
Summary plots from FIPs 2022 workshop

In the following we shortly present the state of the art for the search for feebly in-

teracting particles at accelerator based experiments and the current worldwide situation

and timescales of running or proposed experiments in all the main laboratories worldwide.

This short write-up is completed with Tables and Figures, aiming at showing the status

of these searches on the international landscape. Similar set of plots will be produced for

ultra-light FIPs in the near future.

1 The Physics Case

The search for feebly-interacting particles is currently one of the most debated and discussed

topics in fundamental physics. These particles can provide elegant explanations to several

unresolved problems.

The theoretical framework widely used to describe the phenomenology of FIPs, is a

general effective field theory formalism, called the portal formalism (see e.g. Refs. [1–

3]). Let OSM be an operator composed from the SM fields, and ODS is a corresponding

counterpart composed from the dark sector fields. Then the portal framework combines

them into an interaction Lagrangian,

Lportal =
∑

OSM ×ODS. (1.1)

The sum goes over a variety of possible operators and of different composition and di-

mension. According to the general logic of quantum field theories, the lowest canonical

dimension operators are going to be addressed as the most important. The minimal ”por-

tals” are the collection of lowest canonical-dimension operators that mix new dark-sector

states with gauge invariant (but not necessarily Lorentz-invariant) combinations of SM

fields. Following these general principles, it turns out that the collection of such portals

is rather simple, as shown in Table 1. To each portal it is possible to connect one or

more complete models that could answer one or more open problems in particle physics,

as discussed below.

Table 1. The portal formalism.

Portal Coupling

(1) Vector: Dark Photon, A′ − ε
2 cos θW

F ′
µνB

µν

(2) Scalar: Dark Higgs, S (µS + λHSS
2)H†H

(3) Pseudo-scalar: Axion, a a
fa
FµνF̃

µν , a
fa
Gi,µνG̃

µν
i ,

∂µa
fa
ψγµγ5ψ

(4) Fermion: Heavy Neutral Lepton, N yNLHN
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- Light DM with thermal origin: If DM is a non-relativistic thermal relic from

the hot early universe, non-gravitational interactions can arise between dark and ordinary

matter. The experimental value of DM density from the CMB and large scale structures,

ΩDMh
2 = 0.1198 ± 0.00015 [4] can be associated to more or less complex scenarios with

extended feebly-interacting sectors and several mediators [5–7]. The canonical example of a

minimal SM extension involves a heavy particle with mass between [0.1-1] TeV interacting

through the weak force, the WIMP. However a thermal origin is possible even if DM is

not a WIMP: DM with any mass in the MeV-100 TeV range can achieve the correct relic

abundance by annihilating directly into SM matter. Thermal DM in the MeV-GeV range

with SM interactions is overproduced in the early Universe so viable scenarios require

additional SM neutral mediators to deplete the overabundance [8–13]. These “dark sector

mediators” could be light, long-lived, feebly-interacting particles mixing/interacting with

SM fields that do not carry electromagnetic charge, like the Higgs, the Z0, and the photon.

Most of the models describing light (sub-GeV) DM interacting with the SM fields belong to

the vector and scalar portals.

- Solution to the strong CP problem: The axion, introduced to solve the ap-

parent lack of CP violation in strong interactions, is a Goldstone boson associated with

the breaking of the Peccei-Quinn (PQ) symmetry and it could be a natural DM candidate

below 10−3 eV. Since the axion interaction couplings are suppressed by the high symmetry-

breaking scale fa, (10
9 < fa < 1012 GeV), the axion is a natural FIP candidate. The QCD

axion can be heavier if the QCD behavior at higher energies changes (see [14] for a short re-

view of original papers), rendering the QCD axion possibly accessible at accelerator-based

experiments. Natural extensions of the axion paradigm bring to a wide range of interest-

ing pseudo-scalar particles which typically have very similar interactions as the axion but

without a strict relation between the mass and coupling, the Axion-Like Particles or ALPs.

ALPs appear in any theory with a spontaneously broken global symmetry [15–17]. Axions

and ALPs naturally belong to the pseudo-scalar portal.

