How Effective is the Standard Model?

Status of the Standard Model Looking beyond the Standard Model with Effective Field Theory (SMEFT) Case study: m_W What about $g_\mu - 2$?

John Ellis

Summary of the Standard Model

Particles and SU(3) × SU(2) × U(1) quantum numbers:

L_L E_R	$\left(\begin{array}{c}\nu_{e}\\e^{-}\end{array}\right)_{L}, \left(\begin{array}{c}\nu_{\mu}\\\mu^{-}\end{array}\right)_{L}, \left(\begin{array}{c}\nu_{\tau}\\\tau^{-}\end{array}\right)_{L}\\e_{R}^{-}, \mu_{R}^{-}, \tau_{R}^{-}\end{array}\right)_{L}$	(1 , 2 ,-1) (1 , 1 ,-2)
Q_L U_R D_R	$ \begin{pmatrix} u \\ d \end{pmatrix}_{L}, \begin{pmatrix} c \\ s \end{pmatrix}_{L}, \begin{pmatrix} t \\ b \end{pmatrix}_{L}, \\ u_{R}, c_{R}, t_{R}, \\ d_{R}, s_{R}, b_{R} $	$(\mathbf{3,2,+1/3})$ $(\mathbf{3,1,+4/3})$ $(\mathbf{3,1,-2/3})$

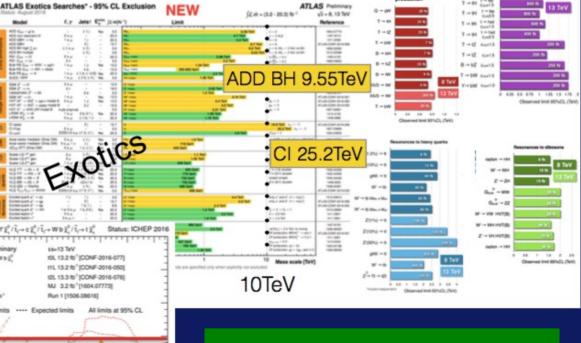
• Lagrangian: $\mathcal{L} = -\frac{1}{4} F^a_{\mu\nu} F^{a\ \mu\nu}$ gauge interactions Tested < 0.1% + $i\bar{\psi} D\psi + h.c.$ matter fermions before LHC + $\psi_i y_{ij} \psi_j \phi + h.c.$ Yukawa interactions Testing now + $|D_\mu \phi|^2 - V(\phi)$ Higgs potential in progress

... to make an end is to make a beginning. The end is where we start from. T.S. Eliot, Little Gidding

• « Empty » space is unsta LHC

- Dark matter
- Origin of matter
- Sizes of masses
- Masses of neutrinos
- Inflation
- Quantum gravity

