## Data Analysis and Bayesian Methods Lecture 4

Maurizio Pierini









# Uhich Prior?







• The choice of a prior is a crucial aspect of a Bayesian analysis. There are two classes of issues

Modeling knowledge: when something is known about a quantity, one needs to find a prior that models that know1edge

Modeling ignorance: this is where troubles start. Even an innocent assumption on a quantity x (e.g., a flat prior) can become a strong statement on some function of x (mind the Jacobian)



#### Uhich prior?

З







- We said that a prior is the modeling on a-priori knowledge (subjective prior)
- When modeling ignorance, it was suggested to instead fix the prior by a formal rule (objective prior)
  - We are trading the instability of a "democratic" flat function with a desired property, e.g., invariance under specific reparameterization
- Often called non-informative priors. Misleading name, since they carry a lot of information (they prefer certain values over others)



### Objective priors





t distribution, n=5



# Principle of Indifference

- The principle of indifference states that in the absence of any relevant evidence, agents should distribute their credence (or 'degrees of belief') equally among all the possible outcomes under consideration.
  - Starting point for the first writers on probability (Laplace, Bernoulli, etc.)
  - The simplest example of noninformative priors
  - Obvious application in case of discrete outcomes (dice, etc.)
- Doesn't work for continuous variables: flat on what?

#### https://en.wikipedia.org/wiki/Principle\_of\_indifference

- Suppose there is a cube hidden in a box. A label on the box says the cube has a side length between 3 and 5 cm.
- We don't know the actual side length, but we might assume that all values are equally likely and simply pick the mid-value of 4 cm.
- The information on the label allows us to calculate that the volume of the cube is between 27 and 125 cm<sup>3</sup>. We don't know the actual volume, but we might assume that all values are equally likely and simply pick the mid-value of 76 cm<sup>3</sup>.
- However, we have now reached the impossible conclusion that the cube has a side length of 4 cm and a volume of 76 cm<sup>3</sup>





### Principle of Transformation Group

• Generalization of principle of indifference, by E. T. Jaynes

- One should have an indifferent choice between equivalent problems (i.e., equivalent quantities of interest) rather than between different outcomes
- In practice, given two quantities x and y, one looks for a prior f such that solving for f(x) or f(y) gives the same result
- Reduces to principle of indifference for a discrete problem (which has to be permutation invariant)



• The prior to choose depends on what one is ignorant about

**Reparameterization invariance:** consider two possible parameterisations  $\theta$  and  $\phi$  of a given model. Assume that one is a smooth function of the other.

A reparameterization invariant prior is a prior that transforms under the usual rule of the change-of-variables theorem

$$p_{\phi}(\phi) = p_{\theta}(\theta) \left| \frac{d\theta}{d\phi} \right|$$









• The definition of Jeffrey's prior starts from Fisher information  $I(\theta)$ 

(•)  $I(\theta)$  measures the information that a random value carries about a parameter

• The Jeffrey's prior is (up to a normalization factor) the sqrt of the determinant of the Fisher information matrix

 $p(\theta) \propto \sqrt{\det I(\theta)}$ 



### Jeffrey's prior

Score: the partial derivative of the log Likelihood wrt the parameters

 $\frac{\partial}{\partial \theta} log \mathscr{L}(x \mid \theta)$ 

The score has 0 expectation value

$$E\left[\frac{\partial}{\partial\theta}\log\mathcal{L}(x\,|\,\theta)\right] = \int dx\mathcal{L}(x\,|\,\theta)\frac{\partial}{\partial\theta}\log\mathcal{L}(x\,|\,\theta) + \int dx\mathcal{L}(x\,|\,\theta)\frac{\partial}{\partial\theta}\mathcal{L}(x\,|\,\theta) = \frac{\partial}{\partial\theta}\int dx\mathcal{L}(x\,|\,\theta) = \frac{\partial}{\partial\theta}\int dx\mathcal{L}($$