- Hierarchy of scales, cosmological inflation, and EW symmetry breaking:

The SM Higgs is especially sensitive to the potential existence of new light degrees of

freedom. In fact the Higgs portal operator, H†H, is a low-dimensional operator and a

singlet under all known symmetries of the SM. This is exactly what lies at the root of

the hierarchy problem and simultaneously what generically enables the Higgs to couple to

all NP to some degree. A light scalar field very feebly coupled to the Higgs, appears in

many extensions of the SM as a possible explanation of dark matter [18–20], the (g − 2)µ
anomaly [11, 21], inflation [22], naturalness [23–26], and neutrino masses [27]. In a minimal

model, the new singlet scalar has predominantly a quadratic coupling and a mixing term

to the Higgs that regulate its production at accelerators. The hidden scalar couples to SM

fermions and vector bosons as a SM Higgs, but with strength reduced by a factor of sinθ,

being θ the mixing angle between the two sectors. A light scalar mixing to the Higgs is

naturally described by the scalar portal.

- The origin of neutrino masses and leptogenesis: The origin of the neutrino
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masses and oscillations may be deeply interconnected with the origin of matter antimatter

asymmetry in the universe [28]. Right-handed neutrinos νR or Heavy Neutral Leptons

(HNLs) could account for both. They might explain the light neutrino masses and oscil-

lations via a type I seesaw mechanism [29–31] and generate a lepton asymmetry in the

primordial plasma via CP-violating transitions. HNL in the MeV - few GeV region are full

compatible with the data coming from active neutrinos, and with the constraints coming

from astroparticle and cosmology. HNLs naturally belong to the fermion portal.

2 Benchmark models

In the subsequent sections, we formulate the benchmark models in some detail, repeating

the prescriptions detailed by Maxim Pospelov for the PBC BSM Report [32].

2.1 Vector portal models

A large class of BSM models includes interactions with light new vector particles. Such

particles could result from extra gauge symmetries of BSM physics. New vector states can

mediate interaction both with the SM fields, and extra fields in the dark sector that e.g.

may represent the dark matter (DM) states.

The most minimal vector portal interaction can be written as

Lvector = LSM + LDS −
ϵ

2 cos θW
F ′
µνBµν , (2.1)

where LSM is the SM Lagrangian, Bµν and F ′
µν are the field stengths of hypercharge and

new U(1)′ gauge groups, ϵ is the so-called kinetic mixing parameter [33], and LDS stands

for the dark sector Lagrangian that may include new matter fileds χ charged under U ′(1),

LDS = −1

4
(F ′

µν)
2 +

1

2
m2
A′(A′

µ)
2 + |(∂µ + igDA

′
µ)χ|2 + ... (2.2)

If χ is stable or long-lived it may constitute a fraction of enteriety of dark matter. At low

energy this theory contains a new massive vector particle, a dark photon state, coupled to

the electromagnetic current with ϵ-proportional strength, A′
µ × ϵJµEM .

We define the following important benchmark cases (denoted for further concvenience

as BC#) for the vector portal models.

• BC1, Minimal dark photon model: In this case the SM is augmented by a single new

state A′. DM is assumed to be either heavy or contained in a different sector. In that

case, once produced, the dark photon decays back to the SM states. The parameter

space of this model is then {mA′ , ϵ}.

• BC2, Light dark matter coupled to dark photon: this is the model where minimally

coupled viable WIMP dark matter model can be constructed [9, 10]. Preferred values

of dark coupling αD = g2D/(4π) is such that the decay of A′ occurs predominantly

into χχ∗ states. These states can further rescatter on electrons and nuclei due to

ϵ-proportional interaction between SM and DS states mediated by the mixed AA′
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propagator [2, 34]. The parameter space for this model is {mA′ , ϵ,mχ, αD} with

further model-dependence associated with properties of χ (boson or fermion). The

suggested choices for the PBC evaluation are 1. ϵ vs mA′ with αD ≫ ϵ2α and

2mχ < mA′ , 2. y vs. mχ plot where the “yield” variable y, y = αDϵ
2(mχ/mA′)4,

is argued [35] to contain a combination of parameters relevant for the freeze-out

and DM-SM particles scattering cross section. One possible choice is αD = 0.1 and

mA′/mχ = 3.

