

Ferro-Electric Fast Reactive Tuners (FRTs)

N. Shipman on behalf of:

I. Ben-Zvi, J. Bastard, G. Burt, M. Coly, A. Edwards, C. Jing, A. Kanareykin, A. Macpherson, N. Stapley, H. Timko

Acknowledgements

M. Barnes, D. Barrientos, A. Castilla, F. Gerigk, W. Hofle, P. Kohler, E. Montesinos, G. Pechaud, P. Schneider, D. Smekens, D.Valuch, W. Venturini

Presented at:

Particle Accelerators and Beams conference 2023

Introduction

■ FRTs are a new type of extremely fast non-mechanical tuner

- Microphonics suppression with a prototype FRT already demonstrated
- CERN is developing and testing improved FRT designs
- Research focus at CERN is now "transient detuning" for HL-LHC

■ Compensation of transient beam loading using an FRT

Agenda

- FRTs
- **E** Microphonics Suppression
- Transient Detuning
- **The Therm** Transient Detuning Project
- Other use cases and projects

E Summary

FRTs

Introduction to Ferro-Electric Fast Reactive Tuners

- RF power flows into the FRT and is reflected back to the cavity
- \blacksquare Voltage applied to the ferro-electric changes its permittivity
- **Permittivity change** \rightarrow **Phase change of the reflected power** \rightarrow **Cavity frequency change**
- Usually, the FRT would require its own port, although other arrangements have been proposed
- Operates outside cryomodule at room temperature
- Tunes cavity without mechanical deformation
- Tuning speed measured at less than 600ns, limited by HV circuit

Equivalent Circuit Theory

■ The admittance of the FRT is:

$$
\quad \bullet \quad Y'_t=G'_t+iB'_t
$$

The change in angular frequency between high voltage states n and m is:

 $\Delta \omega_{mn} = \frac{-\omega_0 \overline{R_{Q}} \overline{\Delta B_{tmn}}}{2\,N^2} \, ,$

- \blacksquare The increase in the system bandwidth due to the FRT in high voltage state n is:
	- ▪
- Here the R-over- Q is defined as:

$$
\qquad \qquad \mathbf{R}'_{\hspace{-1mm}/\hspace{-.2mm}Q} = \sqrt{^L\!\!/_{\hspace{-1mm}C}}
$$

■ The angular frequency of the cavity without FRT is:

$$
\quad \textcolor{red}{\bullet} \quad \omega_0 = \frac{1}{\sqrt{LC}}
$$

Equivalent circuit of FRT connected to cavity

Notation	Meaning
G_{ℓ}'	Conductance of FRT
B',	Susceptance of FRT
IV.	Coupler turn ratio
V_c	Cavity voltage
U_{α}	Cavity stored energy

Symbol definitions

Figure of Merit and Ferro-Electric (FE) Material

FoM allows:

- Comparison of FE-FRT designs
- Estimation of benefit e.g. power reduction
- FoM is ~tuning range divided by increase in bandwidth
	- FoM = $\frac{|\Delta \omega_{12}|}{\sqrt{\text{BW}_1 \text{BW}_2}}$
	- Subscripts I and 2 refer to the two extreme high voltage 'end' states

Material FoM is FoM of a FE capacitor with only dielectric losses

- $\text{FoM}_{\text{Mat}} = \frac{\ln \frac{\epsilon_1}{\epsilon_2}}{2 \tan \delta}$ ▪
- Material Fo \overline{M} is a theoretical upper limit of FoM
- Would allow comparison of different ferro-electric materials
- \blacksquare FE is BaTiO₃-SrTiO₃ with Mg based additives
	- Loss tangent roughly \sim frequency

(Courtesy Euclid TechLabs)

Microphonics Suppression with FRT

Benefits of suppressing microphonics with an FRT

Use cases: microphonics suppression

- For low beam loading machines RF power is dominated by microphonics
- The effect of microphonics can be reduced passively or actively
	- Stiffening of cavity
	- Isolation of noise sources
	- Active feedback e.g. piezo tuners
- Residual microphonics require over-coupled FPC
- \blacksquare Typically, RF power required is still many times larger than for critical coupling case

