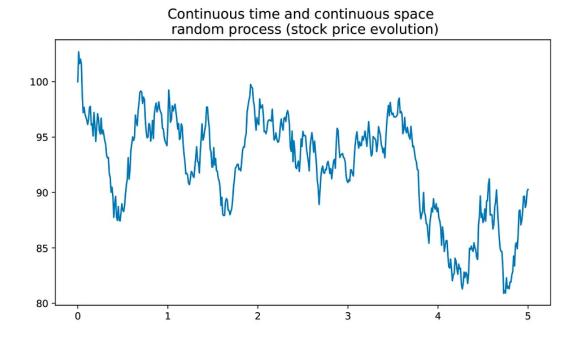
P(future | present, past) = P(future | present, Markov property











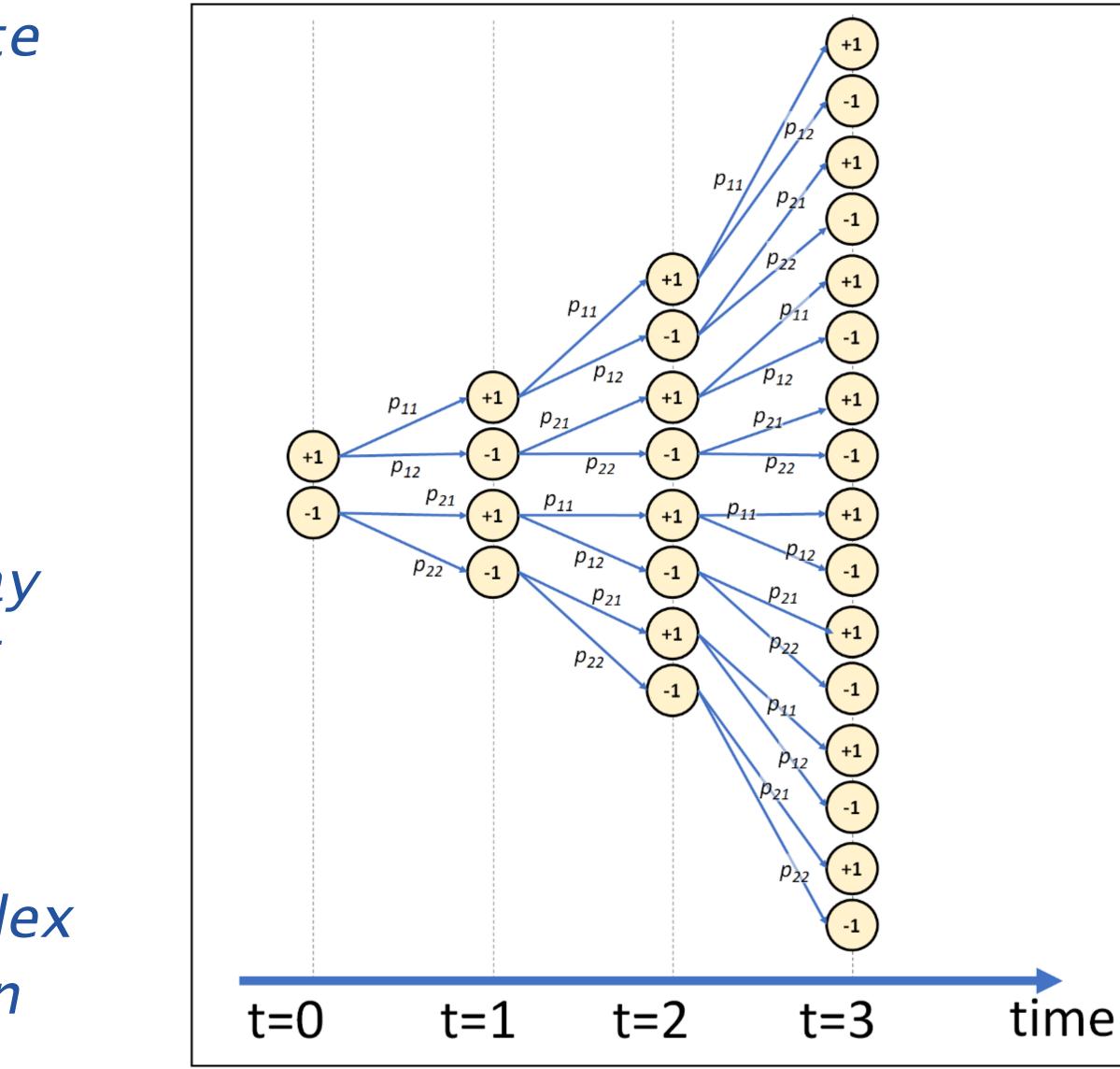
• $E = \{e_i, e_2, ..., e_N\}$ is the state space

