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Which Prior?



๏The choice of a prior is a 
crucial aspect of a Bayesian 
analysis. There are two 
classes of issues 

๏Modeling knowledge: when 
something is known about a 
quantity, one needs to find 
a prior that models that 
knowledge 

๏Modeling ignorance: this is 
where troubles start. Even 
an innocent assumption on a 
quantity x (e.g., a flat 
prior) can become a strong 
statement on some function 
of x (mind the Jacobian)

Which prior?
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๏We said that a prior is the 
modeling on a-priori knowledge 
(subjective prior) 

๏When modeling ignorance, it was 
suggested to instead fix the prior 
by a formal rule (objective prior) 

๏We are trading the instability of 
a “democratic” flat function with 
a desired property, e.g., 
invariance under specific 
reparameterization 

๏Often called non-informative 
priors. Misleading name, since they 
carry a lot of information (they 
prefer certain values over others)

Objective priors
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๏The principle of indifference 
states that in the absence of any 
relevant evidence, agents should 
distribute their credence (or 
'degrees of belief') equally among 
all the possible outcomes under 
consideration. 

๏Starting point for the first 
writers on probability (Laplace, 
Bernoulli, etc.) 

๏The simplest example of non-
informative priors 

๏Obvious application in case of 
discrete outcomes (dice, etc.) 

๏Doesn’t work for continuous 
variables: flat on what?

Principle of Indifference
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• Suppose there is a cube hidden in a box. A label 
on the box says the cube has a side length 
between 3 and 5 cm.


• We don't know the actual side length, but we 
might assume that all values are equally likely 
and simply pick the mid-value of 4 cm.


• The information on the label allows us to 
calculate that the volume of the cube is between 
27 and 125 cm3. We don't know the actual 
volume, but we might assume that all values are 
equally likely and simply pick the mid-value of 
76 cm3.


• However, we have now reached the impossible 
conclusion that the cube has a side length of 
4 cm and a volume of 76 cm3

https://en.wikipedia.org/wiki/Principle_of_indifference

https://en.wikipedia.org/wiki/Principle_of_indifference


๏Generalization of principle of 
indifference, by E. T. Jaynes 

๏One should have an indifferent 
choice between equivalent 
problems (i.e., equivalent 
quantities of interest) rather 
than between different outcomes 

๏In practice, given two quantities 
x and y, one looks for a prior f 
such that solving for f(x) or 
f(y) gives the same result 

๏Reduces to principle of 
indifference for a discrete 
problem (which has to be 
permutation invariant) 

๏The prior to choose depends on what 
one is ignorant about

Principle of Transformation  Group
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Reparameterization invariance: consider two possible 
parameterisations  and  of a given model. Assume that 
one is a smooth function of the other.  

A reparameterization invariant prior is a prior that 
transforms under the usual rule of the change-of-variables 
theorem 


θ ϕ

pϕ(ϕ) = pθ(θ)
dθ
dϕ



๏The definition of Jeffrey’s 
prior starts from Fisher 
information  

๏  measures the information 
that a random value carries 
about a parameter 

๏The Jeffrey’s prior is (up 
to a normalization factor) 
the sqrt of the determinant 
of the Fisher information 
matrix

I( ⃗θ)

I( ⃗θ)

Jeffrey’s prior
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p( ⃗θ) ∝ det I( ⃗θ)

Score: the partial derivative of the log Likelihood wrt the 
parameters





The score has 0 expectation value 


 

 

One can then write the score’s variance as





∂
∂θ

logℒ(x |θ)

E [ ∂
∂θ

log ℒ(x |θ)] = ∫ dxℒ(x |θ)
∂
∂θ

log ℒ(x |θ) =

∫ dxℒ(x |θ)
∂
∂θ ℒ(x |θ)

ℒ(x |θ)
=

∂
∂θ ∫ dxℒ(x |θ) =

∂
∂θ

1

I(θ) = E [( ∂
∂θ

log ℒ(x |θ))
2

] = ∫ dxℒ(x |θ)( ∂
∂θ

log ℒ(x |θ))
2



๏(you can convince yourself 
that)   transformation 
rules guarantee the desired 
invariance under 
reparameterization 