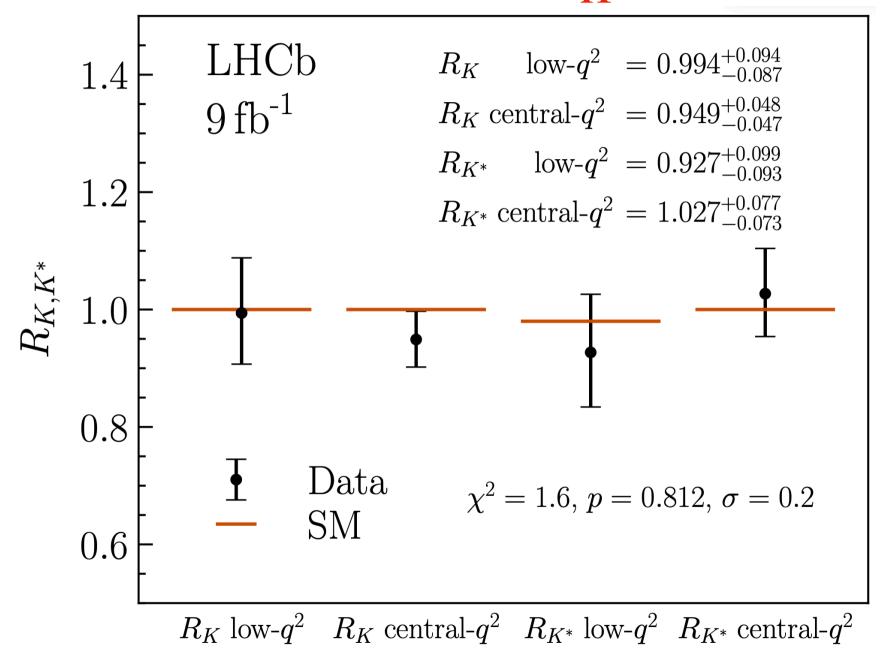
The Standard Model

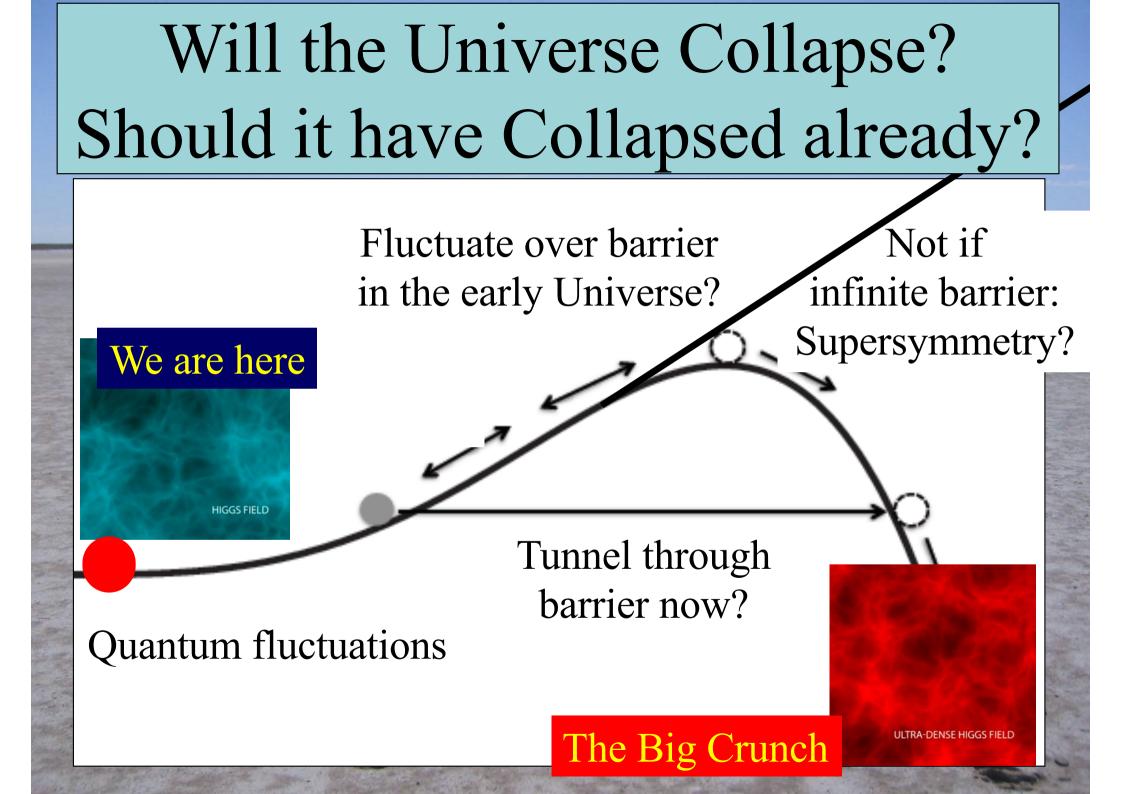

Nothing (yet) at the LHC

m; [GeV]

No supersymmetry

Nothing else, either


More of same? Unexplored nooks? Novel signatures? **Everything about Higgs is Puzzling**


$$\mathcal{L} = yH\psi\overline{\psi} + \mu^2|H|^2 - \lambda|H|^4 - V_0 + \dots$$

- Pattern of Yukawa couplings y:
 - Flavour problem
- Magnitude of mass term μ :
 - Naturalness/hierarchy problem
- Magnitude of quartic coupling λ :
 - Stability of electroweak vacuum
- Cosmological constant term V₀:
 - Dark energy

Higher-dimensional interactions?

Sic Transit Gloria R_K Anomaliae

Is Empty Space Unstable?

 Dependence of instability scale on masses of Higgs boson and top quark, and strong coupling:

 $\text{Log}_{10}\frac{\Lambda}{\text{GeV}} = 10.5 - 1.3\left(\frac{m_t}{\text{GeV}} - 172.6\right) + 1.1\left(\frac{m_H}{\text{GeV}} - 125.1\right) + 0.6\left(\frac{\alpha_s(m_Z) - 0.1179}{0.0009}\right)$

Buttazzo et al. arXiv:1307.3536

- New CMS value of m_t : CMS Collaboration, April 2022 $m_t = 171.77 \pm 0.38 \,\text{GeV}$
- Particle Data Group values:

 $m_H = 125.25 \pm 0.17 \,\text{GeV}, \ \alpha_s(m_Z) = 0.1179 \pm 0.0009$

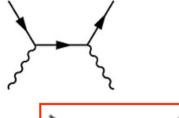
• Instability scale:

• Dominant uncertainties those in α_s and m_t

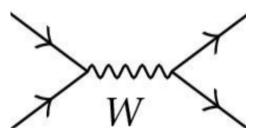
Looking Beyond the Standard Model with the SMEFT

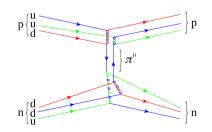
France

"...the direct method may be used...but indirect methods will be needed in order to secure victory...."


"The direct and the indirect lead on to each other in turn. It is like moving in a circle...."

Who can exhaust the possibilities of their combination?"


Sun Tzu


Effective Field Theories (EFTs) a long and glorious History

- 1930's: "Standard Model" of QED had d=4
- Fermi's four-fermion theory of the weak force
- Dimension-6 operators: form = S, P, V, A, T?
 Due to exchanges of massive particles?
- V-A → massive vector bosons → gauge theory
- Yukawa's meson theory of the strong N-N force
 − Due to exchanges of mesons? → pions
- Chiral dynamics of pions: $(\partial \pi \partial \pi)\pi\pi$ clue \rightarrow QCD

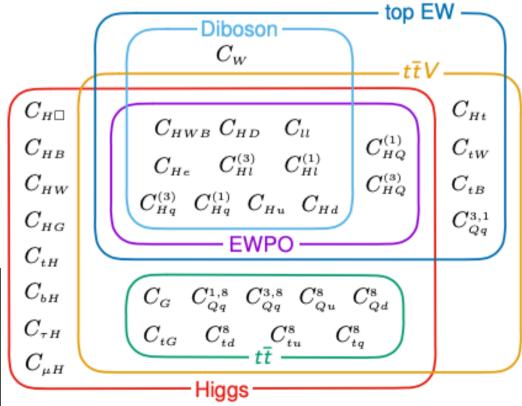
Standard Model Effective Field Theory a more powerful way to analyze the data

- Assume the Standard Model Lagrangian is correct (quantum numbers of particles) but incomplete
- Look for additional interactions between SM particles due to exchanges of heavier particles
- Analyze Higgs data together with electroweak precision data and top data
- Most efficient way to extract largest amount of information from LHC and other experiments
- Model-independent way to look for physics beyond the Standard Model (BSM)

Dimension-6 SMEFT Operators

- Including 2- and 4fermion operators
- Different colours for different data sectors
- Grey cells violate
 SU(3)⁵ symmetry
- Important when including top observables

