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LHC 3s 2 discovery machine

® The LHC was mainly built to discover the Hi1ggs boson

@ ATLAS & CMS were designed to cover the meaningful mass range
for a particle that was fully characterized
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resolution for the above particles will be better than 1% at 100 GeV. At the core of
the CMS detector sits a large superconducting solenoid generating a uniform magnetic
field of 4 T. The choice of a strong magnetic field leads to a compact design for the
muon spectrometer without compromising the momentum resolution up to rapidities
of 2.5. The inner tracking system will measure all high p; charged tracks with a
momentum precision of Ap/p = 0.1 pt (pt in TeV) in the range Im | < 2.5. A high
resolution crystal electromagnetic calorimeter, designed to detect the two photon
decay of an intermediate mass Higgs, is located inside the coil. Hermetic hadronic
calorimeters surround the intersection region up to In| =4.7 allowing tagging of
forward jets and measurement of missing transverse energy.




Bl ANnd clearly it worked
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Ol Searches for something...

CMS AN AN-11-065

@At the LHC, you need a
signal hypothesis CMS Draft Analysis Note

The content of this note is intended for CMS internal use and distribution only

@® lo design a trigger

2011/11/08

Head Id: 83705
Archive Id: 83789
Archive Date: 2011/11/07

@ TO Op t -im-ize _)/Ol«lr1 cu tS Archive Tag: trunk

@ To compute the test

Trigger strategies for Higgs searches

statistics
The Higgs PAG
@ To 1nterpret the
results
Abstract
@ SO far so goo d... This document describes the triggers used in the Higgs analyses.




Exclusi
® What do you do when Jetinclusive event class N
event class n| «--» : Calculate
J e /Reglon1/
you don’t know what to e+2u+Njets Te+2u+1jet+Njets D p-value
7 [ 1e+X } o Choose
search for: . | wx | e .
{ 1e+1jet+X }— 2u ——{ 1p+1jet+X J ¢ smallest
J/ 1jet \[ ° p-value
[ Te+1p+X 2pu+X }
® Any cut could be a — —
S _igna 7 k_i 7 7er [ Te+1p+ljet+X 2p+1jet+X } eglonn p-value
Inclusive - - i
[ tet2utX M ter2ptHjot+X }event Clacs Kinematic variable
® You need to look at cE8282888EEEE888cce
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@ How do you know that : :

the “right events” are
there to start with? https://arxiv.org/pdf/2010.02984.pdf



https://arxiv.org/pdf/2010.02984.pdf

hes &
thod

LC Me

'l

C

MNew Physics searc
Sclen




CE/RW
\\_/

HEP searches 1N

® Research under the scientific method Observation
starts gathering information about nature

® Instead, our baseline 1s the SM, which
was formed once these informations were

Form the y.
ga th er ed Hypoihesis
Tes.ttl}e
@ We are victim of our success: Predction
Do the
) Analysis
® S1ince 1970s, we start always from the 1
same point L

® We have lost the value of learning from
data

@ Not by chance, we totally endorsed
blind analysis as the ONLY way to

_ . 8 :;':.:..E European
sear Ch N LErsessss Research
The Results . :.:erc Council




Learning from Dats

® Rather than specifying a signal hypothesis , boomem
upfront, we could start looking at our data
AsK Questions

=

® Based on what we see (e.g., clustering alike
objects) we could formulate a signal

hypothesis FormTTe
Hypothesis
EXAMPLE : | 1 ] b d Sk
@ . Stal" C a557 'ICat'l On WaS ase On Predictions
observed characteristics Do e
Analysis
. . . Main-sequence Main-sequence Main-sequence Fraction of all
Effective Vega-relative Chromaticity 1117 17 Tt Hydrogen )
Class temperaturel 112 chromaticityl3l4I] (D65)STEIGIb) mass!'ll’] radius!'1l’] luminosity!'1l”] lines | Main-sequence
= (solar masses) (solar radii) (bolometric) stars!8! Arrive at
Conclusion
O | =30,000K blue blue =16 Mg =>6.6 Rp = 30,000 L Weak ~0.00003%
B | 10,000-30,000 K blue white deep blue white 2.1-16 Mg 1.8-6.6 R 25-30,000 Lg Medium 0.13%
A | 7,500-10,000 K white blue white 1.4-2.1 Mg 1.4-1.8 Ry 5-25 L Strong 0.6%
F | 6,000-7,500 K yellow white white 1.04-1.4 Mg 1.15-1.4 Rg 1.5-5Lg Medium 3%
G | 5,200-6,000 K yellow yellowish white 0.8-1.04 Mg 0.96-1.15 Ry 0.6-1.5 Lo Weak 7.6%
K |8,700-5,200 K light orange pale yellow orange 0.45-0.8 Mg 0.7-0.96 Rp 0.08-0.6 Lo Very weak  12.1%
M | 2,400-3,700 K orange red light orange red 0.08-0.45 M <0.7 Ro <0.08 Lo Very weak | 76.45%

