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Yesterday

Field theory is like mechanics with 4 times

Coupled oscillators are like fields

Today we keep diving into QFT
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The quantum SHO
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What is QM?

Many ways to formulate QM

For example, we promote x → x̂

We solve QM when we know the wave function ψ(x, t)

How many wave functions describe a system?
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The quantum SHO

H =
p2

2m
+
mω2x2

2
En = (n+ 1/2)~ω

We also like to use

H = (a†a+ 1/2)~ω

with
a,∼ x+ ip a† ∼ x− ip x ∼ a+ a†

We call a† and a creation and annihilation operators

E = a|n〉 ∝ |n− 1〉 a†|n〉 ∝ |n+ 1〉

This is abstract. What does it mean that x ∼ a+ a†?
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Couple oscillators

Consider a system with 2 DOF and same mass with

V (x, y) =
kx2

2
+
ky2

2
+ αxy

The normal modes are

q± =
1√
2

(x± y) ω2
± =

k ± α

m

What is the QM energy and spectrum of this system?
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Couple oscillators

Consider a system with 2 DOF and same mass with

V (x, y) =
kx2

2
+
ky2

2
+ αxy

The normal modes are

q± =
1√
2

(x± y) ω2
± =

k ± α

m

What is the QM energy and spectrum of this system?

|n+, n−〉
with

En+,n
−

= (n+ + 1/2)~ω+ + (n− + 1/2)~ω−
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Couple oscillators and Fields

With many DOFs, a → ai → a(k)

And the states

|n〉 → |ni〉 → |n(k)〉

And the energy

(n+ 1/2)~ω →
∑

(ni + 1/2)~ωi →
∫

[n(k) + 1/2]~ω(k)dk

Just like in mechanics, we expand around the minimum
of the fields, and to leading order we have SHO

In QFT fields are operators while x and t are not
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SHO and photons

I have two questions:

What is the energy that it takes to excite an harmonic
oscillator by one level?

What is the energy of the photon?
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SHO and photons

I have two questions:

What is the energy that it takes to excite an harmonic
oscillator by one level?

What is the energy of the photon?

Same answer

~ω
Why is the answer to both question the same? Can we
learn anything from it?
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What is a particle?

Excitations of SHOs are particles
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More on QFT
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What about masses?

A “free” Lagrangian gives massless particle

L =
1

2
(∂µφ)

2 ⇒ ω = k (or E = P )

We can add “potential” terms (without derivatives)

L =
1

2
(∂µφ)

2
+

1

2
m2φ2

Here m is the mass of the particle. Still free particle

(HW) Show that m is a mass of the particle by showing

that ω2 = k2 +m2. To do it, use the E-L Eq. and

“guess” a solution of the form φ = ei(kx−ωt)
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What about other terms?

How do we choose what terms to add to L?

Must be invariant under the symmetries

We keep some leading terms (usually, up to φ4)

Lets add λφ4

L =
1

2
(∂µφ)

2
+

1

2
m2φ2 +

1

4
λφ4

We get the non-linear wave equation

∂2φ

∂x2
− ∂2φ

∂t2
= m2φ+ λφ3

We do not know how to solve it
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A short summary

Fields are a generaliztion of SHOs

Particles are excitations of fields

The fundamental Lagrangian is giving in terms of fields

Our aim is to find L
We can only solve the linear case, that is, the
equivalent of the SHO

What can we do with higher order terms?
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Perturbation theory

Y. Grossman QFT and the SM (2) Baltic School, Aug. 8, 2023 p. 16



Perturbation theory

H = H0 +H1 H1 ≪ H0

In many cases, perturbation theory (PT) is a
mathematical tool

There are cases, however, that PT is a better way to
describe the physics

Many times we prefer to work with the eigenvalues of
H (why?)