• BC3, Millicharged particles: this is the limit of mA′ → 0, in which case χ of χ̄ have an

effective electric charge of |Qχ| = |ϵgDe| [33, 36]. The suggested choice of parameter

space is {mχ, Qχ/e}, and χ can be taken to be a fermion.

Note that the decays of the dark photon to the SM hadrons cannot be calculated

ab-initio. This, however, does not lead to significant uncertainty, as A′ → hadrons par-

tial decay width can be inferred from the experimentally measured R-ratio (see e.g. the

treatment in Ref. [37]).

The kinetic mixing coupling of A′ to matter is the simplest and most generic, but not

the only possible vector portal. Other cases considered in the literature include gauged

B − L and Lµ − Lτ models, and somewhat less motivated leptophylic and leptophobic

cases, when A′ is assumed to be coupled to either total lepton current, or total baryon

current with a small coupling g′. We encourage experimental collaborations to assess their

sensitivity to these cases as well.

2.2 Scalar portal models

The 2012 discovery of the BEH mechanism, and the Higgs boson h, prompts to investigate

the so called scalar or Higgs portal, that couples the dark sector to the Higgs boson via

the bilinear H†H operator of the SM. The minimal scalar portal model operates with one

extra singlet field S and two types of couplings, µ and λ [38],

Lscalar = LSM + LDS − (µS + λS2)H†H, (2.3)

The dark sector Lagrangian may include the interaction with dark matter χ, LDS = Sχ̄χ+

.... Most viable dark matter models in the sub-EW scale range imply mχ > mS [20].

At low energy, the Higgs field can be subsituted forH = (v+h)/
√
2, where v = 246GeV

is the the EW vacuum expectation value, and h is the field corresponding to the physical

125GeV Higgs boson. The nonzero µ leads to the mixing of h and S states. In the limit

of small mixing it can be written as

θ =
µv

m2
h −m2

S

. (2.4)

Therefore the linear coupling of S to SM paarticles can be written as θS×
∑

SMOh, where

Oh is a SM operator to which Higgs boson is coupled. (For an elementary fermion, e.g.

Oh = (mψ/v) × ψ̄ψ). The sum goes over all type of SM operators coupled to the Higgs

field.
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Coupling constant λ leads to the coupling of h to a pair of S particles, λS2. It can lead

to pair-production of S but cannot induce its decay. An important property of the scalar

portal is that at a loop level it can induce flavour-changing transitions, and in particular

lead to decays K → πS, B → K(∗)S etc [22, 38, 39] and similarly for the hS2 coupling

[40].

We define the following benchmark cases for the scalar portal models:

• BC4, Higgs-mixed scalar: in this model we assume λ = 0, and all production and

decay are controlled by the same parameter θ. Therefore, the parameter space for

this model is {θ,mS}.

• BC5, Higgs-mixed scalar with large pair-production channel: in this model the pa-

rameter space is {λ, θ,mS}, and λ is assumed to dominate the production via e.g.

h → SS, B → K(∗)SS, B0 → SS etc. We suggest taking the value of λ ≃ 5 × 10−4

such that Brh→SS is close to 10−3, and therefore safely outside the reach of the direct

LHC searches for the Higgs invisible decay channels.

We also provide comments on treatment of strong interaction uncertainties. For the

flavour-changing decays, the effective b − s − S and s − d − S vertices are dominated by

the short-distance contribution and therefore are uncertainty-free. The K → π transitional

matrix elements can be obtained using chiral theory, while for the B → K∗ transitions we

recommend using the QCD sum rule derived form factors [41, 42].