 $^{'}2Q_{L}^{\perp}$

 $P_{RF} = \frac{V_c^2}{4R_{\odot}Q_L} \frac{\beta+1}{\beta}$

Decreasing Q₁

Use cases: microphonics suppression

FRTs are an excellent tool for microphonics suppression

- **E** High Tuning speed
	- \blacksquare ~600ns measured limited by external HV circuit
- \blacksquare No excitation of mechanical modes
- Simple transfer function/negligible phase delay at frequencies of interest
- Peak and average RF power reduced by $\left(\frac{\text{FoM}}{2}\right)$ and $\left(\frac{\text{FoM}}{4}\right)$ respectively
	- Increased dielectric and conductor losses at higher RF frequencies reduce effectiveness
- FRTs can be combined with other suppression technologies
	- **E.g. piezo tuners**
- **PERLE power savings: 732 kW**
- LHeC power savings: 22 MW!!
	- \blacksquare ~150GWh per year, ~50,000 tons of $\mathbb{C}0$ ₂

Case study: RF power for PERLE vs QL with and without FRT

Estimated FRT FoM vs RF frequency

Microphonics suppression results

- Lower order Mode of UK4R crab cavity at 374MHz
	- Very stiff \rightarrow very low levels of microphonics \rightarrow used vibration generator
- **Euclid designed prototype FRT**
- No slow tuner \rightarrow operated in SEL mode
- \blacksquare Chiller, phase shifter, vibration generator
- Deliberately simple purely integral feedback used
	- More performant solutions surely possible

regulation on **Bath temp.**

Timestamp

FE-FRT temp.

bunker opened

 $27.$ Feh

06:00 12:00

Phase shifter on top plate

Vibration generator

Euclid FE-FRT prototype Temperature regulation with chiller

emp ۴ 15

13

 $06:00$

Microphonics suppression results

F

No correction

With correction

- Test of prototype FRT with UK4R cavity
	- UK4R very stiff, used vibration generator to create microphonics
- **EXPERITMENT Microphonics ~completely eliminated**
	- \sim 20x reduction in integrated microphonics spectrum up to 1kHz
	- Order of magnitude better than other technologies
- **Deliberately simple purely integral feedback** algorithm

Transient Detuning

Overview of Transient Detuning Concept

Use cases: transient detuning

RF power required for cavity with beam Can change

 I_b will change so either:

 ${}^{\blacksquare}\, P_{RF}$ or ϕ_c must change

- Normally, choice between:
	- Increased RF power
	- Cavity phase errors
- Recently we proposed a **new scheme "Transient detuning"**
- Transient detuning uses FE-FRT to change $\overline{\Delta\omega_D}$
	- Reduced average RF power (by up to FoM/2)
	- Increased phase stability
	- Fixed RF bucket position \rightarrow ideal for injection
- In the future, we hope to apply this to HL-LHC, project underway!

Fixed

Use cases: transient detuning Beam + fixed detuning

Use cases: transient detuning Beam + transient detuning

Transient Detuning Project

Overview of transient detuning research at CERN

Transient Detuning Project: Overview

- Likely HL-LHC will not have sufficient RF power to capture full beam current at injection
	- Install high efficiency Klystrons
	- Add new cryomodule
	- Transient detuning with FE-FRT
- \blacksquare Perfect compensation of beam loading with FRT would reduce RF power requirements 10-fold
	- If Qe of FPC is increased by optimal amount
	- **Would require FE-FRT to handle high reactive power** \sim **500kVar**
	- Partial compensation can also give significant reductions
- \blacksquare If proven feasible transient detuning is elegant and cost-effective solution
	- Electricity saving up to \sim 2GWh per year \sim IME (very rough estimate from French electricity cost on 28.09.22)
- Aim: demonstrate an FE-FRT could compensate transient beam loading for HL-LHC at injection