• When I write e_i , the i index runs across the discrete states of the state space

• $X = \{x_1, x_2, ..., x_N\}$ is the array of values assumed by x at different discrete time instances

• When I write x_i , the index j labels the value taken by X at time T_i

Some notation





 A Markov chain is fully
 specified by two ingredients

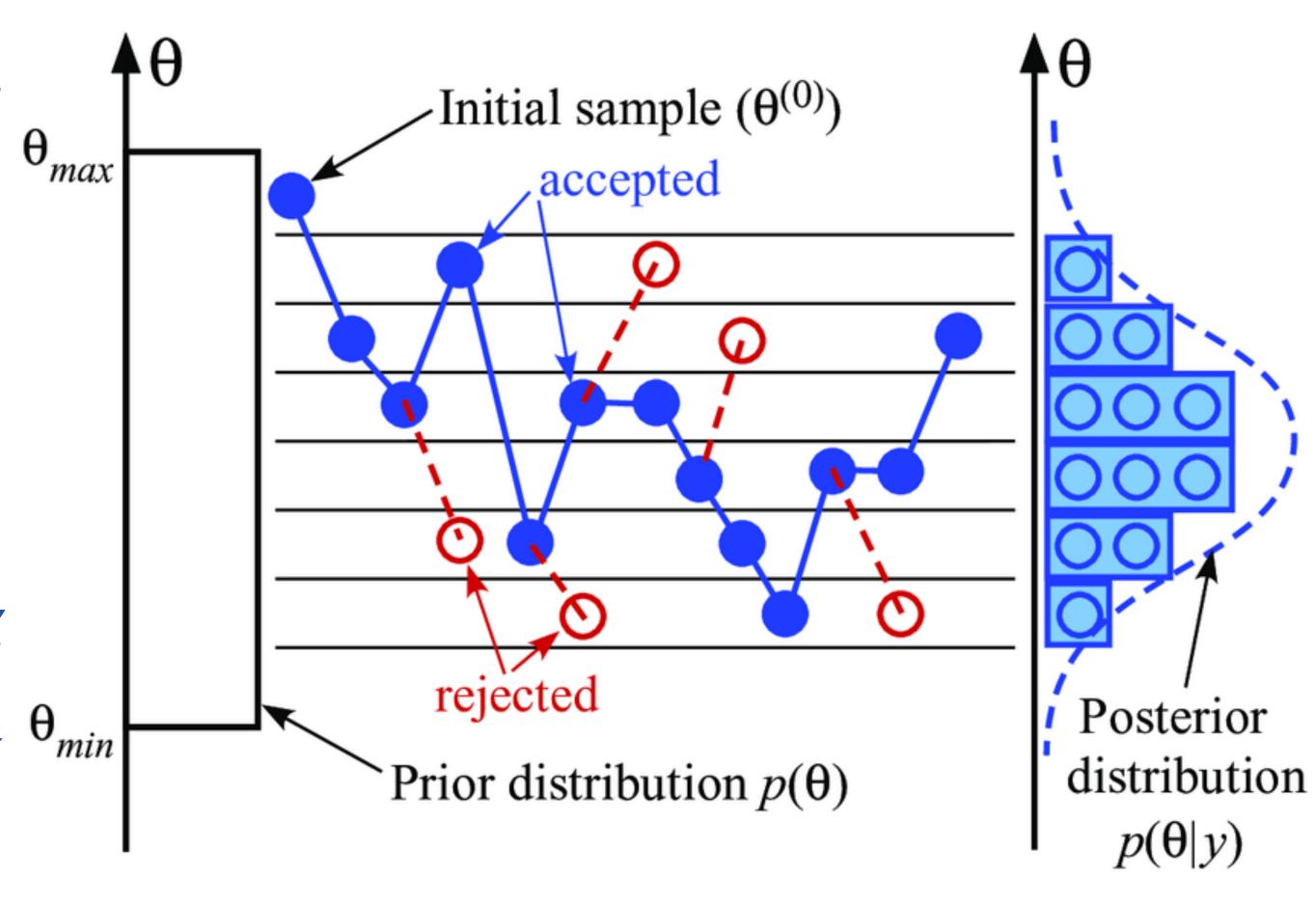
The <u>initial probability</u> distribution of being in a certain state at T=0