The flavour diagonal transitions such as S → hadrons decays contain significant

hadronic uncertainty. Our recommendation is to use the chiral perturbation theory calcu-

lation, including the region with enhacement of the pion decay channel around the mass

of f0 resonance [43]. (Fig 6b of Ref. [43] can be used as an input below 1.4 GeV) Above

mS = 1.4 GeV we recommend using perturbative input [44, 45], i.e. S decays to heavy

quarks, gluons and strange quarks, for definitiveness.

We also note that while the 125 GeV Higgs-like resonance has properties of the SM

Higgs boson within errors, the structure of the Higgs sector can be more complicated

and include e.g. several scalar doublets. In the two-Higgs doublet model the number of

possible couplings grows by a factor of three, as S can couple to 3 combinations of Higgs

field bilinears, H†
1H1, H

†
2H2 and H1H2. Therefore, the experiments could investigate their

sensitivity to a more complicated set of the Higgs portal couplings.

2.3 Neutrino portal models

Netrino portal extension of the SM is very motivated by the fact that it can be tightly

related with the neutrino mass generation mechanism. The neutrino portal operates with

one or several dark fermions N , that can be also called “heavy neutral leptons” or HNLs.

The general form of the neutrino portal can be written as

Lvector = LSM + LDS +
∑

FαI(L̄αH)NI (2.5)

where the summation goes over the flavour of lepton doublets Li, and the number of

available HNLs, NJ . The FiJ are the corresponding Yukawa couplings. The dark sector
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Lagrangian should include the mass terms for HNLs, that can be both Majorana or Dirac

type. For more extended review, see Ref. [3, 46]. Setting Higgs field to its v.e.v., and

diagonalizing mass terms for neutral fermions, one arrives at νi − NJ mixing, that is

usually parametrized by a matrix called U . Therefore, in order to obtain interactions of

HNLs, inside the SM interaction terms, one can replace να →
∑

I UαINI . In the minimal

HNL models, both the production and decay of an HNL are controlled by the elements of

matrix U .

The PBC suggests the following benchmark cases:

• BC6, Single HNL, electron dominance: Assuming one Majorana HNL state N , and

the predominant mixing with electron neutrinos, all production and decay can be de-

termined as function of parameter space {mN , |Ue|2}. Parameter space is {mN , |Ue|2}.

• BC7, Single HNL, muon dominance: Assuming one Majorana HNL state N , and the

predominant mixing with muon neutrinos, all production and decay can be deter-

mined as function of parameter space {mN , |Uµ|2}.

• BC8, Single HNL, tau dominance: One Majorana HNL state with predominant mix-

ing to tau neutrinos. Parameter space is {mN , |Uτ |2}.

These are representative cases which do not exhaust all possibilities. Multiple HNL

states, and presence of comparable couplings to different flavours can be even more mo-

tivated than the above choices. The current choice of benchmark cases is motivated by

simplicity.

2.4 Axion portal models

QCD axions are an important idea in particle physics [47–49] that allows for a natural

solution to the strong CP problem, or apparent lack of CP violation in strong interactions.

Current QCD axion models are restricted to the sub-eV range of axions. However, a

generalization of the minimal model to axion-like particles (ALPs) can be made [36]. Taking

a single pseudoscalar field a one can write a set of its couplings to photons, quarks, leptons

and other fields of the SM. In principle, the set of possible couplings is very large and we

take only the flavour-diagonal subset,

Laxion = LSM +LDS +
a

4fγ
FµνF̃µν +

a

4fG
TrGµνG̃µν +

∂µa

fl

∑
α

l̄αγµγ5lα +
∂µa

fq

∑
β

q̄βγµγ5qβ

(2.6)

The DS Lagrangian may contain new states that provide UV completion to this model (for

the case of the QCD axion they are called the PQ sector). All of these interactions do not

lead to large additive renormalization of ma, making this model technically natural. Note,

however, that the coupling to gluons does lead to the non-perturbative contribution to ma.

The PBC committee proposes to consider the following benchmark cases:

• BC9, photon dominance: Assuming a single ALP state a, and the predominant

coupling to photons, all phenomenology (production, decay, oscillation in the mag-
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netic field) can be determined as functions on {ma, gaγγ} parameter space, where

gaγγ = f−1
γ notation is used.

