Classical Splitting of Parametrized Quantum Circuits

For more details:

Cenk Tüysüz

DESY CQTA, Humboldt-Universität zu Berlin

in collaboration with;

Giuseppe Clemente, Arianna Crippa, Tobias Hartung, Stefan Kühn, Karl Jansen

arXiv: 2206.09641

Variational Quantum Algorithms

Image credit: https://pennylane.ai/qml/glossary/variational_circuit.html **DESY.** | Classical Splitting of Parametrized Quantum Circuits | Cenk Tüysüz | 15 March 2023

Measuring Expectation values

Hoeffding's inequality defines the number of shots required to estimate $E[\hat{X}]$ to ϵ -precision with $1-\delta$ probability as;

$$N_{\rm hff}^{\epsilon,\delta}(\hat{X}) = rac{\ln(2/\delta)}{2\epsilon^2} {
m R[\hat{X}]}^2$$

This means that we need to define a precision. How can we do this?

Measuring gradients

Parameter shift rule

 \rightarrow The optimizer needs to obtain gradients to update the circuit parameters.

The parameter shift rule allows us to measure gradients of circuit parameters with respect to the expectation values.

$$\frac{d}{d\theta}f(\theta) = r\left[f(\theta + \frac{\pi}{4r}) - f(\theta - \frac{\pi}{4r})\right]$$

r=1/2 for simple Pauli rotation gates.

More details on this: Crooks 2019 arXiv: 1905.13311

Histogram of gradients of a single parameter

Barren Plateaus

What are they?

Barren Plateaus (BPs) are the exponential decay of gradient sizes with respect to a hyperparameter of the model (e.g. number of qubits, number of layers, etc.).

McClean et al. 2018, Nature Comm.

- \rightarrow Gradients of a VQA are centered around zero
- → Variance of the gradients inform us about the flatness of the landscape.

Page 6

Barren Plateaus

How to avoid/mitigate them?

Some circuits do not exhibit BPs (e.g. Quantum Convolutional Neural Networks (QCNNs))

Pesah et al. 2021, Phys. Rev. X

There are many methods suggested to avoid BPs by certain initialization methods. Grant et al. 2019, Quantum

 \rightarrow These methods, in general, do not ensure trainability after the initialization.

Weak BPs were suggested as another measure that can be used to track if the model falls in to BPs.

\rightarrow Expensive (requires state tomography) but effective

DESY. | Classical Splitting of Parametrized Quantum Circuits | Cenk Tüysüz | 15 March 2023

Classical Splitting

Split an N qubit ansatz to k many m qubit circuit.

Classical Splitting (CS) Ansatz:

k: number of circuits m: number of local qubits

N: total number of qubits

Cost function becomes a sum of each subcircuit;

$$C(\boldsymbol{\theta}) = \sum_{i=1}^{k} \operatorname{Tr}[\bigotimes_{j=1}^{k} \left((O_{i} - \mathbb{1}) \,\delta_{i,j} + \mathbb{1} \right) U^{j}(\boldsymbol{\theta}^{j}) \rho_{j} U^{j\dagger}(\boldsymbol{\theta}^{j}) \right]$$
$$= \sum_{i=1}^{k} \prod_{j=1}^{k} \operatorname{Tr}[\left((O_{i} - \mathbb{1}) \,\delta_{i,j} + \mathbb{1} \right) U^{j}(\boldsymbol{\theta}^{j}) \rho_{j} U^{j\dagger}(\boldsymbol{\theta}^{j}) \right]$$
$$= \sum_{i=1}^{k} \operatorname{Tr}[O_{i} U^{i}(\boldsymbol{\theta}^{i}) \rho_{i} U^{i\dagger}(\boldsymbol{\theta}^{i})].$$

Classical Splitting

An ansatz with a local cost function has BPs for depth > O(logN). This means the variance of gradients decays <u>exponentially</u> with N;

$$\operatorname{Var}[\partial_j C(\boldsymbol{\theta})] \approx \mathcal{O}\left(\frac{1}{2^{6N}}\right)$$

