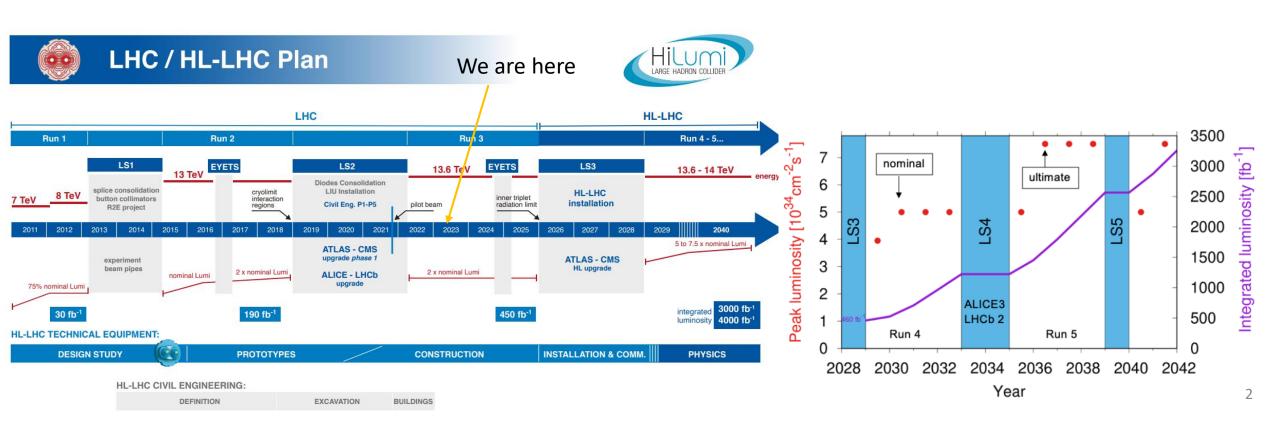


CMS Tracker

HEPHY group report

Thomas Bergauer, Marko Dragicevic, Suman Chatterjee, <u>Kostas Damanakis</u>, Ioannis Kopsalis

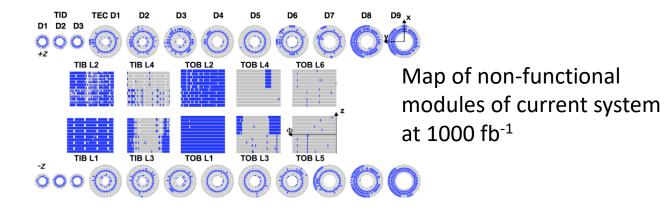
17/2/2023


High Luminosity LHC

High luminosity upgrade of LHC

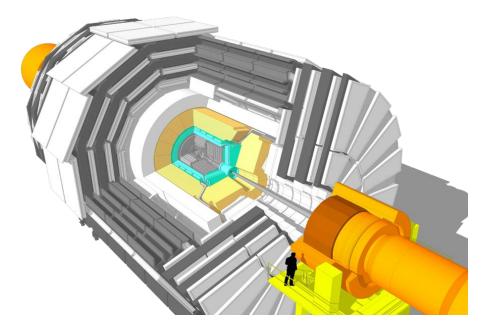
- 5-fold increase of peak luminosity (5x10³⁴ cm⁻²s⁻¹)
- 10-fold increase of integrated luminosity (3000 fb⁻¹)
- Pile up 140-200 p-p collisions

Long Shutdown 3 (LS3) scheduled for 2026-2028



Tracker Phase-2 Upgrade

Current tracking system not expected to tolerate the increased radiation levels of HL-LHC



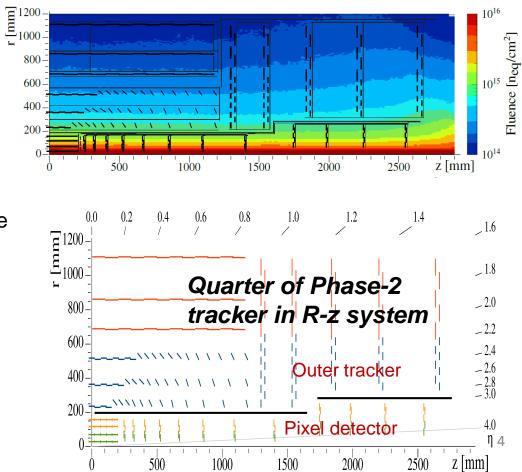
Tracker will need a full replacement!!

Phase-2 upgrade \rightarrow 200 m² silicon sensors required!

HEPHY plays a key role in Tracker *Phase-2 upgrade project*

- Simulations and design of sensors and test structures
- Electrical characterization of sensors and test structures
- Preparation, negotiations and QA of series production
- Co-Conveners of sensor development working group

Tracker Phase-2 Upgrade

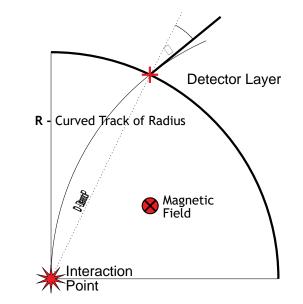


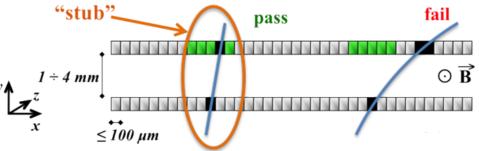
Tracker must maintain the excellent performance of the current system on tracking efficiency and background rejection in the harsh environment of HL-LHC!

