

# Optics design of a prototype high intensity Fixed Field Alternating Gradient Accelerator (FFA)

Shinji Machida
UKRI/STFC Rutherford Appleton Laboratory

29 June 2023 IoP PAB meeting in Glasgow 2023

#### Overview

- Specifications of ISIS-II project and its prototype
- Some design challenges
- Summary



#### Specification of ISIS-II and goal of prototype FFA (FETS-FFA)



### ISIS upgrade, "ISIS-II"

ISIS and ISIS-II is/will be a pulsed spallation neutron and muon source

Specifications of the proton driver for ISIS-II

| Beam power  | 1.25 - 2.50 MW |
|-------------|----------------|
| Beam energy | 1.2 GeV        |

It will give the similar beams to SNS and J-PARC.



[From John Thomason at FFA 2022 workshop]

Beam power is just one of the figure of merits, many others exist, for example ...



#### Requirements of future proton drivers

- Sustainability.
  - Cyclotron is the most energy efficient accelerator so far.
- Reliability
  - DC (superconducting) magnets have a big advantage as a reliable accelerator component.
- Flexibility
  - As a pulsed spallation neutron source,
    - "capacity (number of experiments, size of community)"
    - "capability (bespoke experiments)"
- FFA option looks attractive, but needs a demonstrator.

| beam energy                | 3 - 12 MeV              |  |  |
|----------------------------|-------------------------|--|--|
| ave. radius                | 3.6 - 4.2 m             |  |  |
| repetition                 | 100 Hz                  |  |  |
| number of proton per bunch | 3 x 10 <sup>11</sup> /2 |  |  |
| average current            | ~ 5 micro A             |  |  |
| average beam power         | ~ 60 W                  |  |  |
| space charge tune shift    | -0.25                   |  |  |







- 1. Superperiod lattice
- 2. FD spiral doublet focusing
- 3. Aperture requirement and dynamic Aperture
- 4. Beam stacking

FFA is a pulsed accelerator, like a synchro-cyclotron. A similar challenge as high intensity synchrotron, not like a CW cyclotron.



# Lattice with superperiod (Long straight section)

#### Straight section

- Large number of cells per ring requires higher field index k
  - Small orbit excursion between injection and extraction.
- Circumference is divided into more number of straight sections.
  - Each straight section becomes shorter.

field index k

$$k = \frac{r}{B} \frac{\partial B}{\partial r}$$











- Let us keep reasonable number of cells, but allocate straight sections unevenly.
  - Introduction of superperiod, e.g. 4-fold symmetry
  - Long straight section is essential for proper handling of the high intensity beams. injection, extraction, RF cavity, etc.



#### Lattice with superperiodicity







#### 16-fold symmetry

Straight length: 0.95 m

Dynamic aperture: 110 pi mm mrad

Field index k: 8.00

Spiral angle: 45 degree

Magnet families: 2

#### 4-fold symmetry

Straight length: **1.55 m**, 0.90 m, 0.45 m

Dynamic aperture: 80 pi mm mrad

Field index k: 7.40

Spiral angle: 30 degree

Magnet families: 8



Horizontal beam size and magnet aperture become larger.

y [m]

# FD spiral doublet





cell tune = (0.213125, 0.213125)

#### Adjusting Qx and Qy (4-fold superperiod, spiral angle=30 deg.)

k-value

Bd/Bf strength ratio



k-value and Bd/Bf strength ratio are two parameters to adjust tune Qx and Qy.

$$\frac{B_z}{B_{z0}} = \left(\frac{r}{r_0}\right)^k F\left(\theta - \tan\zeta \cdot \log\frac{r}{r_0}\right)$$

 $\zeta$ : spiral angle

U.O

(3.01, 3.96)(3.96, 3.96)k=6.234k = 8.632B0f=0.391 T B0f=0.385 T B0d=-0.414 T5Qx = 16B0d=-0.471 T(3,4)1Qx + 4Qy = 16nominal tune 3Qx+2Qy=16(3.41, 3.39)(3.96, 3.01)(3.01, 3.01)(4,3)k=8.495 k=6.326Qx B0f=0.458 T B0f=0.450 T B0d=-0.427 T B0d=-0.454 T



 $k = \frac{r}{B} \frac{\partial B}{\partial r}$  : mean field index

#### Aperture requirement and dynamic aperture

#### Aperture requirement

At 3 MeV, uniform beam of 10 pi mm mrad (100%, normalised) gives space charge tune shift

$$\Delta Q = -\frac{r_p n_t}{2\pi\beta\gamma^2\varepsilon_n B_f} = -0.12 \quad \text{per 10}^{11} \text{ protons.}$$

FETS injector will reduce both emittance and peak intensity by more than one order of magnitude.