One can then write the score's variance as

$$I(\theta) = E\left[\left(\frac{\partial}{\partial\theta}\log\mathcal{L}(x\,|\,\theta)\right)^2\right] = \int dx \mathcal{L}(x\,|\,\theta) \left(\frac{\partial}{\partial\theta}\log\mathcal{L}(x\,|\,\theta)\right)^2$$







(you can convince yourself) that)  $I(\vec{\theta})$  transformation rules guarantee the desir invariance under reparameterization

Interpretation of the second state of the s with the priors satisfyin the principle of transformation group

• But its definition is formally tight to information theory and it offers the opportunity to further generalisations



## Jeffrey's prior

Mean of a Gaussian: consider a Gaussian likelihood with fixed  

$$G(x \mid \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$I(\mu) = E\left[\left(\frac{d}{d\mu}\log G(x \mid \mu, \sigma)\right)^2\right] = E\left[\left(\frac{d}{d\mu}\frac{(x-\mu)^2}{2\sigma^2}\right)^2\right]$$

$$E\left[\frac{(x-\mu)^2}{\sigma^4}\right] = \frac{1}{\sigma^4}\int dx G(x \mid \mu, \sigma)(x-\mu)^2$$
So that  $p(\mu) \propto \sqrt{I(\mu)} = \text{constant}$ 

$$E[(x-\mu)^{2p}]\int dx G(x \mid \mu, \sigma)(x-\mu)^{2p} = (2p-1)!\sigma^{2p}$$









(you can convince yourself) that)  $I(\vec{\theta})$  transformation rules guarantee the desir invariance under reparameterization

I Jeffrey's prior coincides with the priors satisfyin the principle of transformation group

• But its definition is formally tight to information theory and it offers the opportunity to further generalisations



### Jeffrey's prior

**RMS of a Gaussian:** consider a Gaussian likelihood with fixe  

$$G(x | \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$I(\sigma) = E\left[\left(\frac{d}{d\sigma}\log G(x | \mu, \sigma)\right)^2\right] = E\left[\left(\frac{d}{d\sigma}\frac{(x-\mu)^2}{2\sigma^2}\right)^2\right]$$

$$E\left[\frac{(x-\mu)^4}{4}\frac{d}{d\sigma}\sigma^{=2}\right] = \frac{1}{4}\left(\frac{d}{d\sigma}\sigma^{-2}\right)^2 E\left[(x-\mu)^4\right] = \frac{1}{\sigma^6}$$
So that  $p(\sigma) \propto \sqrt{I(\sigma)} = \frac{1}{\sigma}$ 

$$E[(x - \mu)^{2p}] \int dx G(x \mid \mu, \sigma)(x - \mu)^{2p} = (2p - 1)!\sigma^{2p}$$







## Information and Entropy

 $D_{KL}(p(x), q(x)) = E \left| \log \frac{1}{2} \right|$ 

• It's not a distance between two functions  $D_{KL}(p(x), q(x)) \neq D_{KL}(q(x), p(x))$ 

• But it can be generalized to the smooth and symmetric Jensen-Shannon divergence (sometimes used in ML HEP *literature*)

$$D_{SJ}[p(x), q(x)] = \frac{1}{2} \left[ D_{KL}\left(p(x), \frac{p(x) + q(x)}{2}\right) + D_{KL}\left(q(x), \frac{p(x) + q(x)}{2}\right) \right]$$



In Information theory, the Kullback-Leibler divergence measures the relative entropy between two functions

$$g\frac{p(x)}{q(x)}\Big|_{p} = \int dx \ p(x)\log\frac{p(x)}{q(x)}$$



## Information and Entropy

• Consider a family of probability density functions, characterized by different values of some parameter  $\theta$ 

• Compute the KL divergence between two of these pdfs

 $D_{KL}(\theta_1, \theta_2) = D_{KL}[f(x \mid \theta_1), ]$ 

and  $\theta_2$ , one can expand  $\theta_1$  around  $\theta_2$ 

• It can be shown that the second therm of the expansion is the Fisher information

$$\left(rac{\partial^2}{\partial heta_i^\prime\,\partial heta_j^\prime}D( heta, heta^\prime)
ight)_{ heta^\prime= heta}=-\int f(x; heta)igg(rac{\partial^2}{\partial heta_i^\prime\,\partial heta_j^\prime}\log(f(x; heta^\prime))igg)_{ heta^\prime= heta}\,dx=[\mathcal{I}( heta)]_{i,j}\,dx$$



$$f(x \mid \theta_2)] = \int dx f(x \mid \theta_1) \log \frac{f(x \mid \theta_1)}{f(x \mid \theta_2)}$$