Yet, at times it is better to work with the eigenvalues of
H0 (why?)
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PT for 2 SHOs

V (x, y) =
kx2

2
+

4ky2

2
+ αx2y

We assume that α is small

Classically α moves energy between the two modes

How it goes in QM?
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Drops
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Fermi Golden Rule

Recall the Fermi golden rule

P ∝ |A|2 × P.S. A ∼ 〈f |αx2y|i〉

The relevant thing to calculate is the transition
amplitude, A.
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1st and 2nd order PT

H = H0 +H1 H1 ≪ H0

In first order we care only about the states with the
same energy

A(i → f) ∼ 〈f |H1|i〉 Ef = Ei

2nd order pertubation theory probe the whole spectrum

A(i → f) ∼
∑

n

〈f |H1|n〉〈n|H1|i〉
En − Ef

Ef = Ei En 6= Ei
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Transitions

V (x, y) =
kx2

2
+

4ky2

2
+ αx2y

Recall

x ∼ ax + a†
x y ∼ ay + a†

y

For a given i, for what f we have A 6= 0?

A ∼ 〈f |αx2y|i〉
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Transitions

V (x, y) =
kx2

2
+

4ky2

2
+ αx2y

Recall

x ∼ ax + a†
x y ∼ ay + a†

y

For a given i, for what f we have A 6= 0?

A ∼ 〈f |αx2y|i〉

Since H1 ∼ x2y we see that ∆ny = ±1 and ∆nx = 0,±2

The amplitude is finite only for a very few fs

What could you say if the perturbation was x2y3?
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Two SHO with small α

V (x, y) =
kx2

2
+

4ky2

2
+ αx2y ωy = 2ωx

Consider |i〉 = |0, 1〉
Since ωy = 2ωx only f = |2, 0〉 is allowed by energy
conservation and by the perturbation

A ∼ 〈2, 0|αx2y|0, 1〉 ∼ α〈2, 0|(ax+a†
x)(ax+a†

x)(ay+a†
y)|0, 1〉

ay in y annihilates the y “particle” and (a†
x)2 in x2

creates two x “particles”

It is a decay of a particle y into two x particles with

width Γ ∝ α2 and τ = 1/Γ
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Even More PT

H1 = αx2z + βxyz ωz = 10, ωy = 3, ωx = 1

Calculate y → 3x using 2nd order PT

A ∼ 〈3, 0, 0|O|0, 1, 0〉 O ∼
∑ 〈3, 0, 0|V ′|n〉〈n|V ′|0, 1, 0〉

En − E0,1,0

Which intermediate states? |1, 0, 1〉 and |2, 1, 1〉
A1 = |0, 1, 0〉 β−→ |1, 0, 1〉 α−→ |3, 0, 0〉
A2 = |0, 1, 0〉 α−→ |2, 1, 1〉 β−→ |3, 0, 0〉

The total amplitude is then

A ∝ αβ

(

#

∆E1
+

#

∆E2

)
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Closer look

V ′ = αx2z + βxyz ωz = 10, ωy = 3, ωx = 1

A1 = |0, 1, 0〉 β−→ |1, 0, 1〉 α−→ |3, 0, 0〉

A2 = |0, 1, 0〉 α−→ |2, 1, 1〉 β−→ |3, 0, 0〉
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Closer look

V ′ = αx2z + βxyz ωz = 10, ωy = 3, ωx = 1

A1 = |0, 1, 0〉 β−→ |1, 0, 1〉 α−→ |3, 0, 0〉

A2 = |0, 1, 0〉 α−→ |2, 1, 1〉 β−→ |3, 0, 0〉

y

β

x

α

x

x
z A ∝ αβ

∆E
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Closer look: HW

Draw the two amplitudes and show that it is the same
diagram

Show that the sum of the two diagrams give

1

ω2
z − q2

where q is the “energy flow” in the “z line”
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General method for SHO PT

Every xn term with n ≥ 3 is a vertex

We write all the ways to get from “in” to “out”

Each amplitude is the product of the couplings and the
“off-shell” intermediate states

1

ω2 − q2

There are few more rules

We add all amplitude square them and use the Fermi
Golden rule
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Feynman diagrams
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Using PT for fields

For one SHO we have x ∼ a+ a†

For many SHOs we have xi ∼ ai + a†
i

For fields we then have

φ ∼
∫

[

a(k) + a†(k)
]

dk

Perturbation theory for fields is a generalization of that of
SHO

ω → pµ

ω2 → m2

We can have any energy (but one mass)
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Calculations

We usually care about 1 → n or 2 → n processes

We need to make sure we have energy conservation

External (Internal) particles are called on(off)–shell

On-shell: E2 = p2 +m2

Off-shell: E2 6= p2 +m2

A = the product of all the vertices and internal lines

Each internal line with qµ gives suppression

1

m2 − q2

There are many more rules to get all the factors right
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Some summary