@ Afterwords,

1t was realised that different
classes correspond to differegt temperatures

Yes

Communicate

The Results




@) Learning from Anomalies

@ Anomaly detection 1s one kind of data mining technique
® One defines a metric of “typicality” to rank data samples

@ Based on this ranking, one can identify less typical events, tagging
them as anomalies

® By studying anomalies, one can make hypotheses on new physics mechanisms
20 . ‘2 ObjECt ID: 960415

15

10

-10

-15

10 Anomaly Score: 4470837



Back to 1984

@ In the 1984 the UA1l
experiment reported an
excess of events with large
missing transverse energy

@ Before than, events with
th1s signatures were
extensively discussed with
theorists (see “” for a
first hand account of this)

® The community was looking
for explanations (which

eventually was provided by a

combination of calorimeter
cracks and tau decays)
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Back to 1984

® In the article, one sees the on n W  w 0
seeds of modern large-scale data N
analysis techniques N e,
E “r Cos Ay > -08 |
® But the paper 1s more about <
single events, event displays, § :
etc. and not just significance,
limits, p-value and , ] e B A
-l' n te r,p r,e ta t .l' On 0 1000 ZO?EE" . (GeVB:))OO 4000 5000
2 o . ' RUN 8 167 EVENT 90 o
@ Data, and not their statistical f s | e B
interpretation, was central 1

@ Certainly, we moved away from
that for good reason (blind
analysis, etc.)

@ On the other hand, aren’t we

m7- SS 7- ng Some th 7- ng ? - - ET VECT SUM = +47.67GeV MAX = +33.16GeV
12
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@)l L ooking at data used to b
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@ Our community looked at data for NN . @)
decades. It was the standard before |HEANGENESEYS~SUW N, o
the new standard (large-scale blind [EESESRREE <2/EREE = T
statistical analyses) became a thing %

@I am not saying we should go back SR I . @y . i
(Discoveries have to be based on g i N o™
reasonable statistical procedures) R e e ocaiog S I

@1 am saying that we should have a
pre-analysis step 1n which we look
at data to 1dentify reasonable
signatures.

@® Model 1ndependent searches are a way
to do this. But there are other
ways, 1n which data are made more
central

13
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[Model iIndependence

@ Since Tevatron/Hera, people Exclusive

" Jet-inclusive
tried 1;0 go beyOHd d event class event class

supervised setup

1e+2u+Njet \ 1e+2u+1jet+Njet
@ No signal specified upfront { e ]‘\ /'[ bl J

1e
[ 1e+1jet+X } > 1u+ijet+X

. . 1jet -
emultiple signatures L . /'\\ X

considered at once - ’

Te+1p+1 jet-l-x 2pu+ijet+X J
. .. Inclusive
@ mu 7 t -l p 7 e quan t -l t -l eS 1e+2p'|‘x 1e+2p+1jet+X }event class

considered at once

15



The pipeline

® Run a goodness of fit test L e
across these many histograms - > [ Region1 [ | " aiue

and focus on the smallest p- R ~ o Choose
values to highlight possible . e
anomalies . Al

/ : / Calculate
Region n
p-value

@ Build a p-value distribution
and look for an excess of Ilow-
value bins

: : _ p
Event Event  Event Single round o CMS _Simulation Preliminary __________35.9fb" (13TeV)
class class class 5 histograms Q 10° Exclusive classes : S; distributions |

S 8 e Median SM expectation 3
A B C © e Mean SM expectation
I r I SM expectation + 16
~ ~ ~ N 02 = - _] SM expectation J_r'2 c 3
Data scan D D D —_— H 2 : o = — = Analytical approximation 3
____________ = c i fis—
Round 1 N N N = = : =
L_P p P _, T = 10 — - _
FTTo T S iy ; g
Round2 t 5 p | p . —» w0 L ! -
P e R R - § = =
lllllllllllllllllllllllllllllllll — 1 0_1 = é L L —:
11111 Lvvv v vy v g by vy g=,|,,,;"|,"‘,,|"‘“|,"l"| Ik I Tl e I-HJ—'E
O 05 1 15 2 25 3 35 4

log, (P)




At work with real data

@ In practice, this has approach had Ilimitations

@ Statistical fluctuations happen: low p-value bins will be
found even 1n absence of a signal

@® Data/MC agreement: the whole strategy relies on MC
simulation 1n low-statistics phase space. One might have
1ssues with PDF, missing NLO contributions, etc.

