The Standard Model & Beyond

John Ellis Why the Higgs boson? What can the Higgs boson tell us? Looking beyond it

The 'Standard Model' of Particle Physics

> Proposed byAbdus Salam, Glashow and Weinberg

> > Tested by experiments at CERN

Perfect agreement between theory and experiments in all laboratories

The 'Standard Model'

The matter particles

Gravitation electromagnetism weak nuclear force strong nuclear force

¹⁹⁶⁴ The Massive Discoverers

BROKEN SYMMETRY AND THE MASS OF GAUGE VECTOR MESONS*

F. Englert and R. Brout Faculté des Sciences, Université Libre de Bruxelles, Bruxelles, Belgium (Received 26 June 1964)

BROKEN SYMMETRIES, MASSLESS PARTICLES AND GAUGE FIELDS

P.W. HIGGS

Tail Institute of Mathematical Physics, University of Edinburgh, Scotland

Received 27 July 1964

VOLUME 13, NUMBER 16 PHYSICAL REVIEW LETTER BROKEN SYMMETRIES AND THE MASSES OF GAU Peter W. Higgs Tait Institute of Mathematical Physics, University of Edinburgh, (Received 31 August 1964) SPONTANEOUS BREAKDOWN OF STRONG INTERACTION SYMMETRY AND THE

GLOBAL CONSERVATION LAWS AND MASSLESS PARTICLES*

G. S. Guralnik,[†] C. R. Hagen,[‡] and T. W. B. Kibble Department of Physics, Imperial College, London, England (Received 12 October 1964) SPONTANEOUS BREAKDOWN OF STRONG INTERACTION SYMMETRY AND THE ABSENCE OF MASSLESS PARTICLES

A. A. MIGDAL

submitted to JETP editor November 30, 1965; resubmitted February 16, 1966

The occurrence of massless particles in the presence of spontaneous symmetry breakdown is discussed. By summing all Feynman diagrams, one obtains for the difference of the mass

Nambu, EB, H, GHK & Higgs

Spontaneous symmetry breaking: massless Nambu-Goldstone boson 'eaten' by massless gauge boson

Accompanied by massive particle

The Nambu-Goldstone Mechanism

• Postulated effective scalar potential:

$$V[\phi] = -\mu^2 \phi^{\dagger} \phi + \lambda (\phi^{\dagger} \phi)^2$$

 $\phi(x) = \frac{1}{\sqrt{2}}(v + \sigma(x))e^{i\pi(x)}$

• Minimum energy at non-zero value:

$$\phi_0 = <0|\phi|0> = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ +v \end{pmatrix} v = \sqrt{\frac{-\mu^2}{\lambda}},$$

- Components of scalar field:
- π massless, σ massive: $m_H^2 = 2\mu^2 = 2\lambda v$

Abelian EBH Mechanism

• Lagrangian

$$\mathcal{L} = \left(D_{\mu}\phi\right)^{+} \left(D^{\mu}\phi\right) - V(|\phi|) - \frac{1}{4}F_{\mu\nu}F^{\mu\nu}, \quad D_{\mu} = \partial_{\mu} - ieA_{\mu}$$

Gauge transformation

$$\phi'(x) = e^{i\alpha(x)} \phi(x) = e^{i\alpha(x)} e^{i\theta(x)} \eta(x)$$
$$A'_{\mu}(x) = A_{\mu}(x) + \frac{1}{e} \partial_{\mu} \alpha(x)$$

- Choose $\alpha(x) = -\theta(x)$: $\phi'(x) = \eta(x)$
- Rewrite Lagrangian: $\mathcal{L} = |(\partial ieA'_{\mu})\eta|^2 V(\eta) \frac{1}{4}F'_{\mu\nu}F'^{\mu\nu}$

$$\begin{split} \mathcal{L} &= |(\partial_{\mu} - ieA'_{\mu})(v + \frac{1}{\sqrt{2}}H)|^{2} - \frac{1}{4}F'_{\mu\nu}F'^{\mu\nu} - V \\ &= -\frac{1}{4}F'_{\mu\nu}F'^{\mu\nu} + v^{2}e^{2}A'_{\mu}A'^{\mu} + \frac{1}{2}[(\partial_{\mu}H)^{2} - m_{H}^{2}H^{2}] + \cdots \\ &\underbrace{\text{massive A-field, } m_{A} \sim ev} \qquad \text{neutral scalar, } m_{H} \neq 0 \end{split}$$