๏Jeffrey’s prior coincides 
with the priors satisfying 
the principle of 
transformation group 

๏But its definition is 
formally tight to 
information theory and it 
offers the opportunity to 
further generalisations 

I( ⃗θ)

Jeffrey’s prior
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Mean of a Gaussian: consider a Gaussian likelihood with fixed 











So that constant

σ

G(x |μ, σ) =
1

2πσ
e− (x − μ)2

2σ2

I(μ) = E [( d
dμ

log G(x |μ, σ))
2

] = E ( d
dμ

(x − μ)2

2σ2 )
2

=

E [ (x − μ)2

σ4 ] =
1
σ4 ∫ dxG(x |μ, σ)(x − μ)2

p(μ) ∝ I(μ) =

E[(x − μ)2p]∫ dxG(x |μ, σ)(x − μ)2p = (2p − 1)!σ2p



๏(you can convince yourself 
that)   transformation 
rules guarantee the desired 
invariance under 
reparameterization 

๏Jeffrey’s prior coincides 
with the priors satisfying 
the principle of 
transformation group 

๏But its definition is 
formally tight to 
information theory and it 
offers the opportunity to 
further generalisations 

I( ⃗θ)

Jeffrey’s prior
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RMS of a Gaussian: consider a Gaussian likelihood with fixed 











So that 

μ

G(x |μ, σ) =
1

2πσ
e− (x − μ)2

2σ2

I(σ) = E [( d
dσ

log G(x |μ, σ))
2

] = E ( d
dσ

(x − μ)2

2σ2 )
2

=

E [ (x − μ)4

4
d
dσ

σ=2] =
1
4 ( d

dσ
σ−2)

2

E [(x − μ)4] =
1
σ6

σ43!

p(σ) ∝ I(σ) =
1
σ

E[(x − μ)2p]∫ dxG(x |μ, σ)(x − μ)2p = (2p − 1)!σ2p



๏In Information theory, the Kullback-Leibler divergence 
measures the relative entropy between two functions 

๏It’s not a distance between two functions 

๏But it can be generalized to the smooth and symmetric 
Jensen–Shannon divergence (sometimes used in ML HEP 
literature)

Information and Entropy
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DKL(p(x), q(x)) = E [log
p(x)
q(x) ]

p
= ∫ dx p(x)log

p(x)
q(x)

DKL(p(x), q(x)) ≠ DKL(q(x), p(x))

DSJ[p(x), q(x)] =
1
2 [DKL (p(x),

p(x) + q(x)
2 ) + DKL (q(x),

p(x) + q(x)
2 )]



๏Consider a family of probability density functions, 
characterized by different values of some parameter  

๏Compute the KL divergence between two of these pdfs 

๏For small variation, i.e., for small differences between  
and , one can expand  around  

๏It can be shown that the second therm of the expansion is 
the Fisher information

θ

θ1
θ2 θ1 θ2

Information and Entropy
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DKL(θ1, θ2) = DKL[ f(x |θ1), f(x |θ2)] = ∫ dx f(x |θ1)log
f(x |θ1)
f(x |θ2)



๏The principle of maximum entropy states that the probability 
distribution which best represents the current state of 
knowledge about a system is the one with largest entropy 

 

๏Based on this principle, one can build a prescription to 
choose a prior in a Bayesian application 

๏Notice that maximizing  corresponds to minimising the KL 
diverge between  and a flat distribution 

๏In this respect, the MEP is a generalization of the 
indifferent principle, based on information theory

H(Π) = − ∫ Π(θ)log Π(θ)dθ

H(Π)
Π

Jayne’s Maximum Entropy Principle
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๏The KL divergence can be used as a metric to define a set of priors 
(reference priors) which generalise Jeffrey’s priors 

๏Given a likelihood , one looks for the prior  that maximises the 
expected distance between the prior and the posterior (as a way to 
minimise the role of the prior in the inference) 

๏The KL divergence is used as a metric for the distance 

๏The maximisation has to be done across all possible experiment 
outcomes, since the prior has to be chosen regardless of the 
experiment result

ℒ Π

Reference priors

13



What did we measure?