JE, Madigan, Mimasu, Sanz & You, arXiv:2012.02779

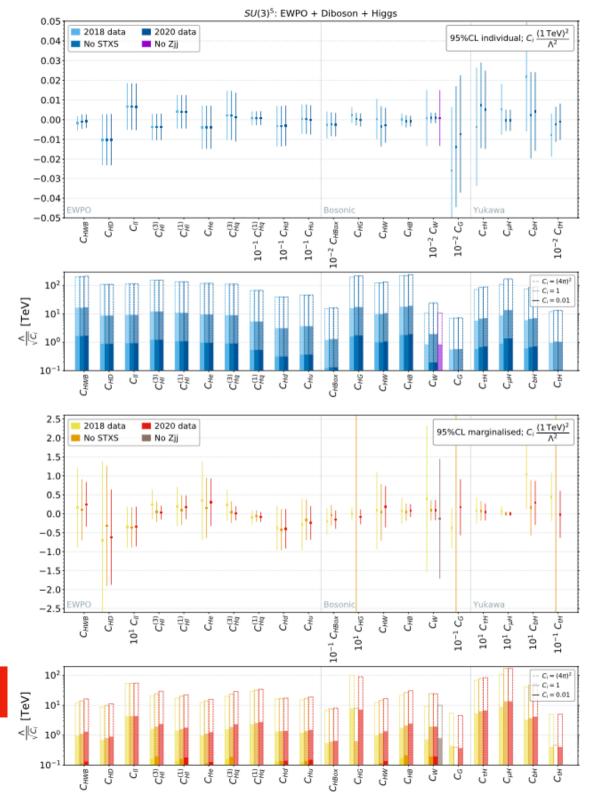

	X ³				H^6	and H^4D^2	$\psi^2 H^3$				
	$\mathcal{O}_{G} = f^{ABC} G^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$			\mathcal{O}_{H}		$(H^{\dagger}H)^3$	\mathcal{O}_{eH} $(H^{\dagger}H)(\bar{l}_{p}e_{r}H)$				
	$\mathcal{O}_{\tilde{G}}$ $f^{ABC} \tilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$			$\mathcal{O}_{H\Box} \qquad (H^{\dagger}H)\Box(H^{\dagger}H)$			${\cal O}_{uH}$	$(H^{\dagger}H)(\bar{q}_{p}u_{r}\widetilde{H})$			
	$\mathcal{O}_{W} = \varepsilon^{IJK} W^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$			\mathcal{O}_{HD}	(H)	$^{\dagger}D^{\mu}H)^{\star}\left(H^{\dagger}D_{\mu}H ight)$	$\mathcal{O}_{_{dH}}$	$(H^{\dagger}H)(\bar{q}_p d_r H)$			
	$\mathcal{O}_{\widetilde{W}} = \varepsilon^{IJK} \widetilde{W}_{\mu}^{I\nu} W_{\nu}^{J\rho} W_{\rho}^{K\mu}$										
	X ² H ²					$\psi^2 X H$		$\psi^2 H^2 D$			
C	\mathcal{O}_{HG} $H^{\dagger}H G^{A}_{\mu\nu}G^{A\mu\nu}$		$\mathcal{O}_{eW} = (\bar{l} \ \sigma^{\mu\nu} e_r) \tau^I H W^I_{\mu\nu}$		$\mathcal{O}_{Hl}^{(1)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{l}_{p}\gamma^{\mu}l_{r})$					
	$\mathcal{O}_{H\widetilde{G}}$	$H^{\dagger}H\widetilde{G}^{A}_{\mu u}G^{A\mu u}$				$(\bar{l}_p \sigma^{\mu u} e_r) H B_{\mu u}$	${\cal O}_{Hl}^{(3)}$	$(H^{\dagger}i \overleftrightarrow{D}^{I}_{\mu} H)(\bar{l}_{p} \tau^{I} \gamma^{\mu} l_{r})$			
C	\mathcal{O}_{HW}	$H^{\dagger}H W^{I}_{\mu\nu}W^{I\mu\nu}$	A	nomal	ous	$_{p}\sigma^{\mu u}T^{A}u_{r})\widetilde{H}G^{A}_{\mu u}$	${\cal O}_{_{He}}$	$(H^{\dagger}i \overleftrightarrow{D}_{\mu} H) (\bar{e}_p \gamma^{\mu} e_r)$			
C	${\cal O}_{H\widetilde{W}}$	$H^{\dagger}H \widetilde{W}^{I}_{\mu u} W^{I\mu u}$				$_{p}\sigma^{\mu u}u_{r}) au^{I}\widetilde{H}W^{I}_{\mu u}$	$\mathcal{O}_{Hq}^{(1)}$	$(H^{\dagger}i D_{\mu} H) (\bar{q}_p \gamma^{\mu} q_r)$			
C	$\mathcal{O}_{{}_{HB}}$	$H^{\dagger}H B_{\mu\nu}B^{\mu\nu}$	r	nagne	tic	$(\bar{q}_p \sigma^{\mu u} u_r) \hat{l}^{\dagger} B_{\mu u}$	${\cal O}_{Hq}^{(3)}$	$(H^{\dagger}i \overleftrightarrow{D_{\underline{\mu}}}^{I} H)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$			
C	${\cal O}_{H\widetilde{B}}$	$H^{\dagger}H\widetilde{B}_{\mu u}B^{\mu u}$	n	nomer	nts	$_{p}\sigma^{\mu u}T^{A}d_{r}HG^{A}_{\mu u}$	${\cal O}_{Hu}$	$(H^{\dagger}i \overleftrightarrow{D}_{\mu} H)(\bar{u}_p \gamma^{\mu} u_r)$			
O	\mathcal{O}_{HWB}	$H^{\dagger}\tau^{I}H W^{I}_{\mu\nu}B^{\mu\nu}$	J	U dW		$d_{lp}\sigma^{\mu\nu}d_r)\tau HW^I_{\mu\nu}$	${\cal O}_{Hd}$	$(H^{\dagger}i D_{\mu} H) (\bar{d}_p \gamma^{\mu} d_r)$			
\mathcal{O}	$\mathcal{O}_{H\widetilde{W}B}$	$H^{\dagger}\tau^{I}H \widetilde{W}^{I}_{\mu\nu}B^{\mu\nu}$		\mathcal{O}_{dB}		$\bar{q}_p \sigma^{\mu u} d_{ m o} H B_{\mu u}$	${\cal O}_{{}_{Hud}}$	$i(\tilde{H}^{\dagger}D_{\mu}H)(\bar{u}_{p}\gamma^{\mu}d_{r})$			
	$(\bar{L}L)(\bar{L}L)$				(1	$\bar{R}R)(RR)$	$\begin{array}{ $				
	\mathcal{O}_{ll}	$(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$		\mathcal{O}_{ee}				$(\bar{l}_p \gamma_\mu l_r) (\bar{e}_s \gamma^\mu e_t)$			
11 1	$\mathcal{O}_{_{qq}}^{_{(1)}}$	$(\bar{q}_p\gamma_\mu q_r)(\bar{q}_s\gamma^\mu q_t)$		\mathcal{O}_{uu}				$ar{\langle v_p \gamma_\mu l_r angle} (ar{u}_s \gamma^{\mu} u_{ u})$			
	$\mathcal{O}_{qq}^{(3)} = (\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$		\mathcal{O}_{dd}	$(\bar{d}_p \gamma_\mu d_r) (\bar{d}_s \gamma^\mu d_t)$		\mathcal{O}_{ld}	$(\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t)$				