 $p(x_0 = s) = q_0(s) \quad \forall s \in E$

The <u>transition probability</u> kernel = probability model to transition from state $x \theta_{min}$ to state x'

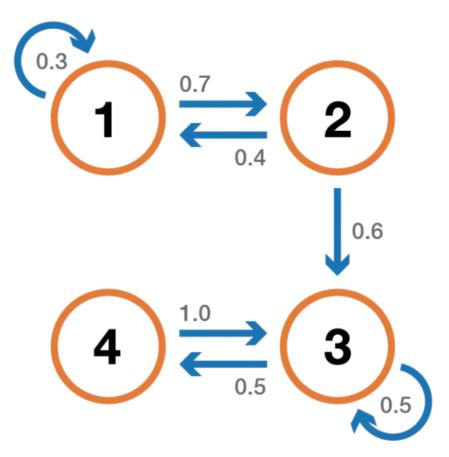
 $P(x_{n+1} = s_{n+1} | x_n = s_n) = p(s_n, s_{n+1}) \quad \forall s_n, s_{n+1} \in E \times E$

Markov Chain evolution



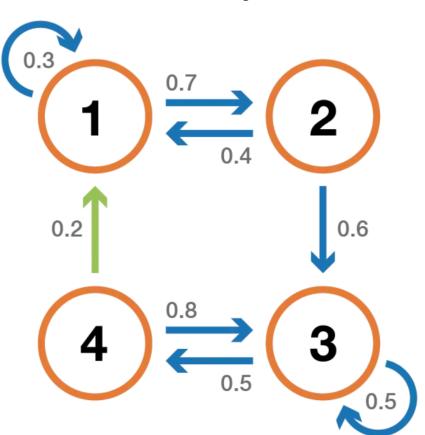
Reducibility

Reducible chain: some state cannot be reached from other states

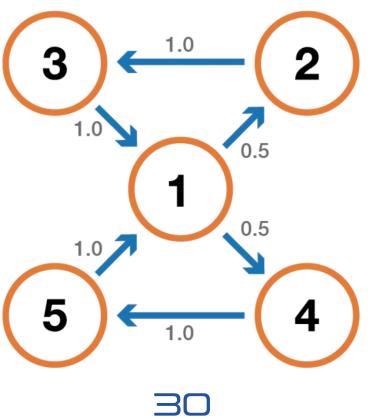


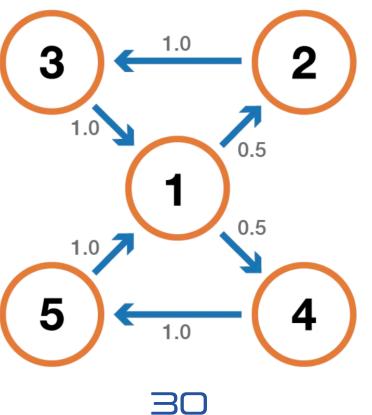
2-periodicity: it takes 2n steps to go back to a given state