๏Once the posterior is derived, all 
the information on the parameter 
of interest x is there 

๏We can then use it to make 
estimates on it 

๏Maximum A Posterior (MAP) 
estimation: estimate the value 
of x using the max of the 
posterior  

๏Similar to max-likelihood 
estimator in frequentists 
statistics 

๏In the limit of large 
statistics, likelihood becomes 
narrow, prior less important, 
and the two estimators converge

Bayesian Estimator
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๏By integrating the posterior 
one can define a credible 
interval 

๏Not uniquely defined 

๏Can integrate around the 
median, the MAP estimator, 
etc 

๏Different strategies adapt 
to different distribution 

๏e.g., don’t use the 
median for bur-modal 
distributions

Credible Intervals
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๏As for frequentist statistics, one can use Bayesian statistics 
to decide between two hypotheses  

๏Two hypotheses (H0 and H1) and their probability models p(D|
H0) and p(D|H1) 

๏Using Bayesian probability 

๏Maximum A Posteriori (MAP) test: 

๏Choose the hypothesis with largest  

๏This choice minimises the probability of a mistake

p(H |D)

MAP Hypothesis Testing
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p(H0 |D) =
P(D |H0)p(H0)

P(D)
p(H1 |D) =

P(D |H1)p(H1)
P(D)



Type I and Type II errors
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๏In a hypothesis test 

๏Type I error (false positive) consists in 
rejecting the null hypothesis H0 (e.g., there 
is no new physics) when H0 is true 

๏Type II error (false negative) consists in 
rejecting the alternative hypothesis H1 
(e.g., there is new physics) when H1 is true 

๏The two errors have different implications 

๏A Type II error corresponds to missing a 
discovery. With more data and a stronger 
evidence, the discovery is just postponed 

๏A Type I error corresponds to a false claim, 
that would ruin your scientific reputation 

๏HEP is (rightfully) a very conservative field: 
the community is willing to expose itself to 
Type II errors in order to minimise the chance 
of a Type I error



๏A MAP hypothesis testing gives same weight to the two 
errors 

๏One might have different costs for the two euros 

๏ : cost of choosing H1 when H0 is true 

๏ : cost of choosing H0 when H1 is true 

๏In that case, one would choose between H0 and H1 
weighting for the costs. In that case one would choose 
the maximum between

C10

C01

Minimum Cost Hypothesis Test
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p(H0 |D)C10 p(H1 |D)C01



๏Bayesian evidence: integral of a posterior model over all 
the parameters of the hypothesis (i.e., the denominator in 
posterior formula) 

๏Bayes factor is the ratio of evidences and it’s used to 
select among different hypotheses

Bayes Factor
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pM(D) = ∫ dαPM(D |α)P(α)

K =
PM1

(D)
PM2

(D)
=

∫ dαPM1
(D |α)P(α)

∫ dβPM2
(D |β)P(β)



Efficient strategy for a 
Bayesian analysis



๏Exploit the over-constrained EW sector (dictated by rigid 
symmetry structure) to perform consistency tests of the SM with 
EW precision observables 

๏Set of input parameters (α scheme): GF, α, mZ, mH, mt, αS(mZ), 
Δαhad(5) 

๏Compute EW precision observables as functions of these 
quantities 

๏Z-pole observables 

๏W observables 

๏Compare computations to experimental data to learn the values 
of the  

๏input quantities 

๏Extend relations to include BSM effects and determine bounds on 
New Physics 

๏Oblique parameters: S, T, U, … 

๏Effective interactions: SMEFT 

๏…

Example: The EW fit
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FIG. 1. 1D pulls between the observed experimental values and the SM predictions (indirect determinations) for the di↵erent
EWPO (SM input parameters) considered in the fit, for the standard scenario. (The di↵erent colors in the figure are simply
used to distinguish the SM inputs [orange], charged-current observables [green] and neutral-current observables [blue].) Each
prediction is obtained removing the corresponding observable from the fit. The transparent bars represent the corresponding
nD pulls for groups of correlated observables. See text for details.