@ Detector simulation: MC simulation might miss detector
1ssues that would manifest as a large p-value. Certainly
anomalies, but not of the kind one 1s targeting

@ It certainly had i1ts big value: helped finding 1ssues with
data, reconstruction software, etc. Particularly useful on
first runs

17



@ Physics-motivated anomaly detection

@ At the beginning of the LHC, anomaly
detection systems were put 1n place

to 1dentify possibly recurrence of i Somarimaran L
low-probability events CMS % Run 133875, Event 1228182

‘| Lumi section: 16 ;. -
Sat Apr 24 2010, 09:08:46 CEST i

® Very high-pT objects

Muon p;=38.7 GeV/c

ME; = 37.9 GeV

®Large multiplicity of hard-to MT:mGeycz —\\
produce particles (leptons) /

.

® Even 1n this case |I

@ fluctuations happen \\

@ detector might malfunction

@ It was great to find anomalies, but
not of the kind one was looking for
18
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Unsupervised Learning

UnNnsupervised L.earning




TRAINING DATA

@A training dataset x
@A target y
@A model to go from x to y

@A loss function quantifying how wrong the model 1s

@A minimisation algorithm to find the model h that corresponds to
the minimal loss

=0



Ul Unsupervised learning

TRAINING DATA OUTPUT GIVING LOSS
MINIMUM

@A training dataset x
@ No target y <
@A model providing an output y at the minimum of the Jloss
@A loss function of x and y specifying the task

@e.qg., clustering: group similar objects together

=1




Ol Generative Adversarial Training

® Two networks trained
against each other

® Generator: create Latent

Space

images (from noise, _
other 1mages, etc)

®Discriminator: tries - P G
to spot which image o

comes from the -

generator and which —

1S genuine

Noise

@ Loss function to minimise: Loss(Gen)-Loss(Disc)
® Better discriminator -> bigger loss
® Better generator -> smaller loss

@ Trying to full the discriminatore, generatore learns how to create
more realistic 1mages

2



Ol Generative Adversarial Training

® Two networks trained gl
against each other Eﬁ%l
[—
® Generator: create
1mages (from noise, e A BN
other images, etc) el D vl A
e v eiscriminatOJ

@ Discriminator: tries = e
to spot which image Sl
comes from the
generator and which

1S genuine
@ Loss function to minimise: Loss(Gen)-Loss(Disc)
® Better discriminator -> bigger loss

® Better generator -> smaller loss

@ Trying to full the discriminatore, generatore learns how to create
more realistic 1mages
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Ol Generative Adversarial Training

® Two networks trained cools

against each other Eﬁ%l

@ Generator: create oten _
1mages (from noise, _ - A BN
other images, etc) T ke D A

i N [ i Discriminator
. J

@ Discriminator: tries - P G = _
to spot which image I el I N f
comes from the — ; 5
generator and which — L Fine Tune Training

1S genuine

® Loss function to minimise: Loss(Gen)-Loss(Disc)
® Better discriminator -> bigger loss
@ Better generator -> smaller loss

@ Trying to full the discriminatore, generatore learns how to create
more realistic 1mages

=24
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Particle shouwer generation

See contribution to NIPS workshop Shower longitudinal section
® Start from random noise o —
3‘07§_ Giilngenera’red i :|::|:+
® Works very well with images o + +
® Applied to electron showers in digital calorimetersasa = = .
replacement of GEANT L -
’ :_giON”;“enerGT 5 o Shower TrOnDVUI_DU SSC UL
2. , = S 7] o
o
. | ’ - -
' ¥ : 8iilng;4enero’r d - giroun;i:nerot d -
’ 3 8
see also de Olivera, Paganini, and Nachman | SUTNEDS - UUIUEUEN R SIS S U

https://arxiv.org/abs/1712.10321 ={=



https://dl4physicalsciences.github.io/files/nips_dlps_2017_15.pdf
https://arxiv.org/abs/1712.10321
https://arxiv.org/abs/1712.10321