	$\mathcal{O}_{lq}^{(1)} = (ar{c}_p \gamma_\mu l_r) (ar{q}_s \gamma^\mu q_t)$		\mathcal{O}_{eu}	$(c_p \gamma_\mu e_r) (ar u_s \gamma^\mu u_t)$		\mathcal{O}_{qe}	$(\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t)$				
	$ \qquad \qquad$		\mathcal{O}_{ed}		$ar{e}_p \gamma_\mu e_r) (ar{d}_s \gamma^\mu d_t)$	$\mathcal{O}_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (u_s \gamma^\mu u_t)$				
				$\mathcal{O}_{ud}^{(1)}$	(*	$\bar{u}_p \gamma_\mu u_r) (a_s \gamma^\mu d_t)$	$\mathcal{O}_{qu}^{(8)}$	$\left(\bar{q}_p\gamma_{\mu}T^A q_r)(\bar{u}_s\gamma^{\mu}T^A u_t)\right)$			
	Flavour anomalies			$\mathcal{O}_{ud}^{(8)}$	$(\bar{u}_p\gamma)$	$(\bar{d}_s \gamma^\mu T^A d_t) (\bar{d}_s \gamma^\mu T^A d_t)$	$\mathcal{O}_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{d}_s \gamma^\mu d_t)$			
	ГІА	ivour anomalies		11							
	ГId	ivour anomalies					$\mathcal{O}_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$			
		$(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$				R vie	lating	Barvon			
	$(ar{L}R)$ \mathcal{O}_{ledq}			\mathcal{O}_{duq}		$\varepsilon^{lphaeta\gamma}\varepsilon_{jk}\left[\left(d ight) ight)$	$(a_p^{\alpha})^T C u_r^{\beta}$	$[(q_s^{\gamma j})^T C l_t^r]$ Baryon			
C	$(ar{L}R) onumber \ \mathcal{O}_{ledq} onumber \ \mathcal{O}_{quqd}$	$(ar{R}L) ext{ and } (ar{L}R)(ar{L}R) \ (ar{l}_p^j e_r)(ar{d}_s q_t^j) \ (ar{q}_p^j u_r) arepsilon_{jk}(q_s^* d_t)$		\mathcal{O}_{duq} \mathcal{O}_{qqu}		$arepsilon^{lphaeta\gamma}arepsilon_{jk}\left[(d_p^{lphaeta\gamma}arepsilon_{jk}\left[(d_p^{lphaeta\gamma}arepsilon_{jk}\left[(d_p^{lphaeta\gamma}arepsilon_{jk}\left[(d_p^{lphaeta\gamma}arepsilon_{jk}\left[(d_p^{lphaeta\gamma}arepsilon_{jk}areps$	$(a_p^{lpha})^T C u_r^{eta}] = (a_p^{lpha})^T C q_r^{eta k}$	$\begin{bmatrix} (q_s^{\gamma j})^T C l_t^{\kappa} \\ [(u_s^{\gamma})^T C e_t] \end{bmatrix} $ decay			
C	$egin{array}{c} (ar{L}R) \ \mathcal{O}_{ledq} \ \mathcal{O}_{quqd} \ \mathcal{O}_{quqd}^{(1)} \ \mathcal{O}_{quqd}^{(8)} \end{array}$	$(ar{R}L) ext{ and } (ar{L}R)(ar{L}R) \ (ar{l}_p^j e_r)(ar{d}_s q_t^j) \ (ar{q}_p^j u_r) arepsilon_{jk}(ar{q}_s^a d_t) \ (ar{q}_r^j T^A u_r) arepsilon_{str}(ar{q}_s^k T^A d_t)$		\mathcal{O}_{duq} \mathcal{O}_{qqu}		$ \begin{array}{c} \varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[\left(d_{p}^{\alpha}\right)\\\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[\left(q_{p}^{\alpha}\right)\\\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\right]\left(q_{p}^{\alpha}\right)\right] \end{array} $	$egin{aligned} & \left[u_{p}^{lpha} ight)^{T} C u_{r}^{eta} ight] \ & \left[u_{p}^{lphaj} ight)^{T} C q_{r}^{etak} \ & \left[u_{p}^{lphaj} ight)^{T} C q_{r}^{etak} \end{aligned}$	$\begin{bmatrix} (q_s^{\gamma j})^T C l_t^{\kappa} \\ [(u_s^{\gamma})^T C e_t] \\ [(u_s^{\gamma m})^T C l_t^{\kappa}] \end{bmatrix} decay$			
C	$(ar{L}R) onumber \ \mathcal{O}_{ledq} onumber \ \mathcal{O}_{quqd}$	$(ar{R}L) ext{ and } (ar{L}R)(ar{L}R) \ (ar{l}_p^j e_r)(ar{d}_s q_t^j) \ (ar{q}_p^j u_r) arepsilon_{jk}(q_s^* d_t)$	$l_t)$	\mathcal{O}_{duq}		$arepsilon^{lphaeta\gamma}arepsilon_{jk}\left[(d_p^{lphaeta\gamma}arepsilon_{jk}\left[(d_p^{lphaeta\gamma}arepsilon_{jk}\left[(d_p^{lphaeta\gamma}arepsilon_{jk}\left[(d_p^{lphaeta\gamma}arepsilon_{jk}\left[(d_p^{lphaeta\gamma}arepsilon_{jk}areps$	$egin{aligned} & \left[u_{p}^{lpha} ight)^{T} C u_{r}^{eta} ight] \ & \left[u_{p}^{lphaj} ight)^{T} C q_{r}^{etak} \ & \left[u_{p}^{lphaj} ight)^{T} C q_{r}^{etak} \end{aligned}$	$\begin{bmatrix} (q_s^{\gamma j})^T C l_t^{\kappa} \\ [(u_s^{\gamma})^T C e_t] \\ [(u_s^{\gamma m})^T C l_t^{\kappa}] \end{bmatrix} decay$			