 $\bullet$  For small variation, i.e., for small differences between  $\theta_1$ 



The principle of maximum entropy states that the probability distribution which best represents the current state of knowledge about a system is the one with largest entropy

choose a prior in a Bayesian application

• Notice that maximizing  $H(\Pi)$  corresponds to minimising the KL diverge between  $\Pi$  and a flat distribution

In this respect, the MEP is a generalization of the indifferent principle, based on information theory



### Jayne's Maximum Entropy Principle

 $H(\Pi) = - \int \Pi(\theta) \log \Pi(\theta) d\theta$ 

• Based on this principle, one can build a prescription to









### Reference priors

• The KL divergence can be used as a metric to define a set of priors (reference priors) which generalise Jeffrey's priors

- minimise the role of the prior in the inference)
  - The KL divergence is used as a metric for the distance
  - experiment result

$$I(\Theta, T) = \int p(t) \int p(\theta|t) \log \frac{p(\theta|t)}{p(\theta)} d\theta dt = \int \int p(\theta, t) \log \frac{p(\theta, t)}{p(\theta)p(t)} d\theta dt$$

13



 $\odot$  Given a likelihood  $\mathscr{L}$ , one looks for the prior  $\Pi$  that maximises the expected distance between the prior and the posterior (as a way to

• The maximisation has to be done across all possible experiment outcomes, since the prior has to be chosen regardless of the







# Unat old we measure:





• Once the posterior is derived, all the information on the parameter of interest x is there

• We can then use it to make estimates on it

Maximum A Posterior (MAP) estimation: estimate the value of x using the max of the posterior

• Similar to max-likelihood estimator in frequentists statistics

• In the limit of large statistics, likelihood becomes narrow, prior less important, and the two estimators converge

15



#### Bayesian Estimator







#### Credible Intervals

 By integrating the posterior one can define a credible interval

Not uniquely defined

- Can integrate around the
   median, the MAP estimator,
   etc
- Different strategies adapt
   to different distribution



• e.g., don't use the median for bur-modal distributions









to decide between two hypotheses

 $H_0$ ) and  $p(D|H_1)$ 

• Using Bayesian probability

$$p(H_0 | D) = \frac{P(D | H_0)p(H_0)}{P(D)}$$

Maximum A Posteriori (MAP) test:

• Choose the hypothesis with largest p(H|D)

• This choice minimises the probability of a mistake



- As for frequentist statistics, one can use Bayesian statistics
  - Two hypotheses (H<sub>0</sub> and H<sub>1</sub>) and their probability models p(D)

$$p(H_1 | D) = \frac{P(D | H_1)p(H_1)}{P(D)}$$





#### • In a hypothesis test

- Type I error (false positive) consists in Probability of making Type I and Type II errors rejecting the null hypothesis  $H_0$  (e.g., there is no new physics) when H<sub>0</sub> is true
- Type II error (false negative) consists in Null hypothesis (H\_o) Alternative hypothesis rejecting the alternative hypothesis  $H_1$ distribution (H<sub>1</sub>) distribution (e.g., there is new physics) when  $H_1$  is true 1-β 1-α • The two errors have different implications • A Type II error corresponds to missing a discovery. With more data and a stronger ß

- evidence, the discovery is just postponed
- A Type I error corresponds to a false claim, that would ruin your scientific reputation



• HEP is (rightfully) a very conservative field: the community is willing to expose itself to Type II errors in order to minimise the chance of a Type I error