• BC10, fermion dominance: Assuming a single ALP state a, and the predominant

coupling to fermions, all phenomenology (production and decay) can be determined as

functions on {ma, f
−1
l , f−1

q }. Furthermore, for the sake of simplicity, we recommend

taking fq = fl.

• BC11, gluon dominance: this case assume an ALP coupled to gluons. Parmeter

space is {ma, f
−1
G }. Notice that in this case the limit of ma < ma,QCD|fa=fG is

unnatural as it requires fine tuning and therefore is less motivated.

The ALP portals, BC 9−11, are effective interactions, and would typically require UV

completion at or below fi scales. This is fundamentally different from vector, scalar and

neutrino portals that do not require external UV completion. Moreover, the renormaliza-

tion group (RG) evolution is capable of inducing new couplings. The PBC recommends

that all three cases, 9−11, be considered as input at the renormalization scale of Λ = 1TeV.

Therefore, the low-energy phenomenology at an appropriate scale µ, (e.g. µ = 1GeV) will

contain new couplings developed by the RG flow with log(Λ/µ) dependence. In particular,

RG effecs will induce b− s− a and s− d− a vertices at low energy.

PBC also recommends perturbative approach for calculating a → hadrons for ma >

1GeV, while neglecting hadronic widths below that scale, Γa→hadrons(ma < 1GeV) ≃ 0.

Experimental results

FIPs physics is currently at the forefront of fundamental physics and all the main lab-

oratories in the world host one or more experiments able to cover a region of the parameter

space allowed by portal formalism. Tables 2 and Table 3 show past, existent and future

(proposed or approved) experiments running at accelerators that will search for FIPs in a

mass range between ∼ MeV and 100 GeV. Figures 1-11 show the state of the art of existing

limits and future projections (both at 90 % CL) for all the accelerator-based experiments

worldwide. The legenda is as follows: filled areas are existing limits; dotted line are projec-

tions obtained using a toy monte carlo; dashed lines are projections obtained using a full

Monte Carlo with background simulated (at different levels); solid lines are extrapolation

from existing datasets.
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Table 2. Main past accelerator-based experiments sensitive to FIPs searches. Legend for portals:

1: Vector; 2: Scalar; 3: Pseudo-scalar; 4: Fermion. The techniques used are: i) visible decays; ii)

invisible decays; e− or nucleon recoil; missing mass ��M , missing momentum �p and missing energy

�E .

Experiment lab beam particle yield/L technique portals

past

BaBar [50] SLAC e+e−, 10.58 GeV 514 fb−1 visible, invis. (1)

Belle [51] KEK e+e−, 10.58 GeV 0.6-0.8 fb−1 visible (1,2,4)

CHARM [52] CERN p, 400 GeV 2.4 · 1018 visible (1,2,3,4)

E137 [53] SLAC e−, 20 GeV 2 · 1020 (30 C) visible (1,3)

E141 [54] SLAC e−, 9 GeV 2 · 1015 visible (1,3)

E774 [55] FNAL e−, 275 GeV 2 · 1015 visible (1)

KLOE [56, 57] LNF e+e−, 1 GeV up to 1.7 fb−1 visible, inv. (1)

LSND [58] LANL p, 800 MeV 1023 pot e− recoil (1)

MiniBooNE [? ] FNAL p, 8 GeV 1.9 · 1020 recoil e,N (1)

NA48/2 [59] CERN π0 2 · 107 ��M (1)

NuCAL [60, 61] Serpukhov p, 70 GeV 1.7 · 1018 visibile (1,3)

PIENU [62] TRIUMF π+, 75 MeV 107 missing mass (4)
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Table 3. Main current, and future (proposed or approved) accelerator-based experiments sensitive

to FIPs searches. Legend for portals: 1: Vector; 2: Scalar; 3: Pseudo-scalar; 4: Fermion.