0.25 pi mm mrad, 60 mA -> 0.02 pi mm mrad, 1 mA (50 turns for 3x10<sup>11</sup>)

to make multi-turn painting injection.

**Table 2.6:** Horizontal beam size and acceptance ( $\beta_{x,max}$ =3.2 m)

**Table 2.9:** Vertical beam size and acceptance ( $\beta_{y,max}$ =2.0 m)

|                       | normalised $[\pi \text{ mm mrad}]$ | un-normalised $[\pi \text{ mm mrad}]$ | Physical size [mm] |                       | normalised $[\pi \text{ mm mrad}]$ | un-normalised $[\pi \text{ mm mrad}]$ | Physical size [mm] |
|-----------------------|------------------------------------|---------------------------------------|--------------------|-----------------------|------------------------------------|---------------------------------------|--------------------|
| beam core             | 10                                 | 125                                   | $\pm 20$           | beam core             | 10                                 | 125                                   | ±16                |
| collimator acceptance | 20                                 | 250                                   | $\pm 28$           | collimator acceptance | 20                                 | 250                                   | $\pm 23$           |
| physical acceptance   | 40                                 | 500                                   | $\pm 40$           | physical acceptance   | 40                                 | 500                                   | $\pm 32$           |

This is the same order of SNS and J-PARC, which has ~500 pi mm mrad (geometrical).



#### Dynamic aperture calculation

For high intensity operation of FFA, we need large physical aperture and dynamic aperture larger than physical aperture to reduce space charge effects.



## Beam stacking



#### Repetition rate and space charge mitigation

- Higher repetition, or even CW, is the way to increase beam power of accelerators.
  - (Neutron) users prefer lower repetition, eg. 10 Hz, 30 Hz.
- Beam stacking is the way to control repetition rate seen by users without decreasing beam power.
  - That can be done only by an accelerator with DC magnets like FFAs.
- It is not possible to accumulate N times particles at injection because of space charge effects. This can be done at the top energy because space charge effects are weaker.



#### Experiment at KURNS (Kyoto Univ.) in March 2023

- Stack 2 beams in longitudinal phase space (example below shows 4 beams).
  - Total momentum spread dp/p is n times dp/p of each beam?
  - Total number of particles is n time that of each beam?





Schottky signal after stacking 2 beams Preliminary!



- Total momentum is under control.
- There is unexpected beam loss.
  - Data analysis continues.

**Technology** 

Simulation by David Kelliher

# Summary

#### Summary

- Our goal is to demonstrate high intensity operation of a FFA.
  - with a scaling FFA.
- From physics design point of view
  - Superperiod lattice to give space for beam handling
  - Proper lattice structure ready for high intensity operation with enough parameters
  - Enlarge dynamics aperture to accommodate large number of particles
- From operational point of view
  - Consider beam stacking to produce either high peak with low rep or low peak with high rep
  - Experimental demonstration with FFA at Kyoto Univ. gives confirmation of the idea as well as a bit of surprise.

# Thank you for your attention

# Backups



#### Magnet prototype

Several options were investigated to create field gradient.

$$B(r,\theta) = B_0 \left(\frac{r}{r_0}\right)^k F(\theta) \qquad k = \frac{r}{B} \frac{\partial B}{\partial r}$$

- 1) gap shaped magnet,
- 2) parallel pole with trim coils,
- 3) combined with anisotropic iron plates.



- C-shape magnet because of space constraint.
- Field index k variable from 6 to 11.

#### Optimisation of 2D model



- Just started 3D modelling.
  - Single magnet has both Bf and Bd.



#### Beam Position Monitor (BPM) prototype

- A half size (horizontal) BPM prototype is made and tested in the FFA at Kyoto Univ. (KURNS).
- Turn by turn position measurement and tune measurement have been done.



A half size BPM and scraper





Hor. and Ver. beam position evolution during acceleration.



Frequency spectrum to measure tune.

#### RF cavity, Ferrite or Magnetic Alloy (MA)

#### Measure shunt impedance of MA core.











#### Preliminary result



- Measured with 100 V peak per core
- Power for 8 core cavity at 6 kV peak 50 65 kW
- Consider using 2 cavities at ½ voltage ~16 kW each, meaning no Tuning system and wideband for fast modulations