Global SMEFT Fit to Top, Higgs, Diboson, Electroweak Data

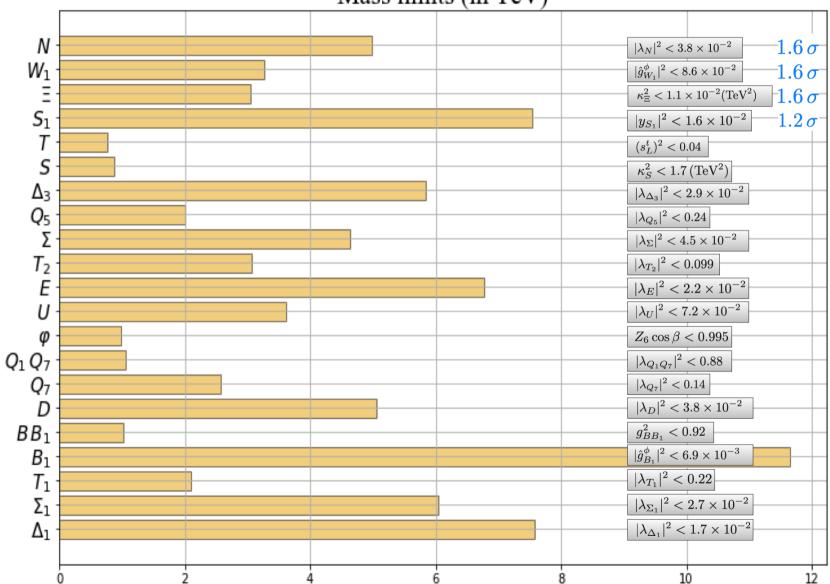
JE, Madigan, Mimasu, Sanz & You, arXiv:2012.02779

- Global fit to dimension-6 operators using precision electroweak data, W+W- at LEP, top, Higgs and diboson data from LHC Runs 1, 2
- Search for BSM
- Constraints on BSM
 - At tree level
 - At loop level

341 measurements included in global analysis



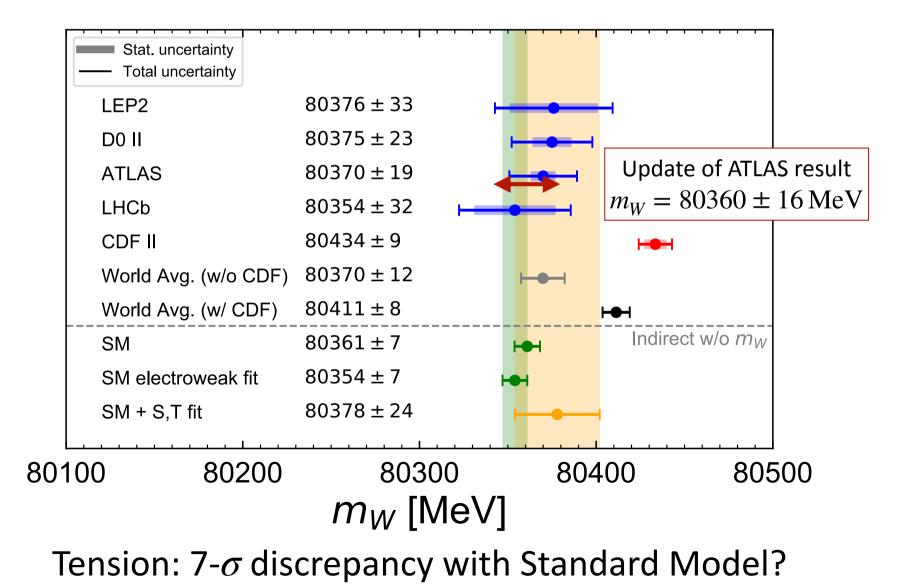
Dimension-6 Constraints with Flavour-Universal SU(3)⁵ Symmetry


- Individual operator coefficients
- Marginalised over all other
 operator
 coefficients

No significant deviations from SM

JE, Madigan, Mimasu, Sanz & You, arXiv:2012.02779

Single-Field Extensions of the Standard Model


Mass limits (in TeV)

JE, Madigan, Mimasu, Sanz & You, arXiv:2012.02779

What about experimental hints of new physics?