Experiment lab beam particle yield/L technique portals timescale

current

APEX [63] JLAB e+, 2.2 GeV up to 150 µA visible (1) unknown

ATLAS [64] CERN pp, 13-14 TeV up to 3 ab−1 visible, invis. (1,2,3,4) 2042

Belle II [65] KEK e+e−, 11 GeV up to 50 ab−1 visible, invis. (1,2,3,4) 2035

CMS [66] CERN pp, 13-14 TeV up to 3 ab−1 visible, invis. (1,2,3,4) 2042

Dark(Sea)Quest [67] FNAL p, 120 GeV 1018 → 1020 visible (1,2,3,4) 2025?

FASER [68] CERN pp, 14 TeV 150 fb−1 visible (1,2,3,4) 2025 HPS [69]

JLAB e−, 2-6 GeV ∼ 1020 eot visible (1,3) unknown

LHCb [70] LHC pp, 13-14 TeV up to 300 fb−1 visible (1,2,3,4) 2042

MicroBooNE [71] FNAL p, 8 GeV ∼ 1021 pot visible (1) 2015-2021

NA62 [72] CERN K+, 75 GeV up to 1013 K decays visible, invis. (1,2,3,4) 2025

NA62-dump [73] CERN p, 400 GeV ∼ 1018 pot visible (1,2,3,4) 2025

NA64e [74] CERN e−, 100 GeV up to 3 · 1012 eot/year �E , visible (1,3) 2025?

PADME [75] LNF e+, 550 MeV 5 · 1012 e+ot missing mass (1) < 2023

T2K-ND280 [76] JPARC p, 30 GeV 1021 pot visible (4) running

proposed

BDX [77] JLAB e−, 11 GeV ∼ 1022 recoil e (1,3) 2024-2025

CODEX-b [78] CERN pp, 14 TeV 300 fb−1 visible (1,2,3,4) 2042

Dark MESA [79] Mainz e−, 155 MeV 150 µA visible (1) < 2030

FASER2 [80] CERN pp, 14 TeV 3 ab−1 visible (1,2,3,4) 2042

FLaRE [80] CERN pp, 14 TeV 3 ab−1 visible, recoil (1) 2042

FORMOSA [80] CERN pp, 14 TeV 3 ab−1 visible (1) 2042

HIKE-dump [81] CERN p, 400 GeV 5 ·1019 pot visible (1,2,3,4) <2038

HIKE-K+ [81] CERN K, 75 GeV n. of K? visible, inv. (1,2,3,4) <2038

LBND (DUNE) [82] FNAL p, 120 GeV ∼ 1021 pot recoil e,N (1,2,3,4) < 2040

LDMX [83] SLAC e−, 4,8 GeV 2 · 1016 eot �p, visible (1) < 2030

M3 [84] FNAL µ, 15 GeV 1010 (1013) mot �p (1) proposed

MATHUSLA [85] CERN pp, 14 TeV 3 ab−1 visible (1,2,3,4) 2042

milliQan [86] CERN pp, 14 TeV 0.3-3 ab−1 visible (1) < 2032

MoeDAL/MAPP [87] CERN pp, 14 TeV 30 fb−1 visible (4) < 2032

Mu3e [88] PSI 29 GeV 1018 → 1020µ/s visible (1) < 2038

NA64µ [89] CERN µ, 160 GeV up to 1013 mot/year �p (1) < 2032

PIONEER [90] PSI 55-70 MeV, π+ 0.3 · 106π/s visible (4) phase I approved

SBND [91] FNAL p, 8 GeV 6 · 1020 pot recoil Ar (1) < 2030

SHADOWS [92] CERN p, 400 GeV 5 · 1019 pot visible (2,3,4) <2038

SHiP [93] CERN p, 400 GeV 2 · 1020 pot visible, recoil (1,2,3,4) <2038
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Figure 1. Dark photon into visible final states (BC1): ε versusmA′ . Filled areas are existing

limits from searches at experiments at collider/fixed target (A1 [94], LHCb [95],CMS [96],BaBar [97],

KLOE [98–101], and NA48/2 [102]) and old beam dump: E774 [55], E141 [54], E137 [53, 103, 104]),