Weinberg: A Model of Leptons

- Electroweak sector of the Standard Model
- SU(2) x U(1)
- Mixing of Z, photon
- Neutral currents
- Higgs-lepton couplings
- No quarks

VOLUME 19, NUMBER 21 PHYS

(6)

and

$$\varphi_1 \equiv (\varphi^0 + \varphi^{0\dagger} - 2\lambda)/\sqrt{2} \quad \varphi_2 \equiv (\varphi^0 - \varphi^{0\dagger})/i\sqrt{2}. \quad (5)$$

The condition that φ_1 have zero vacuum expectation value to all orders of perturbation theory tells us that $\lambda^2 \cong M_1^2/2h$, and therefore the field φ_1 has mass M_1 while φ_2 and φ^- have mass zero. But we can easily see that the Goldstone bosons represented by φ_2 and φ^- have no physical coupling. The Lagrangian is gauge invariant, so we can perform a combined isospin and hypercharge gauge transformation which eliminates φ^- and φ_2 everywhere⁶ without changing anything else. We will see that G_e is very small, and in any case M_1 might be very large,⁷ so the φ_1 couplings will also be disregarded in the following.

The effect of all this is just to replace φ everywhere by its vacuum expectation value

$$\langle \varphi \rangle = \lambda \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$$

The first four terms in $\ensuremath{\mathfrak{L}}$ remain intact, while the rest of the Lagrangian becomes

 $-\frac{1}{8}\lambda^{2}g^{2}[(A_{\mu}^{1})^{2} + (A_{\mu}^{2})^{2}] -\frac{1}{8}\lambda^{2}(gA_{\mu}^{3} + g'B_{\mu}^{2})^{2} - \lambda G_{e}\overline{e}e. \quad (7)$

We see immediately that the electron mass is
$$\lambda G_{\varrho}.$$
 The charged spin-1 field is

$$W_{\mu} \equiv 2^{-1/2} (A_{\mu}^{1} + iA_{\mu}^{2}) \tag{8}$$

and has mass

$$M_W = \frac{1}{2}\lambda g. \tag{9}$$

The neutral spin-1 fields of definite mass are

$$Z_{\mu} = (g^{2} + g'^{2})^{-1/2} (gA_{\mu}^{3} + g'B_{\mu}), \qquad (10)$$

$$A_{\mu} = (g^2 + g'^2)^{-1/2} (-g' A_{\mu}^3 + g B_{\mu}).$$
(11)

Their masses are

$$M_Z = \frac{1}{2}\lambda (g^2 + {g'}^2)^{1/2}, \qquad (12)$$

$$M_A = 0,$$
 (13)

so A_{μ} is to be identified as the photon field. The interaction between leptons and spin-1 mesons is

$$\frac{ig}{2\sqrt{2}} \bar{e} \gamma^{\mu} (1+\gamma_{5}) \nu W_{\mu} + \text{H.c.} + \frac{igg'}{(g^{2}+g'^{2})^{1/2}} \bar{e} \gamma^{\mu} e A_{\mu} + \frac{i(g^{2}+g'^{2})^{1/2}}{4} \left[\left(\frac{3g'^{2}-g^{2}}{g'^{2}+g^{2}}\right) \bar{e} \gamma^{\mu} e - \bar{e} \gamma^{\mu} \gamma_{5} e + \bar{\nu} \gamma^{\mu} (1+\gamma_{5}) \nu \right] Z_{\mu}.$$
(14)

We see that the rationalized electric charge is

$$e = gg' / (g^2 + g'^2)^{1/2}$$
(15)

and, assuming that W_μ couples as usual to hadrons and muons, the usual coupling constant of weak interactions is given by

$$G_{\rm W}/\sqrt{2} = g^2/8M_{\rm W}^2 = 1/2\lambda^2.$$
 (16)

Note that then the $e\mathchar`-\varphi$ coupling constant is

$$G_{\rho} = M_{\rho} / \lambda = 2^{1/4} M_{\rho} G_{W}^{1/2} = 2.07 \times 10^{-6}.$$

The coupling of φ_1 to muons is stronger by a factor M_{μ}/M_e , but still very weak. Note also that (14) gives g and g' larger than e, so (16) tells us that $M_W > 40$ BeV, while (12) gives $M_Z > M_W$ and $M_Z > 80$ BeV.