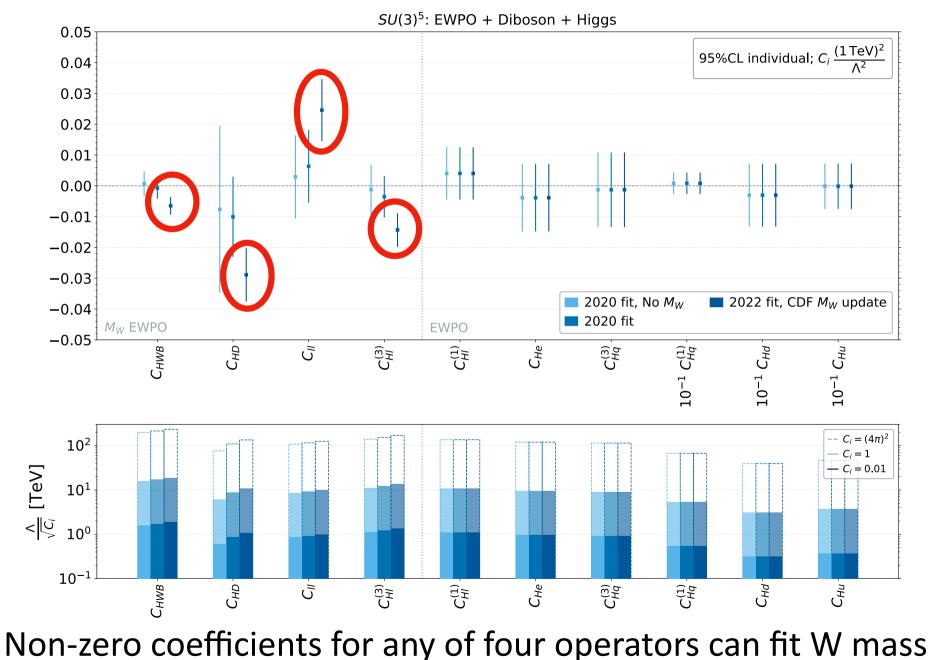
CDF Measurement of m_W

compared with other measurements

SMEFT Operators that can Contribute to W Mass

• Relevant SMEFT operators

$$\mathcal{O}_{HWB} \equiv H^{\dagger} \tau^{I} H W^{I}_{\mu\nu} B^{\mu\nu}, \quad \mathcal{O}_{HD} \equiv \left(H^{\dagger} D^{\mu} H\right)^{\star} \left(H^{\dagger} D_{\mu} H\right)$$
$$\mathcal{O}_{\ell\ell} \equiv \left(\bar{\ell}_{p} \gamma_{\mu} \ell_{r}\right) \left(\bar{\ell}_{s} \gamma^{\mu} \ell_{t}\right), \quad \mathcal{O}_{H\ell}^{(3)} \equiv \left(H^{\dagger} i \overleftrightarrow{D}_{\mu}^{I} H\right) \left(\bar{\ell}_{p} \tau^{I} \gamma^{\mu} \ell_{r}\right)$$

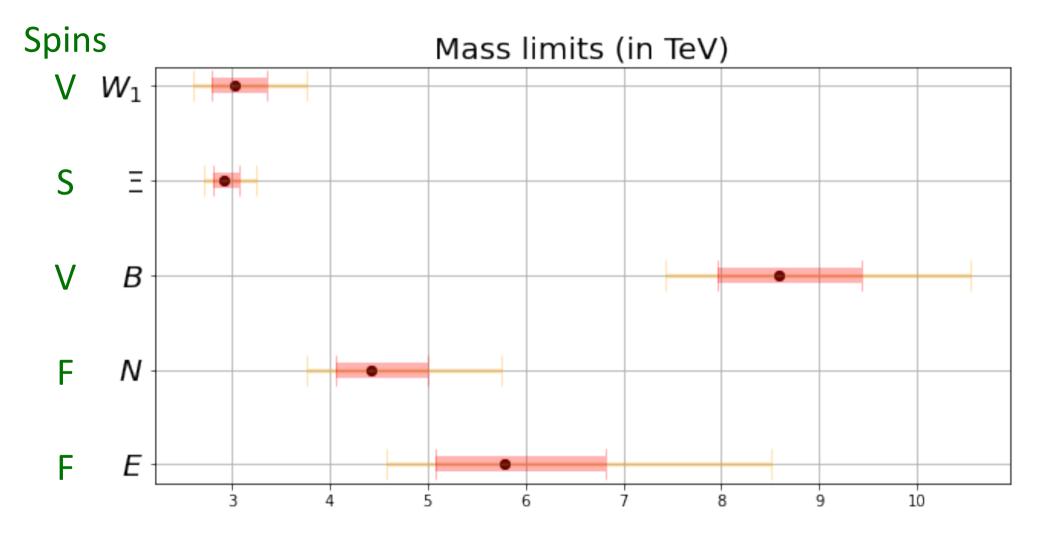

• Contributions to W mass

$$\frac{\delta m_W^2}{m_W^2} = -\frac{\sin 2\theta_w}{\cos 2\theta_w} \frac{v^2}{4\Lambda^2} \left(\frac{\cos \theta_w}{\sin \theta_w} C_{HD} + \frac{\sin \theta_w}{\cos \theta_w} \left(4C_{Hl}^{(3)} - 2C_{ll} \right) + 4C_{HWB} \right)$$

• Contributions to S and T oblique parameters

$$\frac{v^2}{\Lambda^2}C_{HWB} = \frac{g_1g_2}{16\pi}S \quad , \quad \frac{v^2}{\Lambda^2}C_{HD} = -\frac{g_1g_2}{2\pi(g_1^2 + g_2^2)}T$$