#### Type I and Type II errors

Type II error rate

Type I error rate





## Minimum Cost Hypothesis Test

# errors

One might have different costs for the two euros

 $OC_{10}$ : cost of choosing H1 when H0 is true

 $O C_{01}$ : cost of choosing HO when H1 is true

In that case, one would choose between HO and H1 the maximum between

 $p(H_0 | D)C_{10}$ 



• A MAP hypothesis testing gives same weight to the two

- weighting for the costs. In that case one would choose
  - $p(H_1 | D)C_{01}$







 Bayesian evidence: integral of a posterior model over all
 the parameters of the hypothesis (i.e., the denominator in posterior formula)

 $p_M(D) =$ 

• Bayes factor is the ratio of evidences and it's used to select among different hypotheses



#### Bayes Factor

$$\int d\alpha P_M(D \mid \alpha) P(\alpha)$$

 $K = \frac{P_{M_1}(D)}{P_{M_2}(D)} = \frac{\int d\alpha P_{M_1}(D \mid \alpha) P(\alpha)}{\int d\beta P_{M_2}(D \mid \beta) P(\beta)}$ 







# Efficient strategy for a Bayesian analysis







- Exploit the over-constrained EW sector (dictated by rigid symmetry structure) to perform consistency tests of the SM with *EW precision observables*
- Set of input parameters ( $\alpha$  scheme): GF,  $\alpha$ , mZ, mH, mt,  $\alpha$ S(mZ),  $\Delta \alpha had(5)$
- Compute EW precision observables as functions of these quantities
- Z-pole observables
- W observables
- Compare computations to experimental data to learn the values of the
- input quantities
- Extend relations to include BSM effects and determine bounds on New Physics
- Oblique parameters: S, T, U, ...
- Effective interactions: SMEFT

• …

# Example: The EUJ fit







 $\alpha$ , G<sub>F</sub>,  $\alpha$ <sub>s</sub>(M<sub>Z</sub>), M<sub>Z</sub>, M<sub>H</sub>, m<sub>t</sub>,  $\Delta \alpha$ <sub>had</sub><sup>(5)</sup> • Input parameters fixed • Observables LEP, Tevatron, and LHC

• EW precision observables

• top mass

• W mass

• Higgs couplings

• HEPfit uses <u>BAT (Bayesian Analysis Toolkit)</u> as the underlying engine for MCMC with Metropolis algorithm



# <u>Example: The EUJ fit</u>







 A posterior is computed with
 three elements

A prior



A likelihood

• The evidence (the denominator)

• The evidence also enters many applications, e.g., Bayesian hypothesis testing

• Computing the evidence implies computational expensive N-dim integration





- At low dimension, the integration might be affordable
- At high dimension, the integral might be intractable
  - In this case, sampling approaches are typically adopted to speed up the computation
  - With the UT analysis, we already saw a MC-based integration based on random sampling from a low dimension (~10) distribution
  - With higher dimensionality, smarter sampling techniques might be used (e.g., Markov Chain Monte Carlo)

# <u>Sampling Methods</u>





# Sampling Methods

statistics/estimations from samples





Samples that can be obtained with MCMC and without proceeding to the normalisation

Statistics or estimations that can be computed based on the generated samples

#### • With a sampling method, we give up the idea of deriving a normalized posterior

Instead, the target is to sample from the unnormalised distribution and use









To explain Markov Chain techniques, we need a few concepts

- A random process: an ordered
   sequence of random variables, the ordered being given by some index T (typically some discrete time index)
- <u>A Markov process</u>: a random process in which the knowledge of the value taken by the process at some  $T_0$ doesn't provide information about the evolution of the process at  $T>T_0$
- A homogenous discrete time Markov
   A homogenous discrete time
   A ho chain is a Markov process in which the space state at discrete time is also discrete
- In practice, one can discretize a continuous problem by using a Monte Carlo technique

P(future | present, past) = P(future | present, Markov property

















•  $E = \{e_i, e_2, ..., e_N\}$  is the state space

• When I write  $e_i$ , the i index runs across the discrete states of the state space

•  $X = \{x_1, x_2, ..., x_N\}$  is the array of values assumed by x at different discrete time instances