The only unequivocal new predictions made

by this model have to do with the couplings of the neutral intermediate meson Z_{μ} . If Z_{μ} does not couple to hadrons then the best place to look for effects of Z_{μ} is in electron-neutron scattering. Applying a Fierz transformation to the *W*-exchange terms, the total effective $e - \nu$ interaction is

$$\frac{G_W}{\sqrt{2}} \overline{\nu} \gamma_\mu (1+\gamma_5) \nu \left\{ \frac{(3g^2-g'^2)}{2(g^2+g'^2)} \overline{e} \gamma^\mu e + \frac{3}{2} \overline{e} \gamma^\mu \gamma_5 e \right\}.$$

If $g \gg e$ then $g \gg g'$, and this is just the usual $e \cdot \nu$ scattering matrix element times an extra factor $\frac{3}{2}$. If $g \simeq e$ then $g \ll g'$, and the vector interaction is multiplied by a factor $-\frac{1}{2}$ rather than $\frac{3}{2}$. Of course our model has too many arbitrary features for these predictions to be

65

2 citations before 1971

"Whatever the final laws of nature may be, there is no reason to suppose that they are designed to make physicists happy."

Summary of the Standard Model

• Particles and SU(3) \times SU(2) \times U(1) quantum numbers:

L_L E_R	$ \begin{pmatrix} \nu_e \\ e^- \end{pmatrix}_L, \begin{pmatrix} \nu_\mu \\ \mu^- \end{pmatrix}_L, \begin{pmatrix} \nu_\tau \\ \tau^- \end{pmatrix}_L \\ e_R^-, \mu_R^-, \tau_R^- \end{pmatrix} $	(1 , 2 ,-1) (1 , 1 ,-2)
Q_L U_R D_R	$ \begin{pmatrix} u \\ d \end{pmatrix}_{L}, \begin{pmatrix} c \\ s \end{pmatrix}_{L}, \begin{pmatrix} t \\ b \end{pmatrix}_{L} $ $ u_{R}, c_{R}, t_{R} $ $ d_{R}, s_{R}, b_{R} $	$(\mathbf{3,2,+1/3})$ $(\mathbf{3,1,+4/3})$ $(\mathbf{3,1,-2/3})$

• Lagrangian
$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu}^{a} F^{a\mu\nu}$$
 gauge interactions Tested < 0.1%
+ $i\bar{\psi} D\psi + h.c.$
+ $\psi_{i}y_{ij}\psi_{j}\phi + h.c.$
+ $|D_{\mu}\phi|^{2} - V(\phi)$ gauge interactions Tested < 0.1%
matter fermions before LHC
Yukawa interactions Testing now
Higgs potential in progress

Masses for SM Gauge Bosons

• Kinetic terms for SU(2) and U(1) gauge bosons:

$$\mathcal{L} = -\frac{1}{4} G^{i}_{\mu\nu} G^{i\mu\nu} - \frac{1}{4} F_{\mu\nu} F^{\mu\nu}$$

where $G^i_{\mu\nu} \equiv \partial_\mu W^i_\nu - \partial_\nu W^i_\mu + ig\epsilon_{ijk}W^j_\mu W^k_\nu$ $F_{\mu\nu} \equiv \partial_\mu W^i_\nu - \partial_\nu W^i_\mu$

• Kinetic term for Higgs field:

$$\mathcal{L}_{\phi} = -|D_{\mu}\phi|^2 \ D_{\mu} \equiv \partial_{\mu} - i \ g \ \sigma_i \ W^i_{\mu} - i \ g' \ Y \ B_{\mu}$$

• Expanding around vacuum: $\phi = \langle 0|\phi|0 \rangle + \hat{\phi}$

$$\mathcal{L}_{\phi} \ni \left(\frac{g^{2}v^{2}}{2} \quad W_{\mu}^{+} W^{\mu-}\right) \left(q'^{2} \frac{v^{2}}{2} B_{\mu} B^{\mu} + g g'v^{2} B_{\mu} W^{\mu3} - g^{2} \frac{v^{2}}{2} W_{\mu}^{3} W^{\mu3}\right)$$

• Boson masses:

$$m_{W^{\pm}} = \frac{gv}{2} \quad Z_{\mu} = \frac{gW_{\mu}^{3} - g'B_{\mu}}{\sqrt{g^{2} + g'^{2}}} \quad : \quad m_{Z} = \frac{1}{2}\sqrt{g^{2} + g'^{2}}v \quad ; \quad A_{\mu} = \frac{g'W_{\mu}^{3} + gB_{\mu}}{\sqrt{g^{2} + g'^{2}}} \quad : \quad m_{A} = 0$$