Generating full jets

stride

' -

® Start from random noise

® VWorks very well with images

(VAL RER RN

® Applied to electron showers in digital calorimeters
as a replacement of GEANT

AR REEEN DR R/
AN

0.08 . . . 0.045 . . . . . 4.0 . .
1 LAGAN (signal) ] generated (W' = WZ) 1 LAGAN (signal)
. [Z 21 HEPjet2D (signal) | | 0.040} o ) L — 1 HEPjet2D (signal)
007 ' |3 LAGAN (bkg) L' Pythia (W' —=W2) > 1 LAGAN (background)
I 11 = 21 HEPjet2D (bkg) i 1 ~ 1 HEPjet2D (background) - -

o Lo TR B g 0035 e e SRR sondll  de Olivera, Paganini, and Nachman
g | - E - _ ythla jets @ -
2 0030 Sl https://arxiv.org/pdf/1701.05927.pdf
2 2 0.025} 2
8 0.04 D g 2.0}
,—é § 0.020} g
2 0.03 5 2 15f
ﬁg = 0.015¢ 4"5’
) d )

0.02 ::) 0.010 1.0}

0.01f 0.005 | 0.5

0.00 ] ] ] ] ) 0.000 ] ] ] ] '- 0.0 r s | I

40 50 60 70 80 90 100 110 120 200 220 240 260 280 300 320 340 0.0 0.4 0.6 0.8 1.0
Discretized m of Jet Image Discretized pr of Jet Image Discretized 7,; of Jet Image

Figure 6: The distributions of image mass m([), transverse momentum pr(/), and n-subjettiness

T91([). See the text for definitions.
2/



https://arxiv.org/pdf/1701.05927.pdf

Rutoencoders

@ Autoencoders are networks
with a typical “bottleneck”
structure, with a symmetric
structure around 1t

Latent

® They go from Rn — Rnr —_ space
Compressed
® They are us ed to 7e_a rn X Encoder T Decoder
the 1dentity function as
fEF(x))

where f: Rn— Rk and f-1: Rk

— Rn

@ Autoencoders are essential
tools for unsupervised
studies

=8




9l Dimensional Reduction

® Autoencoders can be seen as compression algorithms
® The n 1nputs are reduced to k quantities by the encoder
® Through the decoder, the i1nput can be reconstructed from the k quantities

@®As a compression algorithm, an auto encoder allows to save (n-k)/n of the
space normally occupied by the 1nput dataset

0 0 0 0 0 0 0
0 0 0 10 | 10
F 0 0 20 .
0 10 20 0 10 20 0 10 20 0 10 20

0 10 20
0

0 0 0 0
0 0 10 10
DO q DO

0 10 20 0 10 20 0 10 20 0 10 20

|

20




® The auto encoder can 10 -
be used as a

clustering algorithm 5 -
@Al1ke 1nputs tend 0-
to populate the
same region of the 5 -

latent space
_10-
@ Different inputs
tend to be far away

30



Traunning an Rutoencoder

] QCD

®@AEs are training o
minimizing the distance |
between the Tnputs and the
corresponding outputs

1 epoch

Probability (a.u.)
—
(=]

® The Toss function | 1o Tl

0

—
<
(=)

re p resents some d '[ stance 0 500000 1000000 ) Elngggoo 2000000 2500000
metric between the two

10 epoch

-
<
-4

Probability (a.u.)

@®e.g., MSE Joss :

1078 -
r irI-Ln 0

0 500000 1000000 1500000 |2000000 2500000
AE Loss

@A minimal distance
guarantees that the latent
representation + decoder
1S enough to reconstruct | _
the input information | }ﬂ Sopping)

100 I

1079 -

1077 -

42 epoch

1077 -
* (reached early

Probability (a.u.)

0 500000 1000000 1500000 2000000 2500000
=1 AE Loss




RANnomaly detection

@ Once trained, an autoencoder
can reproduce new 1nputs of
the same kind of the training
dataset

=8

Ifigi

® The distance between the
input and the output will 107"
be small ‘

4

@ If presented an event of some
new kind (anomaly), the
encoding-decoding will tend
to fail

Probability (a.u.)
—
<

l
1072 4 't'f

® In this circumstance, the | l | | ﬂ |
loss (=distance between 0 500000 1000000 1500000 2000000 2500000

Tnhput and output) will be AE Loss
bigger

32
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Looking at (3 lot of) dat-a wiLth
RANnomaly Detection Algorithms




9l Convolutional Autoencoders

Input Volume (+pad 1) (7x7x3) Filter WO (3x3x3) Filter W1 (3x3x3) Output Volume (3x3x2)
jisiysipn) \ S giay Wi z,.2,0] ofs,s,0]
0 1 -1 281 3 3

0 -1 0 30 |7 |3
0 -1 1 8 10 -3

wil[s,2,1] ofs,2,1]
=18 IO D -8 -8 -3

1 -1 0 31 0
1 -1 0 -3 -8 -5

wifes,2,2]
-1 1 -1

0 -1 -1
1 0 O

® They use T T
convolutional r A °
layers to process
these 1mages and
learn from them