- Increased radiation levels and pile-up main challenges
 - radiation hard sensors
 - higher granularity for sufficient two track separation
- Level1 Trigger needs tracking information
 - currently only calorimeter and muon system send data to L1
 - with increased pile-up, trigger rate can not keep up with full event rate
 → data reduction is required!

L1 contribution concept plays a major role on outer tracker **module** and **layout design!**

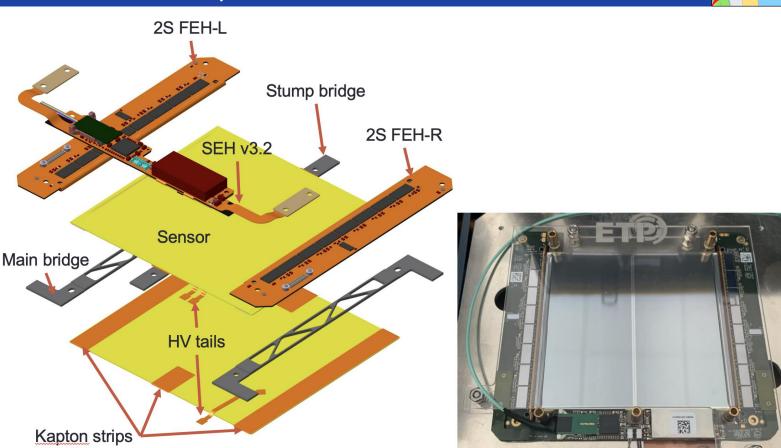
FLUKA simulation of expected delivered fluence on Ph-2 tracker after 3000 fb⁻¹

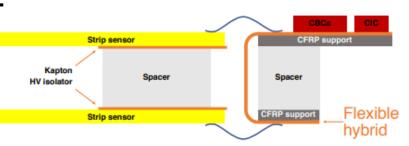



Outer Tracker p_T modules

- tracker forwards data to L1 only from high transverse momentum tracks!
- high p_T events (above ~ 2 GeV/c²) transmitted to L1 trigger \rightarrow stubs
 - one order of magnitude data reduction without sacrifice of interesting physics events
- outer tracker modules (p_T modules) will be performing the event filtering

- each p_T module comprises 2 sensors and performs hit correlation
 - sensors parallel and narrowly arranged form a *track selection window* (tunable)
 - $\circ~$ bending angle of track at a magnetic field depends on p_T
 - high p_T particles feature smaller bending angle and 'hit' a narrower band of strips/pixels
 - \rightarrow succeed to fall within the acceptance window

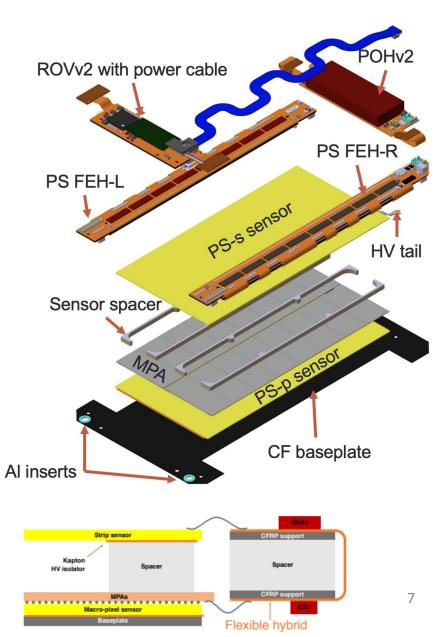



Outer Tracker p_T modules

The 2S Module

- <u>2</u> x <u>S</u>trip sensors: 2S sensor
 - Size: 10 x 10 cm²
 - ο Pitch: 90 μm
 - Length: 5 cm
 - o strips per sensor: 2x1016
- 2 x 8 <u>CMS</u> <u>B</u>inary <u>C</u>hips: CBC
 - 2x127 channels per chip
 - Bump bonded to flexible hybrid
 - Connects to top and bottom sensors
 - Inter-chip communication via hybrid
- <u>C</u>oncentrator AS<u>IC</u>: CIC
 - collects data from 8 CBCs (half module)
- Low Power GigaBit Transceiver *IpGBT* + VTRx+
 Bandwidth: 5 Gb/s
- 2-stage DCDC powering
 - 12 V to
 2.5 V (opto)
 1.25 V (ASICS)

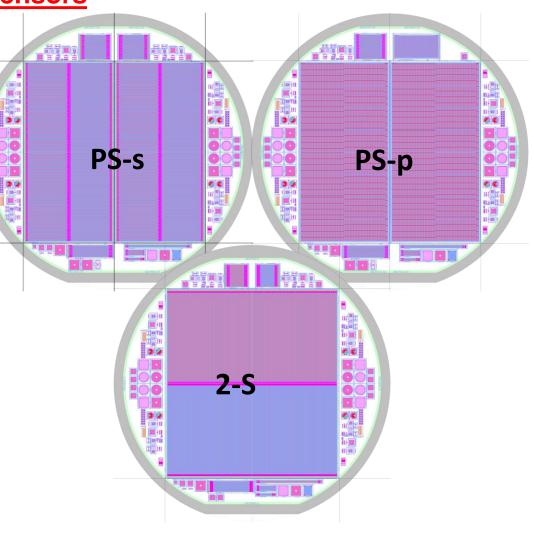

Outer Tracker p_T modules



The PS Module

- Macro<u>P</u>ixel sensor: PS-p sensor
 - \circ Size: 5 x 10 cm²
 - ο Pitch: 100 μm
 - o Length: 1.5 mm
 - No. of pixels: 32x960
- <u>S</u>trip sensors: PS-s sensor
 - \circ Size: 5 x 10 cm²
 - Pitch: 100 μm
 - o Length: 2.5 cm
 - No. of strips: 2x960
- 2 x 8 <u>Short</u> Strip <u>A</u>SIC: SSA
 - o 120 channels per chip
 - Sends hits to MPA
 - Bump bonded to flexible hybrid
- 16 <u>MacroPixel</u> <u>A</u>SIC: MPA
 - 120 x 16 pixels per chip
 - Bump bonded to MacroPixel sensor
 - o Includes correlation logic