Higgs Boson Couplings

$$\Gamma(H \to f\bar{f}) = N_c \frac{G_F M_H}{4\pi\sqrt{2}} m_f^2, \quad N_C = 3 (1) \text{ for quarks (leptons)}$$

$$Weinberg 1967$$

$$\Gamma(H \to VV) = \frac{G_F M_H^3}{8\pi\sqrt{2}} F(r) \left(\frac{1}{2}\right)_Z, \quad r = \frac{M_V}{M_H}$$
Higgs 1966

Parameters of the Standard Model

- Gauge sector:
 - 3 gauge couplings: g₃, g₂, g
 - 1 strong CP-violating phase
- Yukawa interactions:
 - 3 charged-lepton masses
 - 6 quark masses
 - 4 CKM angles and phase
- Higgs sector:
 - 2 parameters: μ , λ
- Total: 19 parameters

A Phenomenological Profile of the Higgs Boson

• First attempt at systematic survey

A PHENOMENOLOGICAL PROFILE OF THE HIGGS BOSON

John ELLIS, Mary K. GAILLARD * and D.V. NANOPOULOS ** CERN, Geneva

Received 7 November 1975

A discussion is given of the production, decay and observability of the scalar Higgs boson H expected in gauge theories of the weak and electromagnetic interactions such as the Weinberg-Salam model. After reviewing previous experimental limits on the mass of

We should perhaps finish with an apology and a caution. We apologize to experimentalists for having no idea what is the mass of the Higgs boson, unlike the case with charm [3,4] and for not being sure of its couplings to other particles, except that they are probably all very small. For these reasons we do not want to encourage big experimental searches for the Higgs boson, but we do feel that people performing experiments vulnerable to the Higgs boson should know how it may turn up.

Status of the Standard Model before the LHC

- Perfect agreement with all *confirmed* accelerator data
- Consistency with precision electroweak data (LEP et al) only if there is a Higgs boson
- Agreement seems to require *a relatively light Higgs* boson weighing < ~ 180 GeV
- Raises many unanswered questions:

mass? flavour? unification?

Where are the top and Higgs?

Estimating Masses with Electroweak Data

• High-precision electroweak measurements are sensitive to quantum corrections

$$m_W^2 \sin^2 \theta_W = m_Z^2 \cos^2 \theta_W \sin^2 \theta_W = \frac{\pi \alpha}{\sqrt{2} G_F} (1 + \Delta r)$$

- Sensitivity to top mass is quadratic: $\frac{3G_F}{8\pi^2\sqrt{2}}m_t^2$
- Sensitivity to Higgs mass is logarithmic:

$$\frac{\sqrt{2}G_F}{16\pi^2}m_W^2(\frac{11}{3}\ln\frac{M_H^2}{m_Z^2}+...), M_H >> m_W$$

• Measurements at LEP et al. gave indications first on top mass, then on Higgs mass $\Delta \rho = 0.0026 \frac{M_t^2}{M_\pi^2} - 0.0015 \ln \left(\frac{M_H}{M_W}\right)$

Precision Tests of the Standard Model

2011 Combining Information from Previous Direct Searches and Indirect Data

"... we do not want to encourage big experimental searches for the Higgs boson, but ..."

A la recherche du Higgs perdu ...

Higgs Production at LHC

Higgs Decay Branching Ratios

• Couplings proportional to masses (?)

- Important couplings through loops:
 - gluon + gluon \rightarrow Higgs $\rightarrow \gamma\gamma$

Many decay modes measurable if M_h ~ 125 GeV

What was Expected

the Discovery of the Higgs Boson

Mass Higgsteria

Interesting Events

c) CERN. All rights reserved.

Higgsdependence Day!

Scientists from around the World

Russian naval shells reused in CMS Melted down in Belarus Supported by US

The Particle Higgsaw Puzzle

Did the LHC find the missing piece? Is it the right shape? Is it the right size?

LHC Measurements

June 2021

CMS Preliminary

Higgs Production at the LHC

Higgs Decay Branching Ratios

Examples of Higgs Measurements

It Walks and Quacks like a Higgs

• Do couplings scale ~ mass? With scale = v?

Without Higgs ...

... there would be no atoms

- massless electrons would escape at the speed of light
- ... there would be no heavy nuclei
- ... weak interactions would not be weak
 - Life would be impossible: everything would be radioactive

Its existence is a big deal!

... to make an end is to make a beginning. The end is where we start from. T.S. Eliot, Little Gidding

- « Empty » space is unstab LHC
- Dark matter
- Origin of matter
- Sizes of masses
- Masses of neutrinos
- Inflation
- Quantum gravity

LHC

LHC

LHC