0
0

%x

D =\ O S\ N NIO O O

@ Conv Autoencoders
take 1mages as
Thput

(]
]
]

toggle movement

X

@ In the decoder
ConvIilranspose
layers perform the
1nverse operation




Pl Example: Jet autoencoders

@ Idea applied to tagging jets,

. . . QCD
1n order to define a QCD-jet o] |
veto g (400 GeV) —
0.8
@Applied 1n a BSM search 0.6
(e.qg., dijet resonance) could 0
highlight new physics signal =
0.2
® Based on 1mage and physics- 00107 o 100 10"
inspired representations of reconstraction e
jets ColLa LolLa 255 160 80 40 20 20 40 80 160
I Encoder Decoder :
(ko) (o)
ko= | S0 | Tele |k
Farina et al., arXiv:1808.08992 ’ \ZQJ ) ks,
3,7

72
Heimel et al.. arXiv:1808.08979 35 \V"i )



https://arxiv.org/pdf/1808.08992.pdf
https://arxiv.org/pdf/1808.08979.pdf

Bl __HC Olympics challenge

® Autoencoders are only one of the
many possibilities to define an
anomaly detection score

@A broad overview of SR — I
. . . . . ection ort Name ethod Type esults Type
pOSS 1 b 1 7 1T1es 1n the 2020 LHC 3.1 VRNN Unsupervised (i) (BB2,3) and (ii) (BB1)
1 3.2 ANODE Unsupervised (iii)
O 7ymp-’ ) report 3.3 BuHuLaSpa Unsupervised (i) (BB2,3) and (ii) (BB1)
3.4 GAN-AE Unsupervised (i) (BB2-3) and (ii) (BB1)
. 3.5 GIS Unsupervised (i) (BB1)
@® New particles produced and 3.6 LDA Unsupervised (i) (BB1-3)
de Cay-i ng to d 7 7 _je ts f-i na 7 ?%EZ Reg. Iife?ihoods gzzzgzzizij " ((35)1_2)
states 3.9 UCluster Unsupervised (i) (BB2-3)
4.1 CWoLa Weakly Supervised (ii) (BB1-2)
4.2 CWoLa AE Compare | Weakly/Unsupervised (iii)
. 4.3 Tag N’ Train Weakly Supervised (i) (BB1-3)
@ A rranged m severd 7 B 7a Ck 4.4 SALAD Weakly Supervised (iii)
bOX es 4.5 SA-CWolLa Weakly Supervised (iii)
5.1 Deep Ensemble Semisupervised (i) (BB1)
5.2 Factorized Topics Semisupervised (iii)
5.3 QUAK Semisupervised (i) (BB2,3) and (ii) (BB1)
@ Cha 7 7enge rs aSkEd to 5.4 LSTM Semisupervised (i) (BB1-3)

Characterize the si gnd I https://arxiv.org/pdf/2101.08320.pdf

36


https://arxiv.org/pdf/2101.08320.pdf

Bl __HC Olympics challenge

@ Autoencoders are only one of the .
many possibilities to define an
anomaly detection score o

@A broad overview of B
possibilities in the 2020 LHC o

Olympics report 10-5-
_ 3500 4000 4500 5000 3500 4000 4500 5000
® New particles produced and my 1 GeV
decaying to all-jets final 45
40
states

Events / ( 63.3333)

@ Arranged 1n several Black
boxes i

® Challengers asked to 2600 2300 3000 3200 3400 3600 38004000 4200 4400

Characterize the si gnd I https://arxiv.org/pdf/2101.08320.pdf
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@ Similar challenge, focusing on

non-resonant signatures (e.g.,
SUSY)

@ S1mi1lar methods, but based on
the whole event representation

@Multiple final states
considered (hadronic,
leptonic, etc)

@Different figures of merit for
different anomaly detection
algorithms (signal efficiency
@ different rejection values)

® Report coming soon on arXiv
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Dark Machuwne Challenge

Detection of “expected” signal ev Detection of “u

Signal Region

ML classifier score
or physics motivated
discriminating quantity

4 Methods

4.1
4.2
4.3
4.4
4.5

4.6
4.7
4.8
4.9
4.10

4.11

4.12

Autoencoders

Variational Autoencoders

Deep Set Variational Autoencoder
Convolutional Variational Autoencoders
ConvVAE with Normalizing Flows

4.5.1 Planar Flows

4.5.2 Sylvester Normalizing Flows

4.5.3 Inverse Autoregressive Flows

4.5.4 Convolutional Normalizing Flows
Kernel density estimation

Spline autoregressive flows

Deep SVDD models

Spline autoregressive flow combined with Deep SVDD models
Deep Autoencoding Gaussian Mixture Model
4.10.1 Model configuration