- <u>Concentrator ASIC</u>: CIC
 collects data from 8 MPAs
- Low Power GigaBit Transceiver
 IpGBT + VTRx+
 - $\circ~$ Bandwidth: 5 or 10 Gb/s
- 2 stage DCDC powering
 - 12 V to
 - o 2.5 V (opto)
 - 1.25 V (ASICS)
 - \circ $\,$ 1.05 V (MPA digital)



Outer Tracker sensors

Baseline selection of the Phase-2 Outer Tracker Sensors

- n–on–p type sensors
- **290 µm** active thickness
 - with an extra 30 μm thick backplane
- high resistivity Float-Zone process
 - Bulk resistivity 3.5-8 kΩ-cm
- Biasing via:
 - Polysilicon resistors (strip sensors)
 - Punch-through structures (Macro-pixel sensors)
- P-stop technique for strip/pixel isolation
- Produced on 6" wafers (150mm thickness)
 - host several test structures and mini-sensors

Note: In 2015 the decision was that HEPHY contributes to sensors only!

HEPHY responsibilities in CMS Outer Tracker

2010 – 2019: Participation in all development studies of the sensors
(Materials, thickness, radiation hardness, simulations, production process, design choices, etc.)
2008 – 2018: Establishing alternative European sensor producer (Infineon) Stopped by Infineon in 2018 due to commercial reasons
2019: Final design and wafer layout for all three sensor types
(PS-p pixel design from KIT)
2014 – 2019: Conduction of the procurement process (~18 MCHF)
2019 – 2024: Definition and supervision of the Quality Assurance Campaign to produce ~ 29.000 sensors Process Quality Control (PQC) as major contribution from HEPHY (Viktoria Hingers PhD Thesis) – CMS PhD thesis award winner 2021

Managerial responsibilities

Thomas Bergauer

2016-2021: Co-Convener of the HGCal Sensor WG

Marko Dragicevic

Since 2014: Co-Convener of the Tracker Sensor WG Since 2017: Tracker Resource Manager

Active contributors today

Staff Scientists

Marko Dragicevic

Convener: Outer Tracker Sensors WG Tracker Resource Manager

Thomas Bergauer

Ex-convener: HGCal Sensors WG Also: Group Leader Detector Development (non-CMS)

PhDs

Konstantinos Damanakis: Tracker sensor QA (since Oct. 2020)

PostDocs

Moritz Wiehe: HGCal (until August 2022) – currently fellow position at CERN Ioannis Kopsalis: HGCAL+Tracker (since February 2023) Suman Chatterjee: part-time contribution to HGCAL measurements

Sensor QA team

Margit Oberegger Andreas Bauer Stefan Schultschik

Additional support

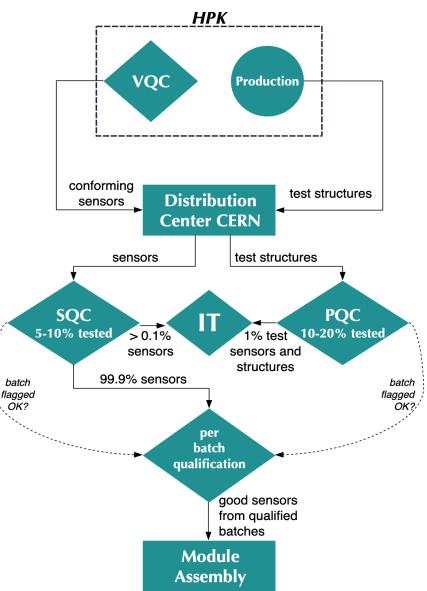
Wolfgang Brandner Florian Buchsteiner

CMS

Outer tracker requires about 28.000 silicon sensors
 0 16200 x 2S + 5960 x PS-s + 6400 x PS-p

The large-scale production was contracted to Hamamatsu Photonics

- Sensor production (deliveries) started summer 2020
 - $\circ~$ Campaign started within COVID-19 ~
 - Lockdowns had significant effects on all centres
 - All institutes managed to keep up
 - $\circ~$ A few problems identified during pre-production and now corrected



Quality Assurance plan

- Quality control comprises four parts VQC - Vendor Quality Control SQC - Sensor Quality Control PQC - Process Quality Control IT - Irradiation Tests
- All sensors characterized by vendor Only sensors complying with the specs are sent to CERN Results recorded in DB for each sensor
- Acceptance using sample measurements at SQC, PQC and IT
- Production and QA monitored by expert panel
- Effort lead by HEPHY and KIT Participants

Europe: Demokritos(Athens), Perugia, US: Brown, Rochester Asia: Delhi, NCP Pakistan

