# Propose a beam halo monitor for hadron machines based on an ionisation monitor with a supersonic molecular curtain beam

H. D. Zhang\*, O. Stringer, N. Kumar, A. Webber-Date, C. Welsch



## Beam halo



- Beam Halo Description
- Bad Effects
  - •Nuclear Activation of The Transport Channel
  - ■Emittance Growth
  - Emission of Secondary Electrons
  - Increasing Noise in The Detectors





#### Current measurement methods

# Wire Scanner and Scraper Assembly

at LEDA (LANL)

DR: 10<sup>5</sup>

Wangler, et. al. PAC01



#### Achieve high dynamic range (DR) is essential.

#### **Passive Spatial Filtering**



solar coronagraph applied to beams

DR: 10<sup>5</sup>

T. Mitsuhashi, EPAC 2004.

# High Dynamic Range Camera<sup>3</sup>

Spectra-Cam CID

DR: 10<sup>6</sup>

C P Welsch et al 2006 Meas. Sci. Technol. 17 2035



#### Adaptive Mask

**DMD** 

DR: >10<sup>5</sup>

H. Zhang, et al. PRAB, 15, 072803(2012)





# Supersonic molecular curtain-based beam profile monitor

- A projectile beam passing through residual gas present in a vacuum chamber, or a gas curtain, gives rise to two processes:
  - Ionisation, used in Ionisation Profile Monitors (IPMs)
  - Fluorescence, used in Beam Induced Fluorescence Monitors (BIFs)
- BIF method using a gas curtain:
  - ➤ Minimally-invasive to the projectile beam and the vacuum level.
  - Can provide a 2D image with one imaging system.
  - ➤ Signal intensity/photon number depends on the following parameters:

$$\dot{N} \propto \sigma_{fluorescence} \cdot \Omega \cdot T \cdot I \cdot d \cdot n$$

$$\dot{N} \propto \sigma_{ionisition} \cdot T \cdot I \cdot d \cdot n$$











#### **Current status**

#### **CI** experiment



#### **EBTS** experiment



#### **LHC** installation



More details about the function in this Video







# Halo monitor using double slit skimmer

BGC schematic for the measurement of halo particles



Creadt: O. Stringer, et. al, Linac 2022







### **BGC Mask for Halo Measurements**

- Beam halos could be measured with the BGC using modified 3<sup>rd</sup> shaping skimmer
- Create a mask for the gas jet to filter out core particles
- Gas curtain only measures the halo particles





| Parameter                                | SPS      |
|------------------------------------------|----------|
| Ring circumference (m)                   | 7000     |
| Beam Energy (GeV)                        | 26       |
| Protons per turn                         | < 6.5E13 |
| BIF Cross section(N <sub>2</sub> , cm2)  | 3.06E-20 |
| BIF Cross section(Ne, cm2)               | 4.70E-22 |
| IPM Cross section (N <sub>2</sub> , cm2) | 1.5E-18  |
| Gas jet density (cm <sup>-3</sup> )      | 1.0e11   |
| Gas jet thickness d (mm)                 | 0.1      |
| N_ionisation_core per second             | 4.17E+09 |
| N_ionisation_halo per second             | 4.17E+04 |

Possible to have a distribution measurement of the halo in seconds!!

$$\dot{N} = \sigma_{fluorescence} \cdot \Omega \cdot T \cdot I/e \cdot d \cdot n$$

$$\dot{N} = \sigma_{ionisition} \cdot T \cdot I/e \cdot d \cdot n$$







# Curtain Characterisation and preliminary experiment

- Gas particles simulated using WARP code [4]
- Gas curtain has been characterised using eGun with 3<sup>rd</sup> skimmer at 90 degrees
- Experiment test using a E-beam with ~5 keV energy and ~ 1uA current.













## Summary

- Measuring the beam halo is still a challenge.
- Gas jet based beam profile monitor could be a solution for online halo monitor.
- Preliminary experiments are still on going at Cockcroft Institute.





# Acknowledgment





#### Any Questions?

This work is supported by the HL-LHC-UK phase I & II project funded by STFC under Grant Ref: ST/T001925/1 and the STFC Cockcroft Institute core grant No. ST/G008248/1.