Quadratic terms describe free fields. Free particles
cannot be created nor decay

We use perturbation theory were terms with 3 or more
fields in L are considered small

These terms can generate and destroy particles and
give dynamics

Feynman diagrams are a tool to calculate transition
amplitudes

Many more details are needed to get calculation done

Once calculations and experiments to check them are
done, we can test our theory
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Symmetries
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How to “built” Lagrangians

L is:

The most general one that is invariant under some
symmetries

We work up to some order (usually 4)

We need the following input:

What are the symmtires we impose

What DOFs we have and how they transform under
the symmtry

The output is

A Lagrangian with N parameters

We need to measure its parameters and test it
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Symmetries and representations

Example: 3d real space in classical mechanics

We require that L is invariant under rotation

All our DOFs are assigned into vector representations
(~r1, ~r2, ...)

We construct invariants from these DOFs. They are
called singlets or scalars

Cij ≡ ~ri · ~rj

We then require that V is a function of the Cijs
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Generalizations

In mechanics, ~r lives in 3d real space and is a vector

Fields do not live in real space. They live in some
mathematical space

They also do not have to be vectors, but can be scalars
or tensors (representation)

The idea is similar to what we did in mechanics

We require L to be invariant under rotation in that
mathematical space

Thus L depends only on combinations of fields that
form singlets

All this is related to a subject called Lie groups

We usually care about SO(N), SU(N) and U(1)
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Combining representations

It is all about generating singlets

We all know that we can combine vectors in real space
to generate singlets

We also know how to make a spin zero from 2 spin half
spinors (spin zero is a singlet!)

There is a generalization of this procedure to any
mathematical space

As of now, all we need to know are SU(3), SU(2) and
U(1)
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Invariant of complex numbers

U(1) is rotation in 1d complex space

Each complex number comes with a q that tells us how
much it rotates

When we rotate the space by an angle θ, the number
rotates as

X → eiqθX

Consider qX = 1, qY = 2, qZ = 3 and write 3rd and 4th
order invariants

XX∗Y Y ∗ X2Y ∗
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Invariant of complex numbers

U(1) is rotation in 1d complex space

Each complex number comes with a q that tells us how
much it rotates

When we rotate the space by an angle θ, the number
rotates as

X → eiqθX

Consider qX = 1, qY = 2, qZ = 3 and write 3rd and 4th
order invariants

XX∗Y Y ∗ X2Y ∗ XY Z∗ X3Z∗ Y 2X∗Z∗

Y. Grossman QFT and the SM (2) Baltic School, Aug. 8, 2023 p. 39



SU(2)

U(2) is rotation in 2d complex space. We have
U(2) = SU(2) × U(1)

SU(2) is localy the same as rotation in 3d real space

Rotations in this space are non-Abelian
(non-commutative)

It depends on the representation: scalar, spinor, vector

Spin in QM is described by SU(2) rotations, so we use
the same language to describe it

For the SM all we care is that 1/2 × 1/2 ∋ 0 so we know
how to generate singlets

How can we generate invarints from spin 1/2 and spin
3/2?
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SU(3)

U(3) is rotation in 3d complex space. We have
U(3) = SU(3) × U(1)

The representations we care about are singlets, triplets
and octets

Unlike SU(2), in SU(3) we have complex

representations, 3 and 3̄

The three quarks form a triplet (the three colors)

To form a singlet we need to know that

3 × 3̄ ∋ 1 3 × 3 × 3 ∋ 1

This is why we have baryons and mesons
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A game

A game calls “building invariants”

Symmetry is SU(3) × SU(2) × U(1)

U(1): Add the numbers (X̄ has charge −q)
SU(2): 2 × 2 ∋ 1 and recall that 1 is a singlet

SU(3): we need 3 × 3̄ ∋ 1 and 3 × 3 × 3 ∋ 1

Fields are

Q(3, 2)1 U(3, 1)4 D(3, 1)−2 H(1, 2)3

What 3rd and 4th order invariants can we built?

(HH∗)2 H3 UDD QUD HQU∗

HW: Find more invariants
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