Irreducible chain: all states can be reached from any other states

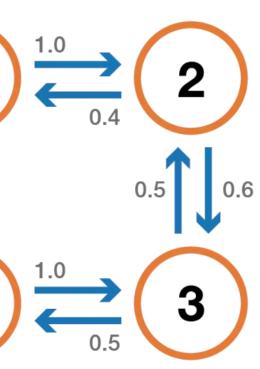


3-periodicity: it takes 3n steps to go back to a given state



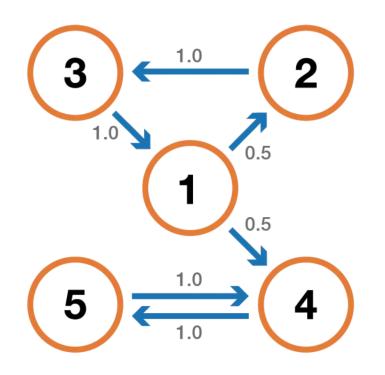


k-periodicity

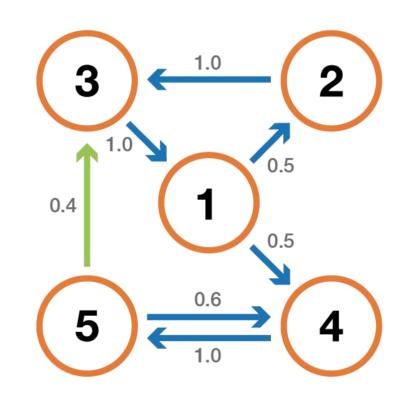


recurrence/transience

transient: a state (e.g., 1,2,3 here below) is transient if there is a > 0probability not to go back to it

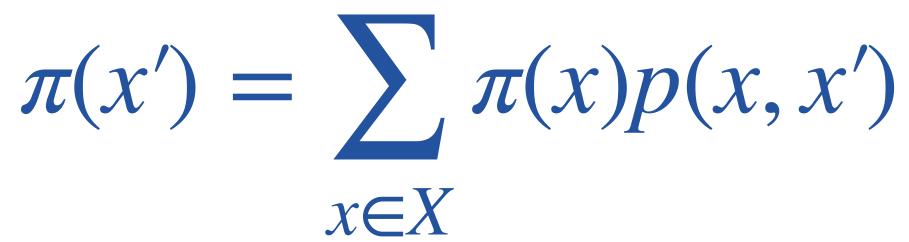


recurrent: a state is recurrent (e.g., 4 and 5 above) if we know that we will go back to it



Stationary distribution

• A pdf $\pi(x_i)$ over the space of states X is a stationary distribution if it relates to the probability transition kernel as

