

FCC-hh ring design meeting #2

M. Giovannozzi

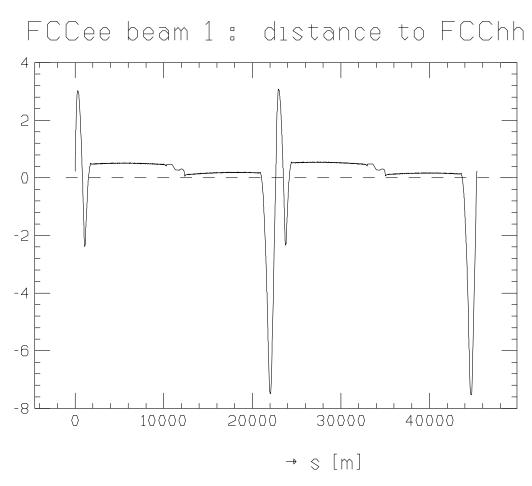
Acknowledgements: A. Abramov, W. Bartmann, R. Bruce, S. Calatroni, F. Cerutti, R. Lopez, N. Mounet, G. Perez-Segurana, T. Risselada, P. Thonet, E. Todesco

Outline

- On-going activities:
 - PA31V3.0
 - Optics design
 - Transfer lines in ring tunnel
 - Operating temperature of beam screen
 - General points

On-going activities: PA31V3.0

- New layout
 - The ring circumference will be further shortened for matching the harmonic number of FCC-hh and its injector and for improving the ring placement.
- V2.0
 - $L_{cell} = 215.294 \text{ m}$; $L_{Circ} = 91104.686$; $N_{cell} = 42$;
 - $L_{ss} = 1400 \text{ m}$; $L_{ss} = 2143 \text{ m}$;
 - $\theta_0 = +10.88 \text{ deg}$; $PA_{lat} = 46.2467465 \text{ deg}$; $PA_{lon} = 6.09718737 \text{ deg}$;
- V3.0 (beam energy for 16 T is approximately 47 TeV)
 - $L_{cell} = 215.294 \text{ m}$; $L_{Circ} = 90657.886$; $N_{cell} = 42$;
 - $L_{ss} = 1400 \text{ m}$; $L_{ss} = 2032 \text{ m}$;
 - $\theta_0 = +10.90 \text{ deg}$; $PA_{lat} = 46.2466 \text{ deg}$; $PA_{lon} = 6.0981 \text{ deg}$;
- V3.1
 - Same as V3.0, but with the experimental IPs radially displaced match those of the FCC-ee rings.



On-going activities: PA31V3.0

 The comparison of the FCC-hh ring and the corresponding FCC-ee ring showed large displacements that should be fixed in the future.

riss 10/02/23 16:07

On-going activities: optics design

- V1.0
 - It includes new optics for collimation insertions and new PB optics.
 - Preparation of a thin lens lattice for collimation studies to validate the new optics.
- V3.0
 - Development of a 16-dipole cell design: see presentation by Gustavo.
 - The decision has been taken to injection the beams in the outer channel.
 - Decision to replace normal conducting separation dipoles in experimental insertions with superconducting ones. At present, HL-LHC performance is assumed, but following aperture studies we will better specify the magnets. This would enable gaining useful space in the insertion.

CIRCULAR On-going activities: transfer lines in ring tunnel

- Optics design:
 - Same regular cell as that of the FCC-hh ring. This design will be used also for the part of the transfer lines outside of the ring tunnel.
- Magnet design:
 - Two solutions available:
 - Normal-conducting magnets
 - Permanent magnets
 - Overall magnet design available, integration studies to be launched.

On-going activities: beam screen temperature

- Thanks to the decision to perform a coating of the beam screen (with amorphous carbon) it is possible to operate the beam screen at higher temperature.
- The best choice seems to be 70 K
- Using the information in
 - L. Tavian, Cryogenics, FCC Collider Kickoff Meeting, Univ. Geneva, Switzerland (2014), https://indico.cern.ch/event/282344/contributions/1630775/
 - It is possible to estimate the gain with respect to the CDR

	T_CM (K)			Relative gain w.r.t. CDR	
T_BS (K)					
	1.9	4.5			
50	547.5	503.5			
60	488.2	423.1		11	16
70	465.1	373.7		15	26
80	468.1	345.1		14	31
	Values in W/m/beam (Total electrical power to refrigerator)				

General points

- HTS coating of beam screen
 - Excellent progress by the collaboration working on this topic.
 - N. Mounet has joined our team to support beam dynamics aspects of these activities.
- Collimation and beam dynamics simulations
 - Possibility to collaborate with Pakistan Atomic Energy Commission (PAEC). Details are being worked out.

Thank you for your attention!