ν-Cal [60, 61], CHARM (from [105]), and BEBC (from [106]). Bounds from supernovae [107] and

(g − 2)e [11] are also included. Coloured curves are projections for existing and proposed experi-

ments: Belle-II [108]; LHCb upgrade [109, 110]; NA62 in dump mode with 1018 [111] and HIKE

with 5 × 1019 pot [81]; NA64(e)++ [112, 113]; FASER [114] and FASER2 [80, 115]; FACET [116];

DarkQUEST [117]; HPS [118]; DarkMESA [119]; Mu3e [120]; HL-LHC [121]; Gamma Factory [122].
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Figure 2. Existing limits ( filled areas) and future sensitivities of existing or proposed experiments

(coloured curves) to light dark matter production through a dark photon in the plane defined by

the yield variable y as a function of DM mass mχ for a specific choice of αD = 0.1 and mA′/mχ = 3.

The DM candidate is assumed to be a pseudo-Dirac fermion. Top plot shows the DM mass range up

to a few GeV, bottom plot up to 1 TeV. Current limits shown as filled areas come from: BaBar [123];

CMS [124]; NA64e [125]; reinterpretation of the data from E137 [103] and LSND [58]; result from

MiniBooNE [126]. The projected sensitivities, shown as solid, dashed, or dotted lines, come from:

SHiP [93], SBND [127], FLArE [115],LDMX [83, 128],Belle-II [108]. The ”LHC expected” and

”HL-LHC expected” sensitivities come from [129].
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Figure 3. Dark Photon milli-charged particles (BC3). Existing limits (filled areas)

and future sensitivities for existing or proposed experiments (curves). Existing limits: stellar

evolution (RGWD [130] and SN1987 [131]); Neff during BBN and CMB [130]; invisible decays

of ortho-positronium (oPS) [132]; SLAC milliQ experiment [133]; reinterpretation of data from

LSND and MiniBooNE [134]; interpretation of the anomalous 21 cm hydrogen absorption signal

by EDGES [135]; searches at LEP [136] and LHC [137]. Future sensitivities: NA64(e)++ [74];

NA64(µ) [138]; FerMINI [139]; milliQAN [86].
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Figure 4. Sensitivity to light dark scalar (BC4). Current bounds and future projections for

90% CL exclusion limits. Shaded areas come from: reinterpretation [27] of results from CHARM

experiment [140]; NA62 [141]; E949 [142, 143]; MicroBooNE [144] that excludes a light dark scalar as

interpretation [145] of the KOTO anomaly and MicroBooNE from Numi data [146]; LHCb [147, 148]

and Belle [149]. Coloured lines are projections of existing or proposed experiments: SHiP [93];

HIKE-K+ and HIKE-dump [81]; HIKE-KL/KLEVER [81]; SHADOWS [92]; DarkQuest [117, 150],

Belle 2 [151], LHCb run3 and run6 [152], FASER2 [80], CODEX-b [78, 153], MATHUSLA [154],

and FACET [116]. BBN and SN 1987A are from [155] and [156].
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Figure 5. Sensitivity to light dark scalar (BC5). Current bounds and future projections for

90% CL exclusion limits. Shaded areas come from: reinterpretation [27] of results from CHARM

experiment [140]; NA62 [141]; E949 [142, 143]; MicroBooNE [144] that excludes a light dark scalar as

interpretation [145] of the KOTO anomaly and MicroBooNE from Numi data [146]; LHCb [147, 148]

and Belle [149]. Coloured lines are projections of existing or proposed experiments: SHiP [93];

HIKE-K+ [81]; HIKE-KL/KLEVER [81]; SHADOWS [92]; FASER2 [80], CODEX-b [78, 153],

MATHUSLA [154], and FACET [116]. BBN and SN 1987A are from [155] and [156].
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Figure 6. Sensitivity to HNL with electron coupling (BC6). Current bounds and fu-

ture projections for 90% CL exclusion limits. Filled areas are existing bounds from: PS191 [157],

CHARM [140], PIENU [158], NA62 (KeN ) [159], NA62 (KµN ) [160], T2K [161], Belle [162], DEL-

PHI [163], ATLAS [164], and CMS [165]. Coloured curves are projections from: PIONEER [166],

HIKE [81], DarkQuest [150], Belle-II [167], FASER2 [114]; DUNE near detector [168], Hyper-K (pro-

jections based on [169]), CODEX-b [78], SHiP [93], SHADOWS [92] and MATHUSLA200 [154].