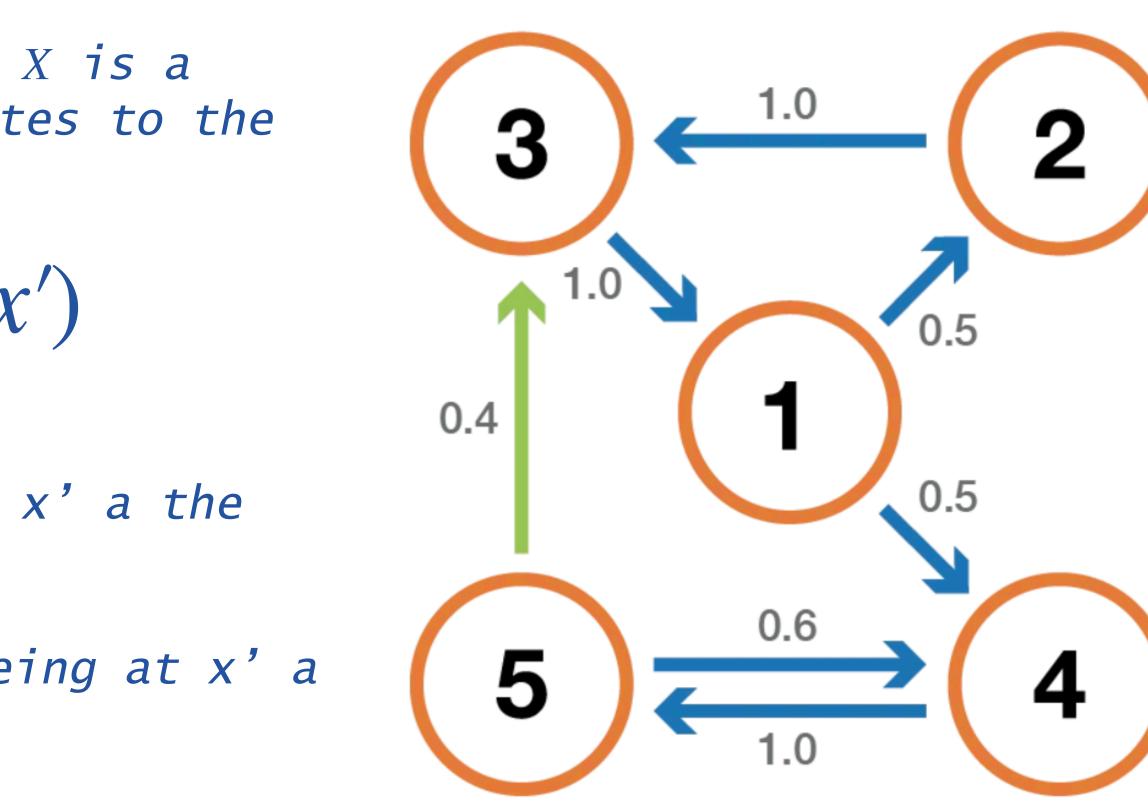


(•) $\pi(x') = probability of being at x' a the current step$

• $\sum_{x \in X} \pi(x)p(x, x') = probability of being at x' a the next iteration$

 By definition, a stationary distribution does not evolve in time

• An irreducible Markov chain has a stationary probability distribution if and only if all of its states are positive recurrent.



positive recurrent:
 recurrent within a
 finite time (as
 opposed to zero
 recurrent)

 \odot We have a target function f(x) that we want to "learn" and then sample from (our *posterior*)

• We want to build a Markov Chain whose stationary solution is f(x)

• Once we have such a chain, we can sample a random sequence of states from the chain, long enough to reach the steady state solution

• A fraction of those generated sates are then kept

Build a Markov Chain whose stationary distribution is the distribution we want to sample from

Generate a sequence from that Markov Chain long enough to reach the steady state

 $(X_0)(X_1)(X_2) \cdots (X_n) \cdots$

Keep some well chosen states from that sequence as samples to be returned

• We need an algorithm to build the Markov Chain that has our target pdf as stationary distribution

To do so, we can exploit *reversibility*

• A MC is reversible if there exist a function $\gamma(x)$ such that

 $p(x' = s', x = s)\gamma(x' = s') = p(x = s, x' = s')\gamma(x = s)$

Reversibilitu

Oner can show that $\gamma(x)$ is a stationary distribution

$$p(x', x)\gamma(x') = p(x, x')\gamma(x)$$
$$\int_{E} p(x', x)\gamma(x')dx = \int_{E} p(x, x')\gamma(x)dx$$
$$\gamma(x')\int_{E} p(x', x)dx = \int_{E} p(x, x')\gamma(x)dx$$

$$\gamma(x') = \int_E p(x, x')\gamma(x)dx$$

which is the definition of stationary distribution for a continuous x.

If the chain is irreducible, then this distribution is unique

 $\forall s, s' \in E$

• We want to sample values from a function g(), from which we cannot normally sample from (but we can evaluate the function)

• The initial ingredients are

• the target function g()

• A suggested transition to a new state x, sampled from a transition probability h: $x \sim h(X_n)$ (very often, a Gaussian kernel is used)

• For a given suggested transition, $r = \min\left(1, \frac{g(x)n(x, X_n)}{g(X_N)h(X_n, x)}\right) \text{ is the probability}$

to accept the suggested transition,

<u>Metropolis-Hasting</u>

Approximated $L(\Phi)$

 Draw new parameter Φ' close to the old Φ

Calculate L(Φ')

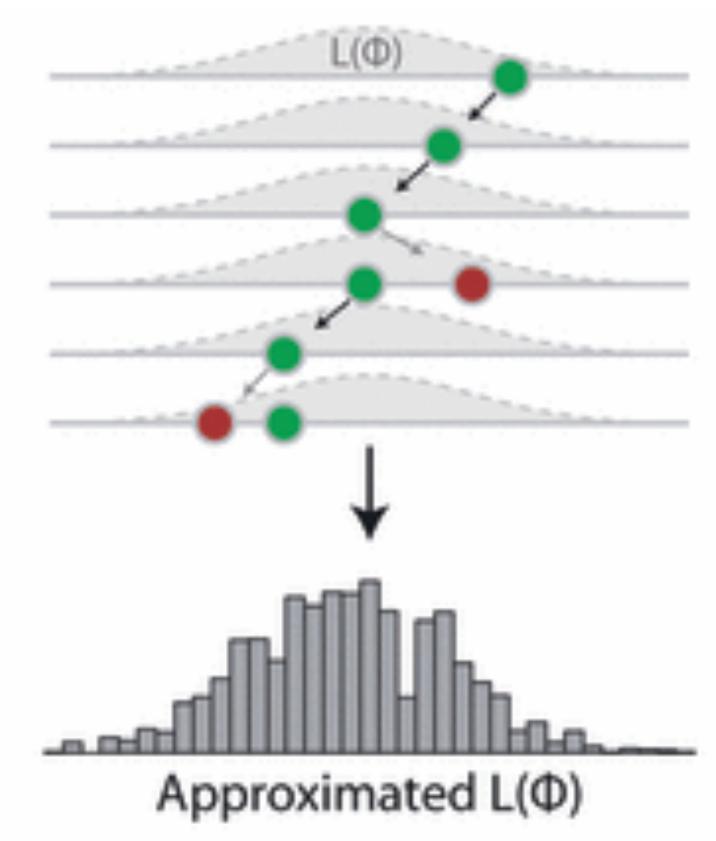
3) Jump proportional to $L(\Phi')/L(\Phi)$