• When I write  $x_i$ , the index j labels the value taken by X at time  $T_i$ 

### Some notation









 A Markov chain is fully
 specified by two ingredients

The <u>initial probability</u> distribution of being in a certain state at T=0

 $p(x_0 = s) = q_0(s) \quad \forall s \in E$ 

The <u>transition probability</u> kernel = probability model to transition from state  $x \theta_{min}$ to state x'

 $P(x_{n+1} = s_{n+1} | x_n = s_n) = p(s_n, s_{n+1}) \quad \forall s_n, s_{n+1} \in E \times E$ 

# Markov Chain evolution







#### **Reducibility**

**Reducible chain:** some state cannot be reached from other states



2-periodicity: it takes 2n steps to go back to a given state

Irreducible chain: all states can be reached from any other states



**3-periodicity:** it takes 3n steps to go back to a given state





#### k-periodicity



#### recurrence/transience

transient: a state (e.g., 1,2,3 here below) is transient if there is a > 0probability not to go back to it



**recurrent:** a state is recurrent (e.g., 4 and 5 above) if we know that we will go back to it







# Stationary distribution

• A pdf  $\pi(x_i)$  over the space of states X is a stationary distribution if it relates to the probability transition kernel as



(•)  $\pi(x') = probability of being at x' a the current step$ 

•  $\sum_{x \in X} \pi(x)p(x, x') = probability of being at x' a the next iteration$ 

 By definition, a stationary distribution does not evolve in time

• An irreducible Markov chain has a stationary probability distribution if and only if all of its states are positive recurrent.



positive recurrent:
 recurrent within a
 finite time (as
 opposed to zero
 recurrent)





 $\odot$  We have a target function f(x) that we want to "learn" and then sample from (our *posterior*)

• We want to build a Markov Chain whose stationary solution is f(x)

• Once we have such a chain, we can sample a random sequence of states from the chain, long enough to reach the steady state solution

• A fraction of those generated sates are then kept

Build a Markov Chain whose stationary distribution is the distribution we want to sample from

Generate a sequence from that Markov Chain long enough to reach the steady state

 $(X_0)(X_1)(X_2) \cdots (X_n) \cdots$ 

Keep some well chosen states from that sequence as samples to be returned









• We need an algorithm to build the Markov Chain that has our target pdf as stationary distribution

To do so, we can exploit *reversibility* 

• A MC is reversible if there exist a function  $\gamma(x)$  such that

 $p(x' = s', x = s)\gamma(x' = s') = p(x = s, x' = s')\gamma(x = s)$ 

## Reversibilitu

Oner can show that  $\gamma(x)$  is a stationary distribution

$$p(x', x)\gamma(x') = p(x, x')\gamma(x)$$
$$\int_{E} p(x', x)\gamma(x')dx = \int_{E} p(x, x')\gamma(x)dx$$
$$\gamma(x')\int_{E} p(x', x)dx = \int_{E} p(x, x')\gamma(x)dx$$

$$\gamma(x') = \int_E p(x, x')\gamma(x)dx$$

which is the definition of stationary distribution for a continuous x.

If the chain is irreducible, then this distribution is unique

 $\forall s, s' \in E$ 







• We want to sample values from a function g(), from which we cannot normally sample from (but we can evaluate the function)

• The initial ingredients are

• the target function g()

• A suggested transition to a new state x, sampled from a transition probability h:  $x \sim h(X_n)$  (very often, a Gaussian kernel is used)

• For a given suggested transition,  $r = \min\left(1, \frac{g(x)n(x, X_n)}{g(X_N)h(X_n, x)}\right) \text{ is the probability}$ 

to accept the suggested transition,

# <u>Metropolis-Hasting</u>

Approximated  $L(\Phi)$ 

 Draw new parameter Φ' close to the old Φ

Calculate L(Φ')