Estimated power reduction vs achievable tuning range with transient detuning

Transient Detuning Demonstrators

\blacksquare Brazeless (compression fit) thin wafers of ferro-electric in vacuum

- Aim: reduced losses $+$ higher biasing electric fields
- + greater change in permittivity at reduced voltage
- First prototype TDD0 (Transient Detuning Demonstrator) built and tested on cold LHC cavity
	- **Test cut short due to cavity vacuum leak**
- 1.3kHz tuning shift observed with 500V
	- TDD0 designed for 10-16kV, voltage limited due to vacuum leak on TDD0

E Lessons learned:

- Very sensitive to air gap/compression force in FerroElectrtic stack
- Care must be taken to apply compression evenly
- Rigid line from top plate causes to much mechanical stress on vacuum feedthroughs
	- Move FRT inside cryostat for next test \rightarrow anti-cryostat

Parts of TDD1 already in workshop

- Mechanical design \sim I week away from being finished
- High performance, high power (100s kW) design
- \blacksquare 4 doughnut shaped wafers with cooling lines, FoM ~70-80

Transient Detuning Project: Peripherals 1

LHC LLRF System

- LHC LLRF system is complex and will not be redesigned for HL-LHC
- Transient detuning must work with existing LLRF system
- LHC LLRF system replicated in cavity cold testing area
- No One Turn Feedback Module in last test now installed, waiting to be tested

■ BLEEP

- **Beam Loading Electronic Emulation Project**
- Testing with cryomodule with real beam not feasible in initial project timescale
- BLEEP adds correct RF power and phase to input coupler to replicate beam pattern
- \blacksquare High Voltage Pulser for biasing FE ceramic
	- \blacksquare Prototype HVP capable of running \sim 10ms:
		- Procured, received, tested, broken, sent back, repaired, re-received
	- Final HVP design more challenging as would need to run continuously

Pulse generator

- **•** Programmable pulsed optical output to drive high voltage pulser
- Triggered with same signal as BLEEP
- Implemented as daughter board of existing LLRF system "UCC"

Other Use Cases and FRT Projects

Overview of current FRT Landscape

Other Use Cases

Nb₃Sn Cavities

- \blacksquare Nb₃Sn could double or quadruple carnot efficiency
	- Would reduce required cooling power by factor 2-4
- \blacksquare Nb₃Sn performance degraded with mechanical tuning
- \blacksquare There may be a material science solution
- \blacksquare FE-FRTs can provide an alternate solution

E. Jensen "RF cavities"in "Accelerator Engineering and Technology: Accelerator Technology"

- FE-FRTs could provide fast 230kHz frequency switching
- This would allow parallel operation with both protons and ions

CERN PS 80MHz cavities EIC 197 MHz hadron crab cavities

- **Example 2 Cavity should be off during ramples**
- Large frequency sweep \sim 930kHz must not excite resonances.
- \blacksquare Elegant idea:
	- Use FE-FRT to jump cavity resonance over revolution lines during abort gaps.
	- Only 10-100 Hz Tuning required

FRT projects

\blacksquare HL-LHC

 \blacksquare FRTs being seriously studied to reduce power at injection

■ CEBAF

- Aiming to reduce power due to microphonics with combined FRT/FPC port
- **Exciting but challenging**

E bERLinPro

■ Plan to start dedicated R&D from Jan 24

PERLE

■ Plan to integrate FRT in 2^{nd} cryomodule to be installed in beam \sim 2030

HIE-ISOLDE

- **E** Investigating FRTs for microphonics compensation
- \blacksquare Ideal test case: low frequency, low beam loading, low power
- Could be first FRT in working machine

Summary

Summary

- \blacksquare FRTs are an exciting and rapidly growing field of research
- **EFRTs** are perfect for Microphonics suppression for low beam loading machines
- \blacksquare **FRTs can also solve transient detuning issues in high beam loading machines**
- CERN research currently focused on transient detuning for HL-LHC
	- First full low power demonstration Q4 23
	- High power testing Q1/Q2 24
	- If successful next step \rightarrow Install in cryomodule and test with beam in SPS
- Several other FRT projects are underway or starting around the world
- \blacksquare Aim to have an FRT in working accelerator in the near future

Thank you for your attention

N. Shipman

nicholas.shipman@cern.ch