Quality Assurance plan

HEPHY responsibilities

Managerial tasks


- Overall planning
- Co-convener of weekly acceptance meetings (OTSEPP)
- Contact to Tracker and CMS
- Contact to Vendor (HPK)

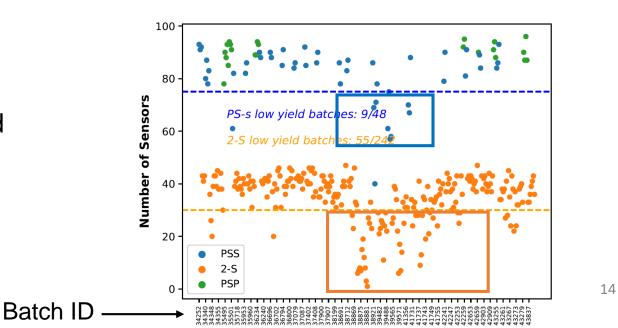
Sensor Quality Control (SQC)

- Responsible for testing 25% of the production

Process Quality Control (PQC)

- Test structures, characterisation methods and setups developed at HEPHY
- Responsible for testing 25% of the production

Sensor production status

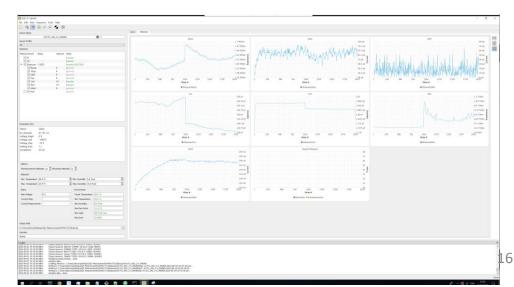

Current status

• Today:

- > 13000 wafers (~ 50%) delivered
- > 3000 sensors IV tested
- > 1000 sensors fully tested
- > 3000 halfmoons tested (check it again)
- Low yield batches at first 3 quarters of 2022
 - HPK managed to recover since summer and stabilize the yield to the agreed numbers
 - No impact on module production

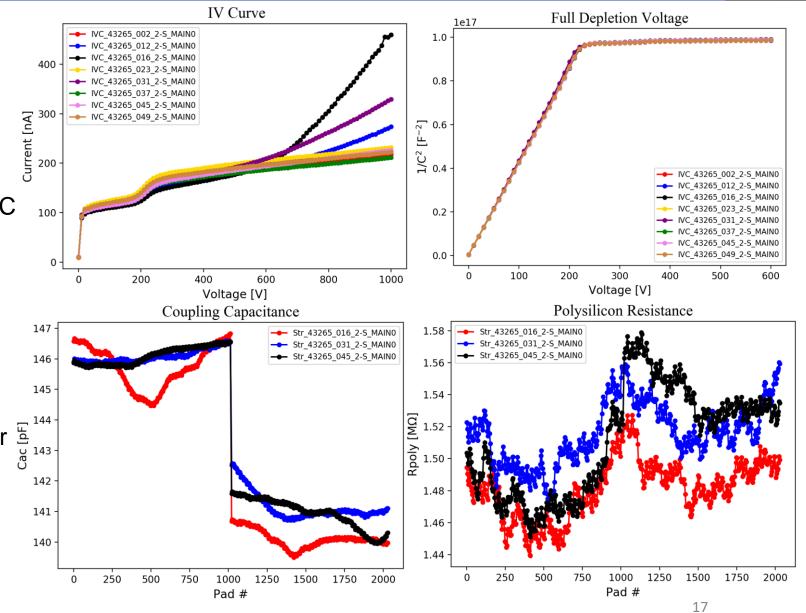
CMS

Sensor Quality Control at HEPHY


Sensor Quality Control

- Custom-made semi-automated setup developed at HEPHY
 - $\circ~$ Can automatically characterize ~2000 strips in 6-8 hours
- Custom software to control setup implemented in Python
 - Developed/maintained by B.Arnold
 - Replaced the old python-made SW developed by D. Blöch
- Setup in operation every day to test 1-2 sensors
 - Mainly operated and maintained by Stefan and Kostas
 - Fully characterize at least 3 sensors per batch of ~40, one batch per week
- In addition, long-term tests are performed in the climate chamber
 - Include more detailed studies on humidity and temperature sensor response

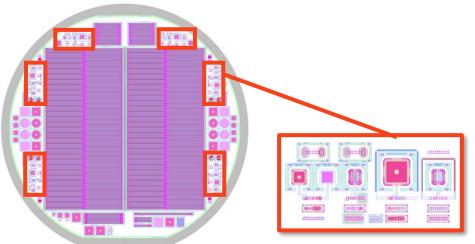
Global parameters	(inter-)strip parameters
Total leakage current Total capacitance	strip current, strip polysilicon resistance Coupling capacitance, dielectric current Inter-strip capacitance, inter-strip resistance

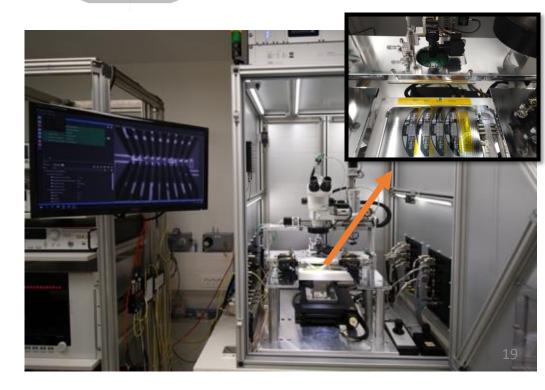


Sensor Quality Control

A typical batch

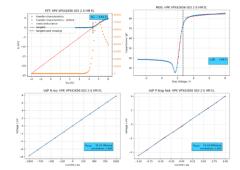
- Measurements performed at T = 20-23 °C 10 and RH<10%
- 20% of batch is IV-CV tested
- 3-5 of the "worst" sensors of the batch fully characterized
- - $\circ~$ data stored on the CMS database