3) Jump proportional to  $L(\Phi')/L(\Phi)$ 







• Based on this, the transition will be  $\bigcirc X_n \to X_{n+1} = x$  with probability r  $\bigcirc X_n \to X_{n+1} = X_n$  with probability 1 - r• The transition probability is then  $k(\alpha,\beta) = r \cdot h(\alpha,\beta) = h(\alpha,\beta) \min\left(1,\frac{g(\beta)h(\beta,\alpha)}{g(\alpha)h(\alpha,\beta)}\right)$ The reversibility condition is verified

$$egin{aligned} g(lpha)k(lpha,eta) &= g(lpha)h(lpha,eta)\min\left(1,rac{g(eta)h(eta,lpha)}{g(lpha)h(lpha,eta)}
ight) = \min\left(g(lpha)h(lpha,eta)) &= g(eta)h(eta,lpha)\min\left(1,rac{g(lpha)h(lpha,eta)}{g(eta)h(eta,lpha)}
ight) = g(eta)k \end{aligned}$$

# Metropolis-Hasting

- $(g(\alpha)h(\alpha,\beta),g(\beta)h(\beta,\alpha)))$
- $(\beta, \alpha)$



- Draw new parameter Φ' close to the old Φ
- Calculate L(Φ')
- 3) Jump proportional to  $L(\Phi')/L(\Phi)$







• Once the chain is defined, we can simulate a random sequence of state across it

• One has to guarantee that steady state conditions are reached. This is done removing the first N samples (during time)

• One has to avoid taking two consecutive states, since they are correlated. Instead, one should wait a few steps (lag) before selecting the extra element of the chain



Burn-in time

The chain is not considered to have reached the steady state yet and, so, these states do not follow the target probability distribution



#### Lag

These states are too correlated with  $X_{p}$ , so they can't be kept as we want to generate (almost) independent samples









#### • Example: sampling from an exponential (the target)



Notice that the choice of a symmetric kernel for the exchange of the two arguments allows to simplify the definition of the acceptance rate. The transition is accepted with a probability = ratio of the probabilities of the old and newly proposed states







• We reviewed various generalisation of the principle of indifference to choose an objective prior, based on information theory

• We discussed how to extract information from a posterior

• estimator

oredibility interval

hypothesis testing

• We discussed how to use Markov Chain Monte Carlo to sample from an intractable posterior











- The Gibbs Sampling method is based on the assumption that, even if the joint probability is intractable, the conditional distribution of a single dimension given the others can be computed.
- First we randomly choose an integer d among the K dimensions of  $\vec{\theta}$ . Then we sample a new value for that dimension according to the corresponding conditional probability given that all the other dimensions are kept fixed

# Gibbs Sampling

The initial condition is some arbitrary set of values 
$$\vec{\theta}^{(0)}$$
  
One also needs the i-th full conditional posterior distribution  
 $\pi(\theta_i | \theta_{-i}, y) = \pi(\theta_i | \theta_1, \dots, \theta_{i-1}, \theta_{i+1}, \dots, \theta_K, y) \quad \forall i \in [1, K]$   
For a generic iteration  
Step 1. draw  $\theta_1^{(s+1)} \sim \pi(\theta_1 | \theta_2^{(s)}, \theta_3^{(s)}, \dots, \theta_K^{(s)}, y)$   
Step 2. draw  $\theta_2^{(s+1)} \sim \pi(\theta_2 | \theta_1^{(s+1)}, \theta_3^{(s)}, \dots, \theta_K^{(s)}, y)$   
:  
Step i. draw  $\theta_i^{(s+1)} \sim \pi(\theta_i | \theta_1^{(s+1)}, \theta_2^{(s+1)}, \dots, \theta_{i-1}^{(s+1)}, \theta_{i+1}^{(s)}, \dots, \theta_K^{(s)}, y)$   
Step i+1. draw  $\theta_{i+1}^{(s+1)} \sim \pi(\theta_{i+1} | \theta_1^{(s+1)}, \theta_2^{(s+1)}, \dots, \theta_i^{(s+1)}, \theta_{i+2}^{(s)}, \dots, \theta_K^{(s)}, x)$   
:  
Step K. draw  $\theta_K^{(s+1)} \sim \pi(\theta_K | \theta_1^{(s+1)}, \theta_2^{(s+1)}, \dots, \theta_{K-1}^{(s+1)}, y)$ 







## Gibbs Sampling