Adversarial Anomaly Detection

4.11.1 Model Configuration

Combined models for outlier detection in latent space
4.12.1 Variational Autoencoder

4.12.2 Algorithms Trained in the Latent Space
4.12.3 Combination Methods



Dark Machine Challenge

@ Similar challenge, focusing on

non-resonant signatures (e.g.
SUSY)

@ S1m1lar methods, but based on

J

the whole event representation

@Multiple final states
considered (hadronic,
leptonic, etc)

ALAD_1d20_Irle-5_bs500_epoch2000_enc512_F _sc |

@Different figures of merit fo
different anomaly detection
algorithms (signal efficiency
@ different rejection values)

® Report coming soon on arXiv

Flow-Efficient_Likelihood -

r

39

crude_AE
VAE_OrthogonalSNF |
VAE_IAF |

VAE_HouseholderSNF

Flow-Efficient-No-E_Likelihood -
Fixed-MSE3-z21_MSE

Fixed-MSE1-z233_MSE |

Best models on all channels combined based on minimum score

- - A e e
@ | e
o] | e
- | | il
el b e — e ——
[ =t
—H P e e -
—EH | i e b e
| i e e
0.5 1.010* 10 102 10" 10°10* 107 102 10 10°10* 10 10 107 10°
AUC es(ep=10"")

es(ep=107?)

es(ep=1077)

{ EEE Best
1 B 2nd

B 3rd

| B 4th
1 B 5th



@l UJhat to do with these data?

@ We could learn a lot running clustering algorithms
(KNN, etc) on these data

@ In the latent space of the AE
@® In the natural space of the 1nput
@ With any other similar technique

@ In my mind, a descriptive paper on such an
analysis would be a valuable publication,
particularly before a long shutdown.

® Provided control on the background distribution
(not for granted), we could run a statistical

analysis on them and quote a significance (e.g.,
with https://arxiv.orqg/abs/1806.02350)

@ Publishing the dataset as a catalog could
1ncentive new ideas 1n view of HL-LHC

—-40 -20 0 20 40

@ While we sort out the technical details (e.g.,
with TSG and L1), we would like to request the EXO
PAG to support the 1idea
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https://arxiv.org/pdf/2010.05531.pdf

“Model-independent” hypothesis test

@ Deep Learning could help relaxing the underlying hypotheses of a new-
physics search

@ stay within the hypothesis test framework

@ replace the fully specified (model dependent) signal hypothesis with
a neural network trained on data

@ exploit neural networks to express different model shapes at once
@ Training setup to learn the likelihood ratio of a traditional search

® Formally, still a fully-supervised learning process

o~ N(w)

, t(D)
Min L = —Max < lo = .
i = M o | e I 500 =

D’Agnolo et al., arXiv:1806.02350
42 D’Agnolo et al., arXiv:1912.12155
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Bl Mew Physics Learning Machine

INPUT ; OUTPUT
Data sample D Dist. log ratio
3 | Y = 1 _'_ '_' - 0/\/ J
AR . data/reference
. n(x|T)
Ref le R W) ~ 1
teference sample ; e e
. Test statistic ¢
g computed on the
a viLlo data sample D
T N (D) = —2Min LI[/]
0.0 0.2 04 0.6 0.8 1.0 E {W}

X

D’Agnolo et al., arXiv:1806.02350
43 D’Agnolo et al., arXiv:1912.12155
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MNew Physics Learning Machine

OUTPUT
Single training Many trainings
t(D)=-2L [f(x; W)] (with pseudo-data)
. n(x|Hg) | ||Empirical distribution of t
f(x;w) =log | ————
n(x|Ry) — p-value for new datasets
flx; w) { P(?)

ava
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6- N e el e oA R 1
@In 1D, this method can detect new 5E_PeaklntheTan,4Neurons,Nocut i
physics presence in D (but not in R) al e
 Median NN Lo
3 f"""""""""'""""""""'.7;7."':"’-"-:;?3': J
® performance reduced wrt fully- N o , ST
specified hypothesis test it
. L . 0f '
@sti1ll, sensitivity retained 1} odinn Idoal
. _ _ o 1 2 3 4 5 6
@ no explicit assumption on signal shape 7.
------------------- : we—
4 Neurons t(D)=51 1 F 4 Neurons t(D)=43 3 4 Neurons t(D)=25 13
TR — NN ] e — NN ] ™ — NN ]
x\\ ---- True ' 3 \%ﬁ ---- True 73 102;‘ N‘ ---- True '
A g 101;- -
) a0
|
02 04 00 02 1000 02
X X X