Process Quality Control at HEPHY

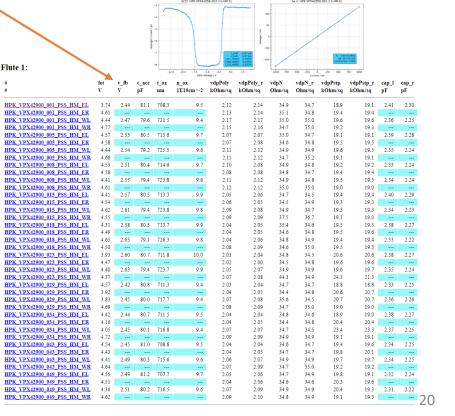


Process Quality Control

- Measurements on test structures to evaluate the quality and stability of the production process
 6" AC coupled (Tracker 2S and PS-s)
 6" DC coupled (Tracker PS-p)
 8" DC coupled (HGCal)
- Identical set of test structures on all wafers
- Use standardised pattern of 20 connection pads: flute
 - Connect using standardised probe cards
 - Use switching to access all structures on one flute
 - Automatic movement to next flute
- New custom-made semi-automated probe station build from scratch in 2019
 - $\circ~$ Custom-made Python SW to control the setup
 - Developed/maintained by B. Arnold
- HGCAL uses almost identical to TK test structures



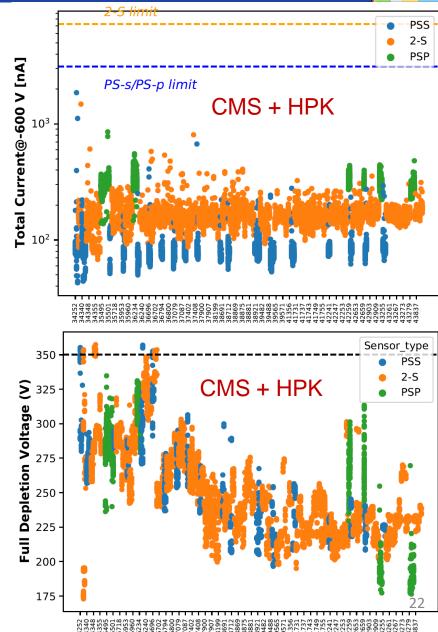
Process Quality Control



- For each batch of ~40 wafers we perform multiple tests and several parameters are extracted
 - Data analysed by dedicated scripts → tables/plots with the parameters of interest are generated
- All Tracker PQC centers produce consistent results, reliably and quickly
- Also used to understand and qualify the process used for the future HGCal production

Test structure	parameters
Diode	Full-depletion voltage, bulk resistivity
MOS	Flat-band voltage, oxide concentration, oxide thickness
MOSFET	Threshold voltage
GCD	Surface generation current, recombination velocity
Coupling capacitor	Coupling oxide thickness
Van der Pauw	Polysilicon/ p-stop/ strip sheet resistance
Dielectric breakdown structure	Oxide breakdown voltage

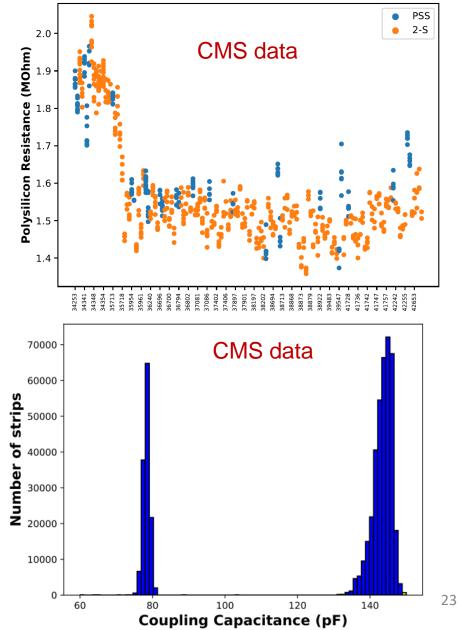
A few exemplary results from production period



Sensor quality

- Sensors are specified to exhibit low leakage current up to -800V
 - All tested up to **-1000V**
 - V_{bias}= -600V is the maximum operation bias voltage
- Increasing batch number on x axis indicates time evolution
- Limits set by dashed lines

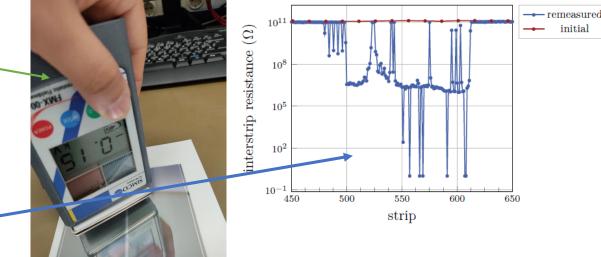
 I₆₀₀ < 7.25 μA (2-S) / 3.125 μA (PS-s/PS-p)
- Majority stay below 1 µA, while most of them even below 200nA!
 only a handful of outliers measured during pre-production phase
- Full depletion voltage below 350V
 - A few wafers with ρ < 3.5 kΩcm on pre-production period
 - \rightarrow results in V_{FD} near the limit
 - HPK selected material of higher resistivity from wafer supplier and now is well within the specifications