SMEFT Fit with the Mass of the W Boson



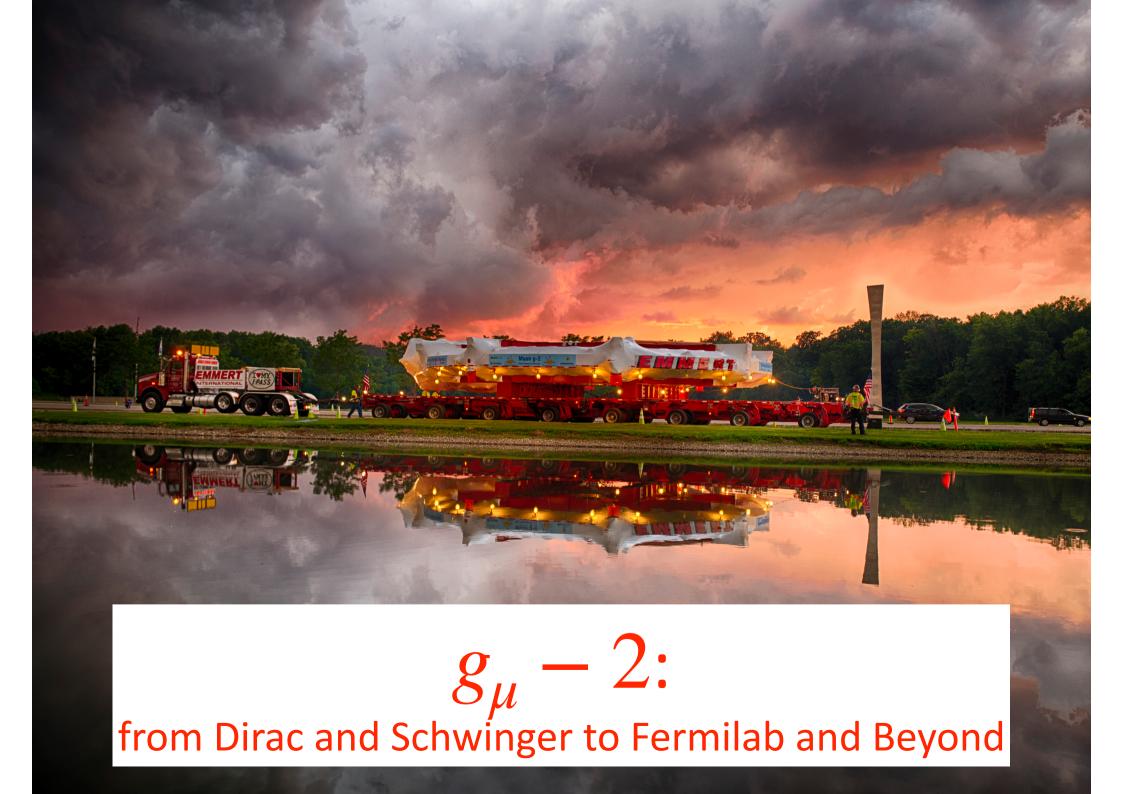
Bagnaschi, JE, Madigan, Mimasu, Sanz & You, arXiv:2204.05260

Single-Field Models that can Contribute to W Mass

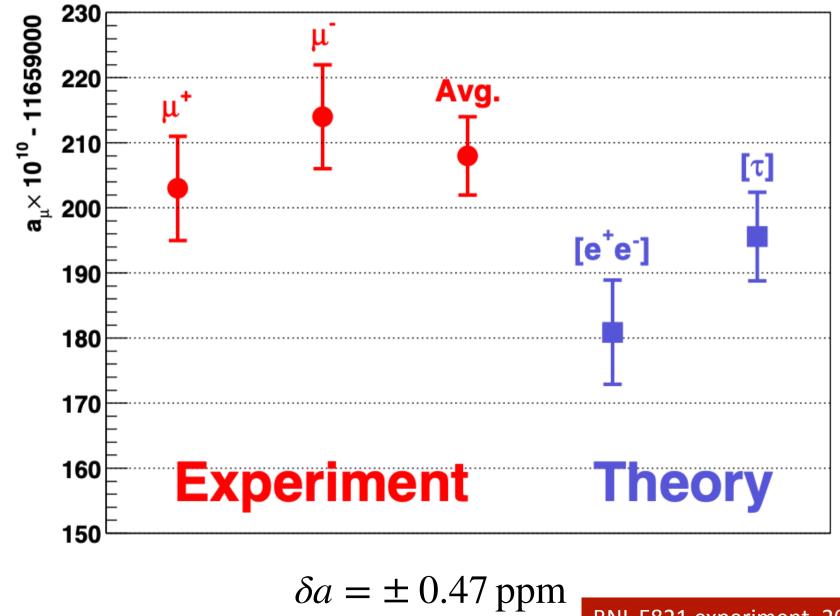
Model	C_{HD}	C_{ll}	$C_{H u}^{(3)}$	$C_{Hl}^{(1)}$	C_{He}	$C_{H\square}$	$C_{ au H}$	C_{tH}	C_{bH}	
S_1		X								
Σ	Wrong	sign	X	$\frac{3}{16}$			$\frac{y_{\tau}}{4}$			
Σ_1	WIONg		X	$-\frac{3}{16}$			$\frac{y_{ au}}{8}$			
N			$-\frac{1}{4}$	$\frac{1}{4}$						
E			$-\frac{1}{4}$	$-\frac{1}{4}$			$rac{y_{ au}}{2}$			
B_1	X					$-\frac{1}{2}$	$-\frac{y_{ au}}{2}$	$-\frac{y_t}{2}$	$-\frac{y_b}{2}$	
B	-2	Righ	nt sign				$-y_{ au}$	$-y_t$	$-y_b$	
Ξ	-2					$\frac{1}{2}$	$y_{ au}$	y_t	y_b	
W_1	$\left -\frac{1}{4}\right $					$-\frac{1}{8}$	$-\frac{y_{\tau}}{8}$	$-\frac{y_t}{8}$	$-\frac{y_b}{8}$	
W						$-\frac{1}{2}$	$-y_{ au}$	$-y_t$	$-y_b$	
	O	perato	rs							
	contrik	outing	to m _W	Bagnaschi, JE, Madigan, Mimasu, Sanz & You, arXiv:2204.0526						

Models Fitting the Mass of the W Boson

68 and 95% CL ranges of masses assuming unit couplings, mass range proportional to coupling


Bagnaschi, JE, Madigan, Mimasu, Sanz & You, arXiv:2204.05260

Quo Vadis m_W?

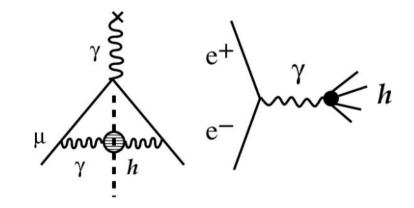

- The jury is still out concerning the experimental measurement
 - Tension with SM, previous measurements

"Extraordinary claims require extraordinary evidence"

- Nevertheless, much theoretical speculation (> 90 papers!)
- 4 SMEFT operators can increase m_W
- 3 SMEFT operators generated by single field extensions of the SM at tree level
 - Vector bosons W or B, scalar boson Ξ , fermions N, E
- Prospects for the LHC?

Possible Discrepancy with Theory?