“Model-independent” hypothesis test

® The N-Dim generalization requires regularisation mechanism
@ weight clipping enforced to prevent over-fitting

@ with converge, test statistics recovers x? distribution for
standard events, with Ndof fixed by number of network parameters

__Compatibility of P(t|R) with x> _ o Weight Clipping =7
SO S Weight Clipping: 20 10 7 | | ,
e e e e | - X10 -
30_
10 | ..
P e Y i i+ } f{
1 ; N

osL— . . . 12 \{\ﬁzm
0 100000 200000 300000 400000 500000 10 15 20 75 30

Training Epochs t
D’Agnolo et al., arXiv:1806.02350

46 D’Agnolo et al., arXiv:1912.12155
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“Model-independent” hypothesis test

® One would generate the expected distribution of the test statistics 1n absence
of a signal, running the procedure on toy sets sampled from the reference-
sample distribution (e.g., more MC samples)

® [W1lks’ theorem] This
distribution 1s ~ x?2 (with

dot given by the dot of the :0.10-._ ------------ 2 Neurors

network) s e -} ---»P{R) Peak in the Tail
008 No cut

Distribution of the test statistic “t” in Reference Hypothesis

® When applied to data, this |
distribution would give a Fom = =

- = = = » P(t|NP;)

Xis3 -{-

, 0.02}
@ If the value 1s on the o
tail, one get a Tow p-value | 99 ™"""20 0 60 80
(large number of sigmas) : t
_ _ Distribution of “t” in one New Physics Model Hypothesis
® For a given scenario, one t = p — Z-score we use Z = &-(1 — p))

can estimate the expected
sensitivity looking at the
distribution of the test

statistics 1n si1g+bkg toys 47




“Model-independent” hypothesis test

my > 60 GeV, N(R) = 20 000 my > 95 GeV, N(R) = 2 200
10} ] 10..
mz = 200 GeV, N(S) = 40, 60, 80 | mz =200 GeV, N(S) = 40, 60, 80
sl mz =600 GeV, N(S) =6, 10, 15 _ sl mz =600 GeV, N(S) =6, 10, 15
EFT, c, =1.0,1.2, 1.5 TeV~2 | EFT,c, =1.0,1.2, 1.5 TeV™2
- @
72 6 " 6}
£ I\ s | ¢
N N | ® ©
4 4}
© ® |
2l ® ¢
| ® ® ®
ol
3 4 5 6 7 8 9

Zig

P(a)

4 ... é ... é ... fO ... f2 — . 4 ... 6 ... é ... fO ... fZ .
Ziq Ziq

D’Agnolo et al., arXiv:1806.02350

48 D’Agnolo et al., arXiv:1912.12155
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@ Characterizing the excess

Signal Reconstruction (m> = 300 GeV)

@A post-training analysis allows to R R ,
1 15 Data toy 43
characterize the nature of an excess 2 | NN reconstrustion”
that might have been found z 1
o 2 |
@ t(D) vs relevant quantities (not Z 4
necessarily 1nputs to training) |
highlights clustering of signal events 0
- Signal R tructi w=1.0 TeV?
® Invariant mass peak for resonance e
S -igna | __ | Datatoy 32
&2 8} NN reconstruction
e |
. . = 6l
@ Tail excess for EFT signal ~
. . = |
® The network 1s learning the nature of g
the underlying new physics and could 0

guide 1ts characterisation
D’Agnolo et al., arXiv:1806.02350

49 D’Agnolo et al., arXiv:1912.12155
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[ goodness of FLlt Test

® What we are doing i1s not really a hypothesis CMS_Simulation Preliminary 35.9f" (13 TeV)
testing Exclusive classes : ST distributions

—_
o
w
TTTT

............ Median SM expectation
-------- ) Mean SM expectation
| SM expectation + 16

@® NNs can be very expressive so Hi 1s loosely

number of classes
q)

. =~ SM expectation 2 ¢ =
defined : L_i — — Analytical aéproximation :
® In rigorous terms, NPLM is a goodness-of-fit 10¢ s _L_ E
test - L_ ;
16 ]._ E
@ We are given a dataset D and a model (the SM) : ]L_1
10_1:— § — —=
. . P S N S S S T SN S ST A B AR 'Wd—ka—f
® We want to test the compatibility between the 05 1 15 2 3o .
two
® The setting 1s similar to that of the physics-
1nspired model-1ndependent searches
@® But the approach has many differences (e.g., Z
binned vs unbinned) at 1s 1n general more Y 101;‘
poewrwfuT =
1
@Also, 1t can account for systematic ;
uncertainties (in a few slides) S
190 0.2