If we have classical splitting with $m = \beta log_{\gamma}N$, this becomes <u>polynomial</u>;

$$\operatorname{Var}[\partial_j C(\boldsymbol{\theta})] \approx \mathcal{O}\left(\frac{1}{2^{(6m)}}\right) = \mathcal{O}\left(\frac{1}{N^{6\beta \log_{\gamma} 2}}\right)$$

Performance of the CS Ansatz

Binary Classification on Classical Data

We perform binary classification on a synthetic dataset with increasing number of features (number of features = number of qubits). We choose an ansatz with linear depth (L=N) and present validation accuracy results after training.

No classical splitting (m=N):

 \rightarrow Accuracy drops rapidly with increasing N.

With classical splitting (m<N):

 \rightarrow Accuracy stays stable for increasing N for $m = log_2 N$.

- → Classical splitting shows benefit even for m = N/2.
- \rightarrow Accuracy benefits from CX layers

Performance of the CS Ansatz Cont'd

Shallow (no BP) ansatz Linear depth ansatz N=4, L=2 N=16, L=2 N=4, L=N N=8, L=N N=16, L=N N=8, L=2 0.7 Train Loss 0 0.5 0.7 Test Loss 9 0 0.5 Train Accuracy Ó0 50 100 Ó 50 100 Epochs Epochs Epochs Epochs Epochs Epochs m=1 m=2 — m=4 — m=8 —— m=16

0.54 N=8, m=4, L=8 0.52 0.50 N=12, m=4, L=12 0.48 - 0.46 N=16, m=4, L=16 0.44 N=20, m=4, L=20 - 0.42 0.40

Credit: @lpptb

QML for Quantum Problems

NTangled dataset

Concentrable Entanglement (CE) is an entanglement measure defined as;

$$\operatorname{CE}(|\Psi
angle) = 1 - rac{1}{2^N} \sum_{lpha \in Q} \operatorname{Tr}[
ho_{lpha}^2]$$

where Q is the power set of the set {1,2,...,N}, and ρ_{α} is the reduced state of subsystems labeled by the elements of α associated to $|\Psi\rangle$

The Ntangled dataset is one of the few publicly available "quantum" datasets!

Schatzki et al. 2021 arXiv: 2109.03400

Publicly available: <u>https://github.com/LSchatzki/NTangled_Datasets</u>

Results on the Ntangled dataset

Classification performance on the Ntangled dataset.