• Based on this, the transition will be $\bigcirc X_n \to X_{n+1} = x$ with probability r $\bigcirc X_n \to X_{n+1} = X_n$ with probability 1 - r• The transition probability is then $k(\alpha,\beta) = r \cdot h(\alpha,\beta) = h(\alpha,\beta) \min\left(1,\frac{g(\beta)h(\beta,\alpha)}{g(\alpha)h(\alpha,\beta)}\right)$ The reversibility condition is verified

$$egin{aligned} g(lpha)k(lpha,eta) &= g(lpha)h(lpha,eta)\min\left(1,rac{g(eta)h(eta,lpha)}{g(lpha)h(lpha,eta)}
ight) = \min\left(g(lpha)h(lpha,eta)) &= g(eta)h(eta,lpha)\min\left(1,rac{g(lpha)h(lpha,eta)}{g(eta)h(eta,lpha)}
ight) = g(eta)k \end{aligned}$$

Metropolis-Hasting

- $(g(\alpha)h(\alpha,\beta),g(\beta)h(\beta,\alpha)))$
- (β, α)



- Draw new parameter Φ' close to the old Φ
- Calculate L(Φ')
- 3) Jump proportional to $L(\Phi')/L(\Phi)$

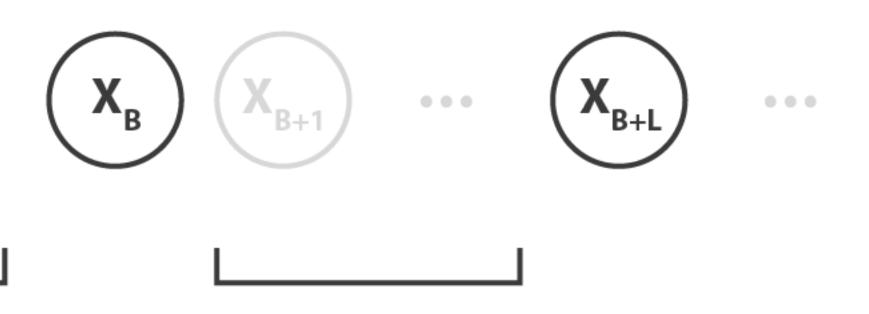
• Once the chain is defined, we can simulate a random sequence of state across it

• One has to guarantee that steady state conditions are reached. This is done removing the first N samples (during time)

• One has to avoid taking two consecutive states, since they are correlated. Instead, one should wait a few steps (lag) before selecting the extra element of the chain