50



Imperfect Machine

® The presence of systematic uncertainties would 1ntroduce anomalies 1n
the data wrt reference sample

® One could make false discovery claims (type-2 error)
@® But the method can be generalized to 1nclude systematic uncertainties

@Data 1s allowed to deviate from the reference 1n ways that are
described by nuisance parameters

@® Deviations of different kind will not be accommodated: discovery
potential retained

R Central-Value Reference:
O Nuisance set to their C-V

n(z|Hw ) = ef(w;w)n(:c\R,,)

51



Imperfect Machine

® The new test statistics depends
on the nuisance parameter max [£(Hw »|D) - L(v|A)

t(D, A) = 2 log —~

max [£(R, D) - L] A)

@ But 1t can be written as the L(Hw ,|D) L(v|A)
sum of two terms :2I£Iv?§log E(Rc;ID) ' L£(0]A) |
® The previous one [L(R,|D) L(v|A)]

— 2 max log -
v | L(Ro|D) L(0|A) |

@A correction term, 1nduced by
the nuisance parameters = 7(D, A) — A(D, A)

52



Imperfect Machine

T term A term
Auxiliary Auxiliary
Referen;g sample Data %ample easuremonts INPUT Data sgmple easuremonts
(A) v(A)
Model
BSM network r layer r layer
(s w) (- v) = exp [31(-) U4 00( VU2 4 oo+ 0n() un] (V) = exp [31(-) U+ 0a( )12 4 oo+ 0n() un]
< z., w)+log T (z.; v -~ ‘C( |'A) Loss - 75 — oy c(Vl.A)

Lf(;w), v,0()] = t;zwe [ef( er W)HlogF(ze;v) _ 1] — a;)[f(x, w) + log (z; v)] — log [ﬁ(glA)] function L{f(sw), v,6(-)] = N(Ry) — N(Ro) — ;[logr(x, v)] — log [£(0|A)

Trainable parameters: v, W Trainable parameters: v
7(D, A) = -2 rvrvlilI}L [f(-,w), V; 3\()] OUTPUT A(D, A) = —2min L [l/; g()]

| t(D, A)= 7(D, A) - A(D, A) |
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Imperfect Machine

® When nuisances are pulled away from 0O 1n toy generation
® The original 1 distribution deviates from x?

® The /A correction bring the d75tr7but7on of t = 1-A back to a x?

0.10] ' ' ' ‘ 0.10]
NN CORRECTION
0s—=0.15, ox =0.15 | %08
0.08} , \ Z:’ZII: —0,0 | go.os-
= o oal
X13 H +++ - 0.04
— 0.06] ¢¢¢ t | 002
o] 0.002
= 4
= 0.10f
0.04}
5 0.08}
X15 _
éo.oe»
0.02! {004l
N 0.02}
0.00 ket=0— ‘ ‘ ‘ ot =24 500

0 9] 10 15 20 25 30 35 40 45

=41
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RANnomaly Detection vs. MPLM

® An anomaly detection technique

®AD analysis (e.qg., VAE) would be
exploited as a selection to enrich
a dataset of potential anomalies

@ But then one would typically run a
normal fit to extract the dignal

@ NPLM 1s 1nstead an alternative fit
strategy of a traditional analysis

® Same signal selection as a
supervised search

@ NPLM as a gof test, as an
alternative to combine

@ Could be potentially performed by
any traditional search, asa

comp lementary/additional result
55
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1% (D, 4)=463.7, A(D, A)=247.15, (D, A)=216.55, Z=6.56
sl [ [ DATA 000 7RECO |
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- 102; Mﬂa g8

o E .0 o 1§
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Summary

@ Signal agnostic searches are a powerful tool to complement
the typical LHC search strategy

@ Traditional techniques use binned histograms and bin-by-
bin x? test

® Unsupervised/semisupervised techniques can be used to
enrich the final fit sample of unspecified anomalies

@® NPLM can be used as a gof test to probe the presence of
new physics 1n a data fit alternative to a traditional
hypothesis testing

® In general, these approaches have less sensitivity on a
specific scenario, but better performance 1n average across
scenarios (generalization)-> complementarity to the
traditional approaches
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® Source of 1nspiration for this first lesson
@ Pattern Recognition and Machine learning (Bishop)
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@Main reference for tutorial exercise: https://arxiv.orqg/abs/1908.05318

@®All notebooks and classes are/will be on GitHub: https://qgithub.com/
pierinim/tutorials/tree/master/SMARTHEP

@ Full dataset available at: https://zenodo.org/record/3602260
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