constructing the probability density function (p.d.f.) of the residuals p(x), and by computing the integral of the p.d.f.
in the region p(x) < p(0). This two-sided p� value is then converted to the equivalent number of standard deviations
for a Gaussian distribution. In the case of a Gaussian posterior predictive distribution, this quantity coincides with
the usual pull defined as the di↵erence between the central values of the two distributions divided by the sum in
quadrature of the residual mean square of the distributions themselves. The advantage of this approach is that no
approximation is made on the shape of p.d.f.’s. These 1D pulls are also shown in Figure 1. We can see a clear
consistency between the measurement of all EWPO and their SM predictions. Only A

0,b
FB shows some tension (at the

2� level), which should be considered in investigating new physics but also treated with care given the large number of
observables considered in the EW fit (see the discussion below for a quantitative assessment of the global significance
taking the look-elsewhere e↵ect into account).

Moreover, when interpreting this 1D pull one needs to take into account that A
0,b
FB is actually part of a set of

experimentally correlated observables. In order to check the consistency between SM and experiments in this case,
one can define an nD pull by removing from the fit one set of correlated observables at a time and computing the
prediction for the set of observables together with their covariance matrix. Then the same procedure described for 1D
pulls can be carried out, this time sampling the posterior predictive and experimental n-dimensional p.d.f.’s. This nD
pull is shown in the last column in Tables I and II, as well as in Figure 1, in which case we see that the global pull for
the set of correlated observables involving A

0,b
FB is reduced to 1.3�. To get an idea of the agreement between the SM
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Result Correlation Matrix
(ICSMEFT/ICSM = 31.8/80.2)

Ĉ(1)
'l

�0.007± 0.011 1.00

Ĉ(3)
'l

�0.042± 0.015 �0.68 1.00

Ĉ'e �0.017± 0.009 0.48 0.04 1.00

Ĉ(1)
'q �0.018± 0.044 �0.02 �0.06 �0.13 1.00

Ĉ(3)
'q �0.113± 0.043 �0.03 0.04 �0.16 �0.37 1.00

Ĉ'u 0.090± 0.150 0.06 �0.04 0.04 0.61 �0.77 1.00
Ĉ'd �0.630± 0.250 �0.13 �0.05 �0.30 0.40 0.58 �0.04 1.00
Ĉll �0.022± 0.028 �0.80 0.95 �0.10 �0.06 �0.01 �0.04 �0.05 1.00

TABLE V. Results from the dimension-six SMEFT fit in the standard average scenario. The values of the Wilson coe�cients
Ĉi are given in units of TeV�2.
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FIG. 3. Same as Figure 1 in the conservative average scenario.
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FIG. 4. Same as Figure 2 for the conservative average scenario.

๏Input parameters 

๏Observables LEP, Tevatron, and LHC 

๏EW precision observables 

๏top mass 

๏W mass 

๏Higgs couplings 

๏ HEPfit uses BAT (Bayesian Analysis Toolkit) as the 
underlying engine for MCMC with Metropolis algorithm

Example: The EW fit
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Experimental inputs
§ Input parameters: a, GF ,as(MZ), MZ, MH, mt, Dahad

(5)

§ To get a(MZ)        Dahad
(5): from Lattice QCD + perturbative running

§ For mt we combine:
§ 2016 Tevatron combination
§ ATLAS Run 1 and Run2 results
§ CMS Run 1 and Run 2 results
§ Recent CMS l+j measurement [mt=(171.77±0.38) GeV]

fixed

before

after

previous average
mt=172.58 ±0.45 GeV

new average 
mt=171.79 ± 0.38 GeV 

“standard”

new average 
mt=171.79 ±1.00 GeV

“conservative”