Burn-in time

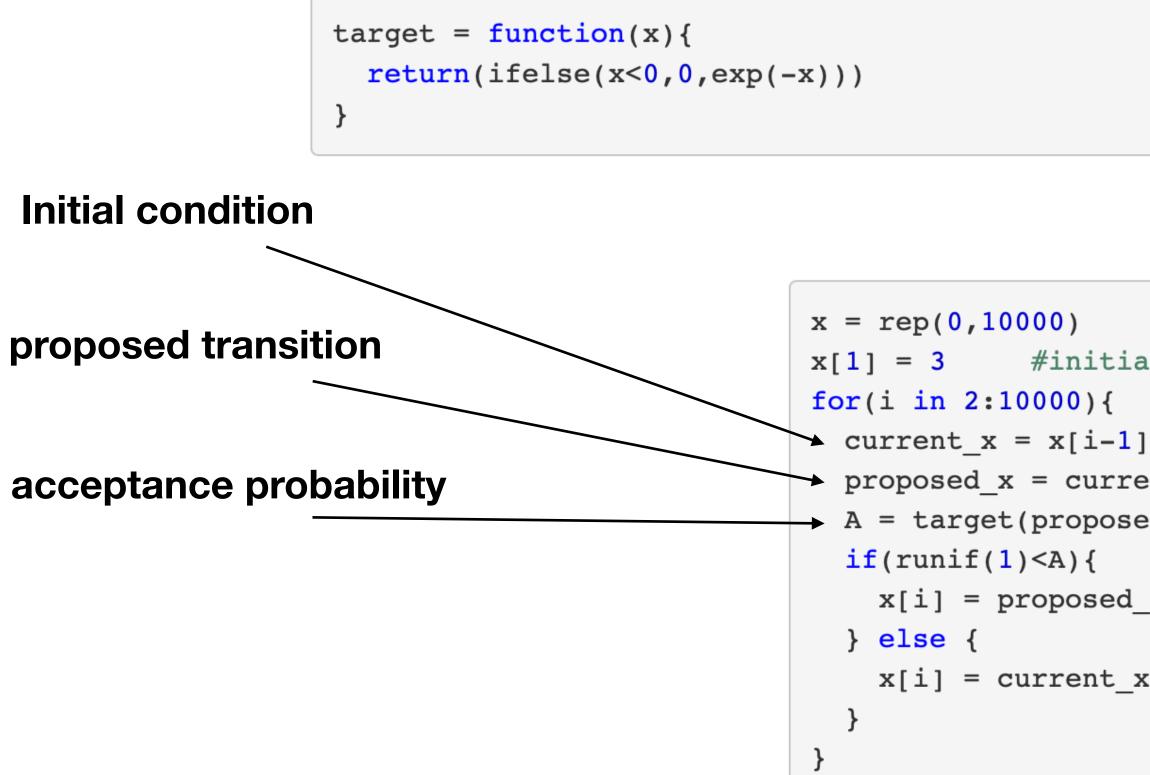
The chain is not considered to have reached the steady state yet and, so, these states do not follow the target probability distribution



Lag

These states are too correlated with X_{p} , so they can't be kept as we want to generate (almost) independent samples

• Example: sampling from an exponential (the target)



Notice that the choice of a symmetric kernel for the exchange of the two arguments allows to simplify the definition of the acceptance rate. The transition is accepted with a probability = ratio of the probabilities of the old and newly proposed states

• We reviewed various generalisation of the principle of indifference to choose an objective prior, based on information theory