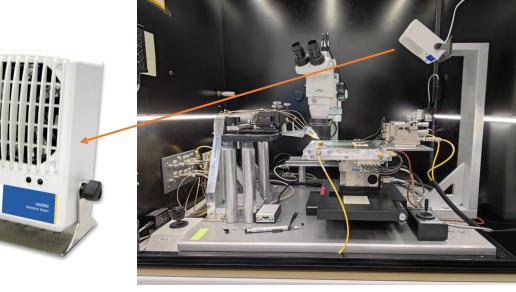

Sensor quality

A few examples from strip quality results

- strip parameters are measured at -600V
- parameters uniform over each sensor
- The resistance of the poly-silicon resistor was adapted to 1.5 MΩ after the pre-production (target 1.5 ± 0.5 MΩ)

Coupling capacitance very homogeneous over production time
 Two distributions due to two different strip sensors

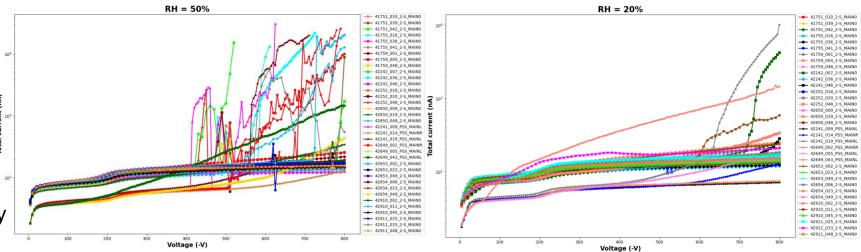

- After qualification, sensors are stored at SQC centers until they are forward to module assembly centers
- Module integration will begin/ramp up mid 2023
- IV characterization performed at all modules
 - QC centers should provide the information:
 - \circ history of each sensor
 - o problems that may came up at SQC concerning the sensor behavior
 - o impact of environmental conditions on sensors (e.g humidity)
 - o recovery counter-actions in case a sensor shows unstable behavior
- QC centers need to transmit all the gained experience/knowledge/observations from testing process and based on that develop a recommended procedure about sensor handling



Charge-up issues

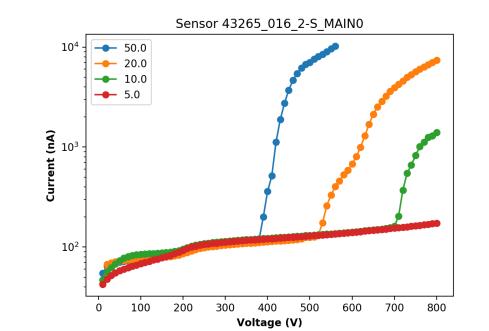
- Sensors charged up from packaging
 - charges introduced by plastic cards used by HPK
 - observed also by ATLAS, confirmed by HPK
- Charges on sensor's surface deteriorates its electrical properties
 - e.g impact on inter-strip isolation or IV behaviour -
- No permanent damage on sensors but creates severe problems on qualification process
- Issue not solved yet by vendor, however CMS found a solution to mitigate this problem
 - Blowing ionized air for a short time **dissipates** the charges
 - Ion blowers installed now at every SQC center
 - \circ recommended to module assembly groups

At module centers


- IV performed at RH = 20% based on the module assembly instructions
 o low humidity to minimize its impact on sensor IV
- However sensors will stay at ESD-safe lab conditions (~ 50%) for several hours during the assembly process
- Even at 20%, a number of sensors might show unstable IV behavior due to their long exposal at high RH
- Studies conducted at HEPHY to investigate the impact of humidity on sensor behavior and build up a strategy of sensor recovery
 - Emulate an extreme scenario → a sensor stays at lab humidity over a full weekend
 - Perform IV at RH = 50% and at RH = 20%
 - Apply different recovery steps according to sensor response

Impact of humidity on sensor behavior

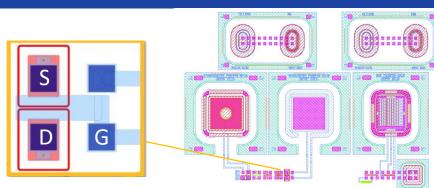
27


- 36 good sensors included on the top plots
 - had an initial good IV behavior
 - tested below RH=10%
- IV@50% : almost 50% unstable
- IV @20% : 5/36 did not recover immediately

Recovery

- Example from one sensor
- Early breakdown at 50% as well as at 20%
- Combination of ramping down humidity and operating the sensor at the breakdown voltage is a successful strategy
- Sensor returns into its initial good behavior!