New CMS measurement dominates “standard” average but shows 3.5s tension with respect to 
Tevatron average (mt = 174.34 ± 0.64 GeV)             consider "conservative” scenario as well

https://bat.github.io


๏A posterior is computed with 
three elements 

๏A prior 

๏A likelihood 

๏The evidence (the 
denominator) 

๏The evidence also enters many 
applications, e.g., Bayesian 
hypothesis testing 

๏Computing the evidence implies 
computational expensive N-dim 
integration

Computational complexity
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p( ⃗θ) = p( ⃗θ |D) =
p(D | ⃗θ)π( ⃗θ)

∫
θ

p(D | ⃗θ)π( ⃗θ)



๏At low dimension, the integration 
might be affordable  

๏At high dimension, the integral 
might be intractable  

๏In this case, sampling approaches 
are typically adopted to speed up 
the computation 

๏With the UT analysis, we already 
saw a MC-based integration based 
on random sampling from a low 
dimension (~10) distribution 

๏With higher dimensionality, 
smarter sampling techniques might 
be used (e.g., Markov Chain Monte 
Carlo)

Sampling Methods
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๏With a sampling method, we give up the idea of deriving a normalized posterior 

๏Instead, the target is to sample from the unnormalised distribution and use 
the sampled dataset to derive parameters estimates 

๏mean values, credibility intervals, etc. 

๏typically using histograms 

๏MCMCs are computational effective ways to do so
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Sampling Methods



๏To explain Markov Chain techniques, we 
need a few concepts 

๏A random process: an ordered 
sequence of random variables, the 
ordered being given by some index T 
(typically some discrete time index) 

๏A Markov process: a random process 
in which the knowledge of the value 
taken by the process at some T0 
doesn't provide information about 
the evolution of the process at T>T0 

๏A homogenous discrete time Markov 
chain is a Markov process in which 
the space state at discrete time is 
also discrete  

๏In practice, one can discretize a 
continuous problem by using a Monte 
Carlo technique

Markov Chains
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๏  is the state 
space 

๏When I write , the  
index runs across the 
discrete states of the 
state space  

๏  is the array 
of values assumed by  at 
different discrete time 
instances 

๏When I write , the index 
 labels the value taken 
by X at time 

E = {ei, e2, . . . , eN}

ei i

X = {x1, x2, . . . , xN}
x

xj
j

Tj

Some notation
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๏A Markov chain is fully 
specified by two ingredients 

๏The initial probability 
distribution of being in a 
certain state at T=0 

๏The transition probability 
kernel = probability model 
to transition from state x 
to state x’

Markov Chain evolution
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p(x0 = s) = q0(s) ∀s ∈ E

P(xn+1 = sn+1 |xn = sn) = p(sn, sn+1) ∀sn, sn+1 ∈ E × E



Chain properties

30

Reducible chain: some state cannot 
be reached from other states

Irreducible chain: all states can 
be reached from any other states

Reducibility k-periodicity
2-periodicity: it takes 2n steps to go 
back to a given state

3-periodicity: it takes 3n steps to go 
back to a given state

recurrence/transience

recurrent: a state is recurrent (e.g., 4 
and 5 above) if we know that we will 
go back to it

transient: a state (e.g., 1,2,3 here 
below) is transient if there is a >0 
probability not to go back to it



๏A pdf  over the space of states  is a 
stationary distribution if it relates to the 
probability transition kernel as   

๏  = probability of being at x’ a the 
current step 

๏  = probability of being at x’ a 

the next iteration 

๏By definition, a stationary distribution does 
not evolve in time 

๏An irreducible Markov chain has a stationary 
probability distribution if and only if all of 
its states are positive recurrent.