• We discussed how to extract information from a posterior

• estimator

oredibility interval

hypothesis testing

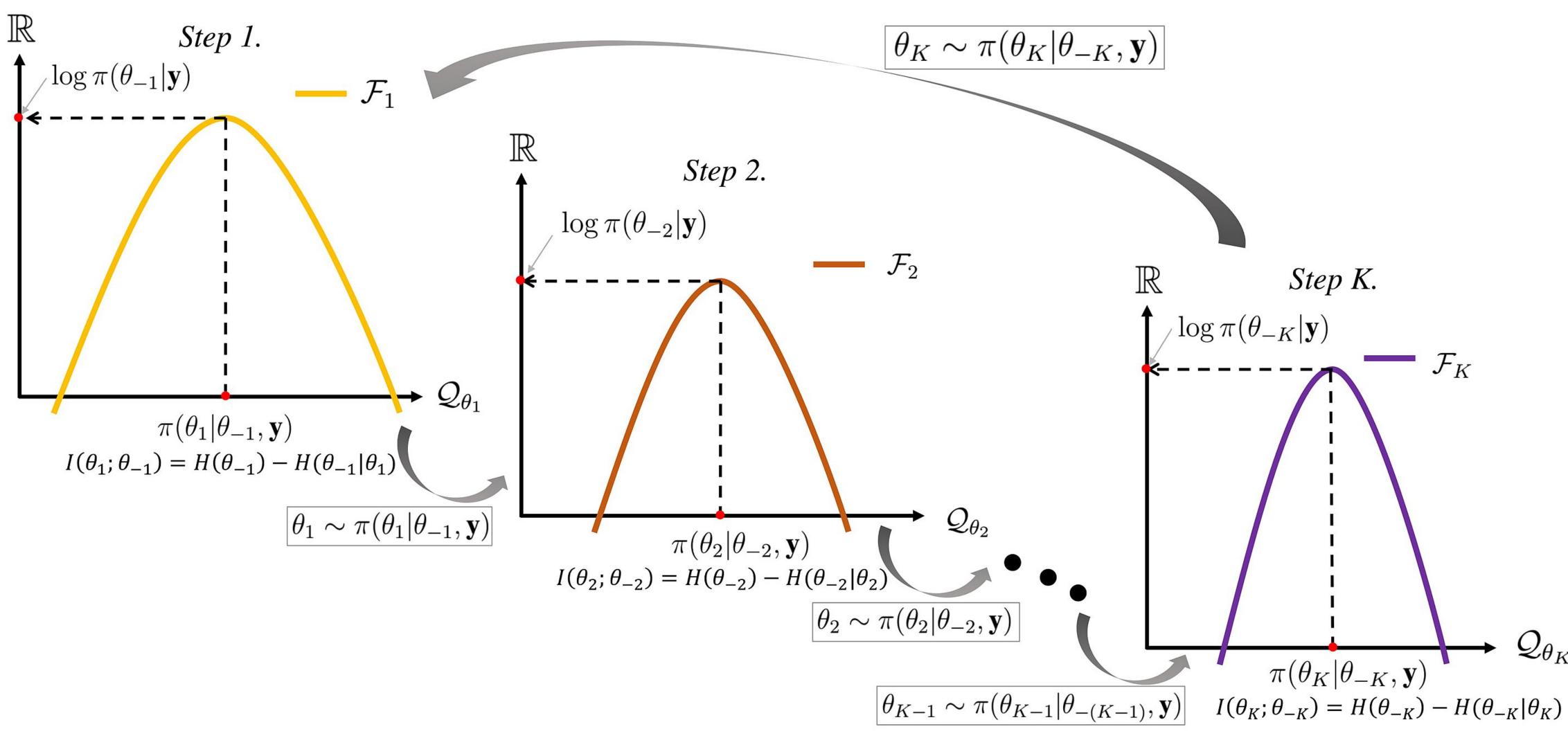
• We discussed how to use Markov Chain Monte Carlo to sample from an intractable posterior

- The Gibbs Sampling method is based on the assumption that, even if the joint probability is intractable, the conditional distribution of a single dimension given the others can be computed.
- First we randomly choose an integer d among the K dimensions of $\vec{\theta}$. Then we sample a new value for that dimension according to the corresponding conditional probability given that all the other dimensions are kept fixed

Gibbs Sampling

The initial condition is some arbitrary set of values
$$\vec{\theta}^{(0)}$$

One also needs the i-th full conditional posterior distribution
 $\pi(\theta_i | \theta_{-i}, y) = \pi(\theta_i | \theta_1, \dots, \theta_{i-1}, \theta_{i+1}, \dots, \theta_K, y) \quad \forall i \in [1, K]$
For a generic iteration
Step 1. draw $\theta_1^{(s+1)} \sim \pi(\theta_1 | \theta_2^{(s)}, \theta_3^{(s)}, \dots, \theta_K^{(s)}, y)$
Step 2. draw $\theta_2^{(s+1)} \sim \pi(\theta_2 | \theta_1^{(s+1)}, \theta_3^{(s)}, \dots, \theta_K^{(s)}, y)$
:
Step i. draw $\theta_i^{(s+1)} \sim \pi(\theta_i | \theta_1^{(s+1)}, \theta_2^{(s+1)}, \dots, \theta_{i-1}^{(s+1)}, \theta_{i+1}^{(s)}, \dots, \theta_K^{(s)}, y)$
Step i+1. draw $\theta_{i+1}^{(s+1)} \sim \pi(\theta_{i+1} | \theta_1^{(s+1)}, \theta_2^{(s+1)}, \dots, \theta_i^{(s+1)}, \theta_{i+2}^{(s)}, \dots, \theta_K^{(s)}, x)$
:
Step K. draw $\theta_K^{(s+1)} \sim \pi(\theta_K | \theta_1^{(s+1)}, \theta_2^{(s+1)}, \dots, \theta_{K-1}^{(s+1)}, y)$



Gibbs Sampling