N	Task	т	m	Train Accuracy (%)	Avg. epochs to reach	Avg. epochs to reach	Test Accuracy (%)	Avg. epochs to reach	Avg. epochs to reach
	[CE Values]	Г			90% Train Accuracy	100% Train Accuracy		90% Test Accuracy	100% Test Accuracy
4	0.05 vs. 0.35	4	1	$94.6^{+2.5}_{-1.7}$	$6.7^{+11.3}_{-5.7}$	N/A	$94.6^{+3.8}_{-1.8}$	$6.1^{+11.9}_{-5.1}$	N/A
			2	$100.0_{-0.5}^{+0.0}$	$4.9^{+12.1}_{-3.9}$	N/A	$100.0\substack{+0.0\\-0.0}$	$3.9_{-2.9}^{+11.1}$	$10.8^{+26.2}_{-9.8}$
			4	$99.9^{+0.1}_{-1.6}$	$5.4^{+6.6}_{-4.4}$	N/A	$100.0^{+0.0}_{-1.1}$	$4.1^{+8.9}_{-3.1}$	N/A
4	0.25 vs. 0.35	4	1	$90.4^{+4.1}_{-3.5}$	N/A	N/A	$86.4^{+6.9}_{-5.9}$	N/A	N/A
			2	$98.2^{+1.5}_{-1.3}$	$7.7^{+25.3}_{-5.7}$	N/A	$97.1^{+2.3}_{-1.6}$	$7.9^{+27.1}_{-6.9}$	N/A
			4	$100.0_{-0.4}^{+0.0}$	$5.1^{+9.9}_{-4.1}$	N/A	$100.0_{-1.1}^{+0.0}$	$4.5_{-3.5}^{+11.5}$	N/A
8	0.15 vs. 0.45	8	1	$99.9^{+0.1}_{-0.2}$	$3.3^{+3.7}_{-2.3}$	N/A	$100.0^{+0.0}_{-0.0}$	$2.4^{+2.6}_{-1.4}$	$6.1^{+10.9}_{-5.1}$
			2	$100.0^{+0.0}_{-0.0}$	$2.5^{+2.5}_{-1.5}$	$7.1^{+11.9}_{-6.1}$	$100.0\substack{+0.0\\-0.0}$	$1.5^{+2.5}_{-0.5}$	$3.2^{+6.8}_{-2.2}$
			4	$100.0^{+0.0}_{-0.0}$	$2.4_{-1.4}^{+1.6}$	$4.6_{-3.6}^{+4.4}$	$100.0^{+0.0}_{-0.0}$	$1.4_{-0.4}^{+1.6}$	$2.9^{+7.1}_{-1.9}$
			8	$100.0\substack{+0.0\\-0.0}$	$2.8^{+2.2}_{-0.8}$	$7.8^{+11.2}_{-5.8}$	$100.0\substack{+0.0\\-0.0}$	$1.8^{+2.2}_{-0.8}$	$4.8^{+8.2}_{-3.8}$
8	0.40 rs 0.45	8	1	$99.9^{+0.1}_{-0.4}$	$3.1^{+2.9}_{-2.1}$	N/A	$99.6^{+0.4}_{-0.7}$	$2.2^{+2.8}_{-1.2}$	N/A
			2	$100.0_{-0.0}^{+0.0}$	$2.8^{+4.2}_{-1.8}$	$9.2^{+11.8}_{-8.2}$	$100.0_{-0.0}^{+0.0}$	$1.9_{-0.9}^{+4.1}$	$5.2^{+5.8}_{-4.2}$
	0.40 v8. 0.40		4	$100.0\substack{+0.0\\-0.0}$	$2.4_{-1.4}^{+1.6}$	$5.3_{-4.3}^{+12.7}$	$100.0\substack{+0.0\\-0.0}$	$1.5_{-0.5}^{+1.5}$	$3.2^{+9.8}_{-2.2}$
			8	$100.0\substack{+0.0\\-0.0}$	$2.9^{+3.1}_{-0.9}$	$8.2^{+9.8}_{-6.2}$	$100.0^{+0.0}_{-0.0}$	$1.9^{+3.1}_{-0.9}$	$5.7^{+5.3}_{-4.7}$

What about simulating physical systems?

The Extended CS Ansatz

The Extended CS Ansatz

The ECS ansatz gives us the flexibility to choose certain levels of entanglement entropy.

The Extended CS Ansatz

We simulate the transversal-field Ising Hamiltonian for J=h=1 on a 1D line for N=12, D=12, m=3 and N=16, D=16, m=4.

$$H = -J \sum_{i=1}^{N} Z_i Z_{i+1} - h \sum_{i=1}^{N} X_i$$

We present results from 100 runs with different L and T values.

 \rightarrow Success rate improves with classical splitting

Performance of the ECS Ansatz

→ Success rate improves with classical splitting It is hard to pinpoint the transition point!

Classical splitting allows,

- Mitigating Barren Plateaus
 - better trainability
 - ✤ faster convergence
 - Doesn't ensure better results out of the box!
- Extended CS ansatz:
 - Empirical evidence suggests a performance increase.
 - Hard to find the hyperparameters that gives the best results.

For more details:

arXiv: 2206.09641

For more details:

arXiv: 2206.09641

Contact

DESY. Deutsches Elektronen-Synchrotron

www.desy.de

Cenk Tüysüz DESY CQTA

*@*cenk_tuysuz

Credit: @itheodonis