The BBN bounds are from [170]. The seesaw bounds are computed under the hypothesis of two

HNLs mixing with active neutrinos, and should be considered only indicative.
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Figure 7. Sensitivity to HNL with muon coupling (BC7). Current bounds and future

projections for 90% CL exclusion limits. Filled areas are existing bounds from: PS191 [157],

CHARM [140], PIENU [158], NA62 (KeN ) [159], NA62 (KµN ) [160], T2K [161], Belle [162];

DELPHI [163], ATLAS [164] and CMS [165]. Coloured curves are projections from: NA62-

dump [32, 111], DarkQuest [150], Belle-II [167]; FASER2 [114]; DUNE near detector [168]; Hyper-K

(projections based on [169]); SHiP [93], CODEX-b [78], and MATHUSLA200 [154]. The BBN

bounds are from [170]. The seesaw bounds are computed under the hypothesis of two HNLs mixing

with active neutrinos, and should be considered only indicative.
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Figure 8. Sensitivity to HNL with tau coupling (BC8). Current bounds and future projec-

tions for 90% CL exclusion limits. Filled areas are existing bounds from: CHARM [140]; Belle [162];

DELPHI [163],; T2K [161] Coloured curves are projections from: HIKE-dump [81], SHiP [93], Dark-

Quest [150], Belle-II [167], DUNE [171], FASER2 [114]; CODEX-b [78], and MATHUSLA200 [154].

The BBN bounds are from [170]. The seesaw bounds are computed under the hypothesis of two

HNLs mixing with active neutrinos, and should be considered only indicative.
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Figure 9. Axions/ALPs with photon coupling (BC9). Region of interest for accelerator-

based experiments up to a few GeV. Shaded areas are excluded regions from: LEP (data: [172–

175]; interpretation: [176]); Belle II [177]; E137 [53]; NA64 [178]; CHARM [105]; NuCal [179].

Curves are projections from: NA62-dump [73]; Belle II [180] for 20 fb−1 and 50 ab−1; SHiP [93];

FASER [114] and FASER2 [80]; NA64++
e [74] in visible and invisible modes; LUXE-phase 1 [181];

HIKE-dump [81]; Gamma Factory [182].
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Figure 10. Sensitivity to ALPs with fermion couplings (BC10). Current bounds and future

projections for 90% CL exclusion limits. Current bounds (filled areas) and prospects (solid lines)

from FASER2 [114], CODEX-b [78], MATHUSLA [32], HIKE-K+ and in dump mode [81], SHAD-

OWS [92], and SHiP [93]. CHARM and LHCb filled areas have been adapted by F. Kahlhoefer,

following Ref. [183].
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Figure 11. Sensitivity to ALPs with gluon coupling (BC11). Current bounds and future

projections for 90% CL exclusion limits. Current bounds are shown as filled areas, projections as

lines. Current bounds: CHARM gray filled area has been computed by F. Kling, recasting the

search for long-lived particles decaying to two photons performed at CHARM [140]. Other coloured

filled areas are kindly provided by Mike Williams and revisited from Ref. [184]. The gray areas

depend on UV completion and the results shown assume ≈ [logΛ2
UV/m

2
t ±O(1)] ⇒ 1. Projections:

LHCb with 15 fb−1 and 300 fb−1 [152]; CODEX-b with 300 fb−1 [153]); MATHUSLA with 3 ab−1

(estimate from [153]); FASER2 with 3 ab−1 [80]; SHiP with 2×1020 pot [93]; SHADOWS [92] and

HIKE-dump [81] with 5× 1019 pot each.
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