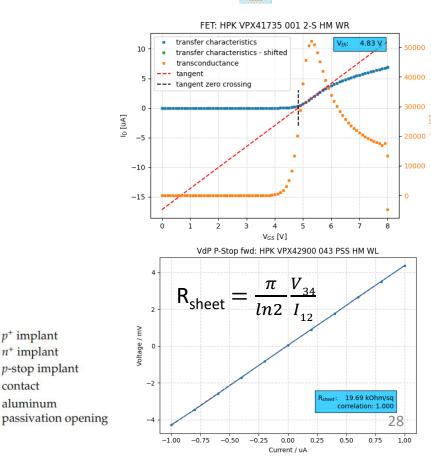
More statistics collected



PQC results

 $100\,\mathrm{um}$

- To characterize the quality of p-stop, CMS uses dedicated test structures
- MOS Field Effect Transistor (MOSFET) with p-stop implantation encircling Source and Drain
 - S-D geometry mimics **inter-channel** region of sensor 0
 - new structure in Phase-2 CMS Process Quality Control 0
- **Threshold voltage** (V_{th}) parameter of interest
 - voltage at which S-D channel becomes conductive 0
 - indicator of p-stop implantation dose Ο
 - low effective dose can lead to poor inter-strip isolation before and especially after irradiation
- P-stop implantation dose can be also characterized by a dedicated Van-der-Pauw structure
 - p-stop sheet resistance (R_{sheet}) extracted 0
 - high R_{sheet} indicates lower p-stop dose Ο

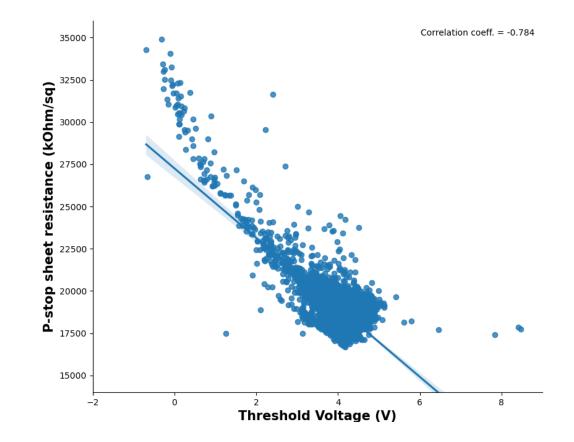

 p^+ implant

 n^+ implant

aluminum

contact

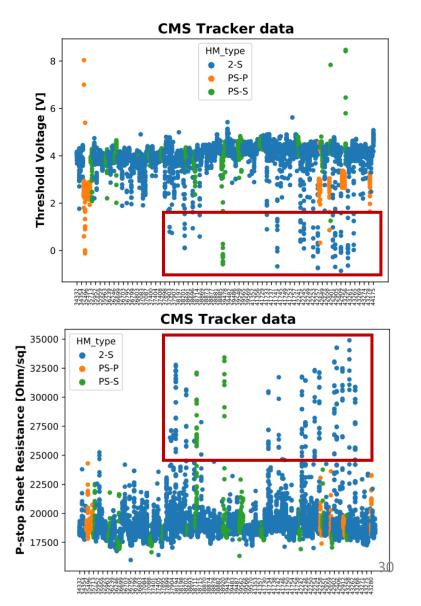
p-stop implant



PQC results

- To characterize the quality of p-stop, CMS uses dedicated test structures
- MOS Field Effect Transistor (MOSFET) with p-stop implantation encircling Source and Drain
 - S-D geometry mimics inter-channel region of sensor
 - \circ Threshold voltage (V_{th}) parameter of interest
- P-stop implantation dose can be also characterized by a dedicated Van-der-Pauw structure
 - \circ p-stop sheet resistance (R_{sheet}) extracted

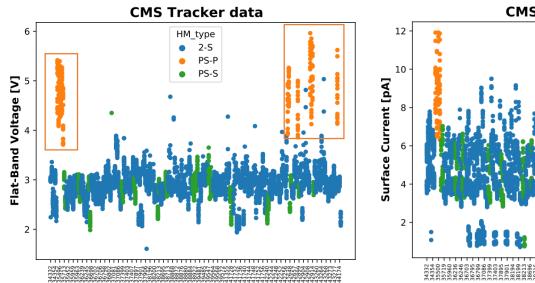
Threshold voltage and p-stop sheet resistance show an anti-correlation!

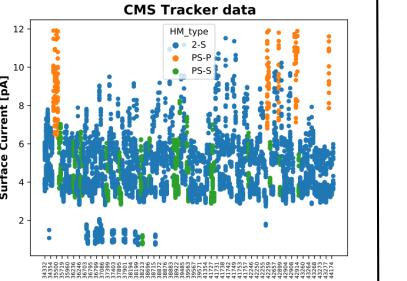


- Expected values (90% within this range)

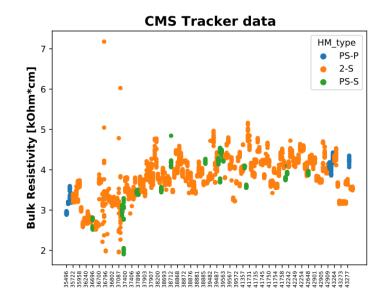
 V_{th} : 3 5 V
 p-stop R_{sheet}: 18 22 kΩ/sq
- In principle uniform over a wafer but occasionally inhomogeneity is observed
- Low V_{th} (<1 V) or high R_{sheet} values measured more frequently on the latest batches
 - indicator that the p-stop effective implantation dose is lower on these wafers
 - issue also acknowledged by HPK but still under investigation

- However, sensors from the respective wafers show no deterioration of inter-strip resistance before nor after irradiation!
 - $\circ~$ Good strip separation shown on all IT performed so far