π(xi) X

π(x′ )

∑
x∈X

π(x)p(x, x′ )

Stationary distribution
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π(x′ ) = ∑
x∈X

π(x)p(x, x′ )

positive recurrent: 
recurrent within a 
finite time (as 
opposed to zero 

recurrent)



๏We have a target function  that we want to “learn” and then sample from (our 
posterior) 

๏We want to build a Markov Chain whose stationary solution is  

๏Once we have such a chain, we can sample a random sequence of states from the 
chain, long enough to reach the steady state solution 

๏A fraction of those generated sates are then kept 

f(x)

f(x)

MCMC and Posterior
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๏We need an algorithm to 
build the Markov Chain 
that has our target pdf 
as stationary 
distribution 

๏To do so, we can exploit 
reversibility 

๏A MC is reversible if 
there exist a function 

 such thatγ(x)

Reversibility
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p(x′ = s′ , x = s)γ(x′ = s′ ) = p(x = s, x′ = s′ )γ(x = s) ∀s, s′ ∈ E

Oner can show that   is a stationary 
distribution














which is the definition of stationary distribution for 
a continuous x.

If the chain is irreducible, then this distribution is 
unique

γ(x)

p(x′ , x)γ(x′ ) = p(x, x′ )γ(x)

∫E
p(x′ , x)γ(x′ )dx = ∫E

p(x, x′ )γ(x)dx

γ(x′ )∫E
p(x′ , x)dx = ∫E

p(x, x′ )γ(x)dx

γ(x′ ) = ∫E
p(x, x′ )γ(x)dx



๏We want to sample values from a function 
, from which we cannot normally sample 

from (but we can evaluate the function) 

๏The initial ingredients are 

๏the target function  

๏A suggested transition to a new state 
, sampled from a transition 
probability :  (very often, a 
Gaussian kernel is used) 

๏For a given suggested transition, 

 is the probability 

to accept the suggested transition, 

g()

g()

x
h x ∼ h(Xn)

r = min (1,
g(x)h(x, Xn)

g(XN)h(Xn, x) )

Metropolis-Hasting
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๏Based on this, the transition will be  

๏  with probability  

๏  with probability  

๏The transition probability is then  

 

๏The reversibility condition is verified

Xn → Xn+1 = x r

Xn → Xn+1 = Xn 1 − r

k(α, β) = r ⋅ h(α, β) = h(α, β) min (1,
g(β)h(β, α)
g(α)h(α, β) )

Metropolis-Hasting

35



๏Once the chain is defined, we can simulate a random sequence of state across it 

๏One has to guarantee that steady state conditions are reached. This is done 
removing the first N samples (during time) 

๏One has to avoid taking two consecutive states, since they are correlated. 
Instead, one should wait a few steps (lag) before selecting the extra element of 
the chain

Sampling Process
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๏Example: sampling from an exponential (the target)

A simple example
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Initial condition

proposed transition

acceptance probability

Notice  that the choice of a symmetric kernel for the exchange of the two arguments allows to simplify the definition 
of the acceptance rate. The transition is accepted with a probability = ratio of the probabilities of the old and newly 
proposed states



๏We reviewed various generalisation of the principle of 
indifference to choose an objective prior, based on 
information theory 

๏We discussed how to extract information from a posterior 

๏estimator 

๏credibility interval 

๏hypothesis testing 

๏We discussed how to use Markov Chain Monte Carlo to 
sample from an intractable posterior

Summary
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Backup
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๏The Gibbs Sampling method 
is based on the assumption 
that, even if the joint 
probability is intractable, 
the conditional 
distribution of a single 
dimension given the others 
can be computed.  

๏First we randomly choose an 
integer d among the K 
dimensions of . Then we 
sample a new value for that 
dimension according to the 
corresponding conditional 
probability given that all 
the other dimensions are 
kept fixed

⃗θ

Gibbs Sampling
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The initial condition is some arbitrary set of values 


One also needs the i-th full conditional posterior distribution





For a generic iteration


⃗θ(0)

π(θi |θ−i, y) = π(θi |θ1, . . . , θi−1, θi+1, . . . , θK, y) ∀i ∈ [1,K]



Gibbs Sampling
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