PQC results

Si-Si0₂ interface properties

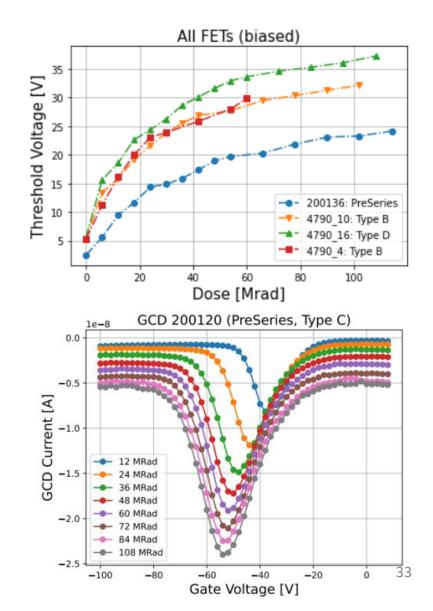

- examined through MOS capacitor and Gate Controlled Diode (GCD)
- flat-band voltage increases with positive oxide charges
- surface current indicates the number of interface traps
- stability over production timeline is observed for both parameters
- Macro-pixel (PS-p) sensors feature higher positive oxide charge concentration at interface → Attributed to processing

Bulk resistivity

- measured either via a dedicated Van der Pauw structure or via a diode
- data from VdP structure
- trend nicely correlated with sensor V_{FD} evolution

31

- Group is mainly occupied by production task for Tracker and HGCAL
- Some small R&D projects are starting in parallel

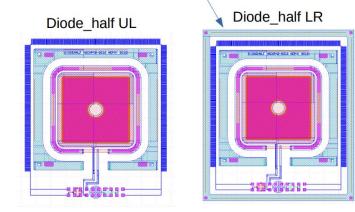

- X-ray irradiation studies at CERN
 - master thesis project of Veronika Kraus
 - irradiate samples of different thickness up to maximum expected fluence

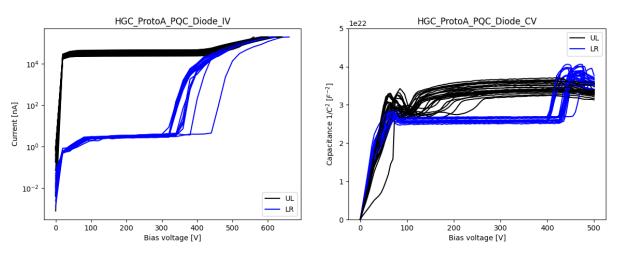
• MOSFET:

- threshold voltage increases with X-ray dose
- inter-play of different oxide trap types
- **Future plans**: with a smaller irradiation step size investigate the behavior of inter-channel isolation at low doses

Gate Controlled Diode (GCD):

- surface current increases with irradiation
 - Interface trap density
- results in agreement with previous TK-HGCAL studies
- Not yet conclusive studies, evaluation of results and future plans still under progress

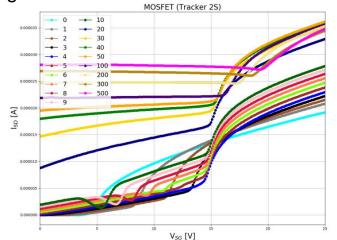

Optimization of test structures

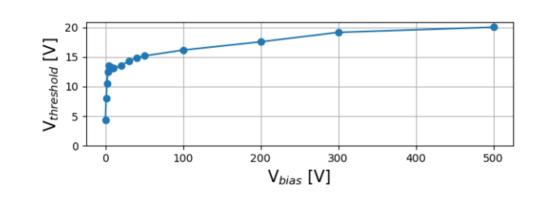


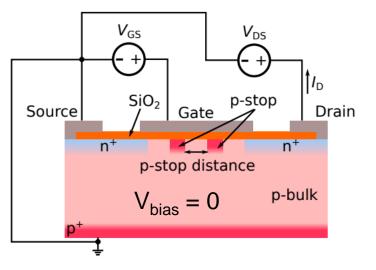
Edge-ring

Diode structure:

- suffers from non optimal design
 - \rightarrow Guard- and Edgering need to be opened to connect to flute
 - o Limits HV stability
- assumption: parastic currents from dicing edge which is near (a few mm)
- wafers host the standard structure with the opened edge ring and one with an optimized design
- Comparing the two structures we see a clear improvement on IV of the one with the optimized design
- Current at expected level of a few nA up to 300 400 V
- Results from a particular thickness (120 µm epi)
 collecting more statistics now also with other thickness (300 µm and 200 µm FZ)




Optimization of test structures



MOSFET measurement:

- performed on PQC with the Si bulk unbiased
- depleting the region around the implants should lead to different electric field distribution when the G-S voltage is applied
 - o might impact the formation of the conductive path between the channels
- We are investigating how the threshold voltage varies wrt different applied V_{bias}
 → on going studies by Suman S.
- First results show a clear positive shift of V_{th} with increasing V_{bias}
 - Saturation observed around 300V when full bulk is depleted
 - $\circ~$ Explanation of observed kink at subthreshold regime (obvious at low V_{bias}) still under investigation

- Phase-2 outer tracker construction fully under way!
 - $\circ~$ Sensor production is half-way
 - \circ Module assembly ramps up mid of 2023
- Quality of delivered sensors by Hamamatsu is very good as shown by collected/analysed data
- HEPHY is one of the leading institutes of CMS sensor Quality Assurance project
- Group is busy with carrying out the construction task for Phase-2, will continue well into 2024
 - o small R&D projects only carried out on the side,
 - \circ next larger target would be Phase 3 (future upgrade of the inner tracker with timing layers)

Thank you for your attention!