BNL E821 experiment, 2001 - 2006


Contents lists available at ScienceDirect

Physics Reports

journal homepage: www.elsevier.com/locate/physrep

Theory Initiative

- Comprehensive review of calculations of the Standard Model contributions to $g_{\mu} 2$
- Including discussion of the uncertainties
- Particularly in calculation of leading-order vacuum polarisation

Aoyama et al, arXiv:2006.04822

The anomalous magnetic moment of the muon in the Standard Model

T. Aoyama ^{1,2,3}, N. Asmussen ⁴, M. Benayoun ⁵, J. Bijnens ⁶, T. Blum ^{7,8}, M. Bruno⁹, I. Caprini¹⁰, C.M. Carloni Calame¹¹, M. Cè^{9,12,13}, G. Colangelo^{14,*}, F. Curciarello ^{15,16}, H. Czyż ¹⁷, I. Danilkin ¹², M. Davier ^{18,*}, C.T.H. Davies ¹⁹, M. Della Morte ²⁰, S.I. Eidelman ^{21,22,*}, A.X. El-Khadra ^{23,24,*}, A. Gérardin ²⁵, D. Giusti^{26,27}, M. Golterman²⁸, Steven Gottlieb²⁹, V. Gülpers³⁰, F. Hagelstein¹⁴, M. Hayakawa^{31,2}, G. Herdoíza³², D.W. Hertzog³³, A. Hoecker³⁴, M. Hoferichter 14,35,*, B.-L. Hoid ³⁶, R.J. Hudspith ^{12,13}, F. Ignatov ²¹, T. Izubuchi ^{37,8}, F. Jegerlehner ³⁸, L. Jin ^{7,8}, A. Keshavarzi ³⁹, T. Kinoshita ^{40,41}, B. Kubis ³⁶, A. Kupich ²¹, A. Kupść ^{42,43}, L. Laub ¹⁴, C. Lehner ^{26,37,*}, L. Lellouch ²⁵, I. Logashenko²¹, B. Malaescu⁵, K. Maltman^{44,45}, M.K. Marinković^{46,47} P. Masjuan^{48,49}, A.S. Meyer³⁷, H.B. Meyer^{12,13}, T. Mibe^{1,*}, K. Miura^{12,13,3} S.E. Müller⁵⁰, M. Nio^{2,51}, D. Nomura^{52,53}, A. Nyffeler^{12,*}, V. Pascalutsa¹², M. Passera⁵⁴, E. Perez del Rio⁵⁵, S. Peris^{48,49}, A. Portelli³⁰, M. Procura⁵⁶, C.F. Redmer¹², B.L. Roberts^{57,*}, P. Sánchez-Puertas⁴⁹, S. Serednyakov²¹, B. Shwartz²¹, S. Simula²⁷, D. Stöckinger⁵⁸, H. Stöckinger-Kim⁵⁸, P. Stoffer⁵⁹ T. Teubner^{60,*}, R. Van de Water²⁴, M. Vanderhaeghen^{12,13}, G. Venanzoni⁶¹, G. von Hippel¹², H. Wittig^{12,13}, Z. Zhang¹⁸, M.N. Achasov²¹, A. Bashir⁶², N. Cardoso⁴⁷, B. Chakraborty⁶³, E.-H. Chao¹², J. Charles²⁵, A. Crivellin^{64,65}, O. Deineka¹², A. Denig^{12,13}, C. DeTar⁶⁶, C.A. Dominguez⁶⁷, A.E. Dorokhov⁶⁸, V.P. Druzhinin²¹, G. Eichmann^{69,47}, M. Fael⁷⁰, C.S. Fischer⁷¹, E. Gámiz⁷², Z. Gelzer²³, J.R. Green⁹, S. Guellati-Khelifa⁷³, D. Hatton¹⁹, N. Hermansson-Truedsson¹⁴, S. Holz³⁶, B. Hörz⁷⁴, M. Knecht²⁵, J. Koponen¹, A.S. Kronfeld²⁴, J. Laiho⁷⁵, S. Leupold⁴², P.B. Mackenzie²⁴, W.J. Marciano³⁷, C. McNeile⁷⁶, D. Mohler^{12,13}, J. Monnard¹⁴, E.T. Neil⁷⁷, A.V. Nesterenko⁶⁸, K. Ottnad ¹², V. Pauk ¹², A.E. Radzhabov ⁷⁸, E. de Rafael ²⁵, K. Raya ⁷⁹, A. Risch ¹², A. Rodríguez-Sánchez⁶, P. Roig⁸⁰, T. San José^{12,13}, E.P. Solodov²¹, R. Sugar⁸¹, K. Yu. Todyshev²¹, A. Vainshtein⁸², A. Vaquero Avilés-Casco⁶⁶, E. Weil⁷¹, J. Wilhelm¹², R. Williams⁷¹, A.S. Zhevlakov⁷⁸

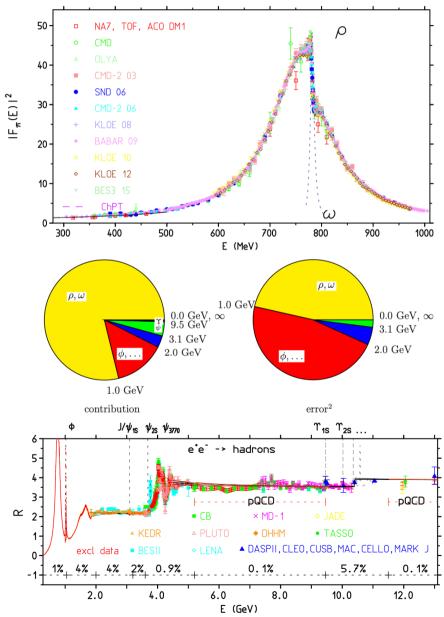
¹Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801, Japan
²Nishina Center, RIKEN, Wako 351-0198, Japan

³ Kobayashi–Maskawa Institute for the Origin of Particles and the Universe (KMI), Nagoya University, Nagoya 464-8602, Japan ⁴ School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, United Kingdom ⁵ LPNHE, Sorbonne Université. Université de Paris, CNRS/IN2P3, Paris, France

E-mail address: MUON-GM2-THEORY-SC@fnal.gov (G. Colangelo, M. Davier, S.I. Eidelman, A.X. El-Khadra, M. Hoferichter, C. Lehner, T. Mibe, A. Nyffeler, B.L. Roberts, T. Teubner).

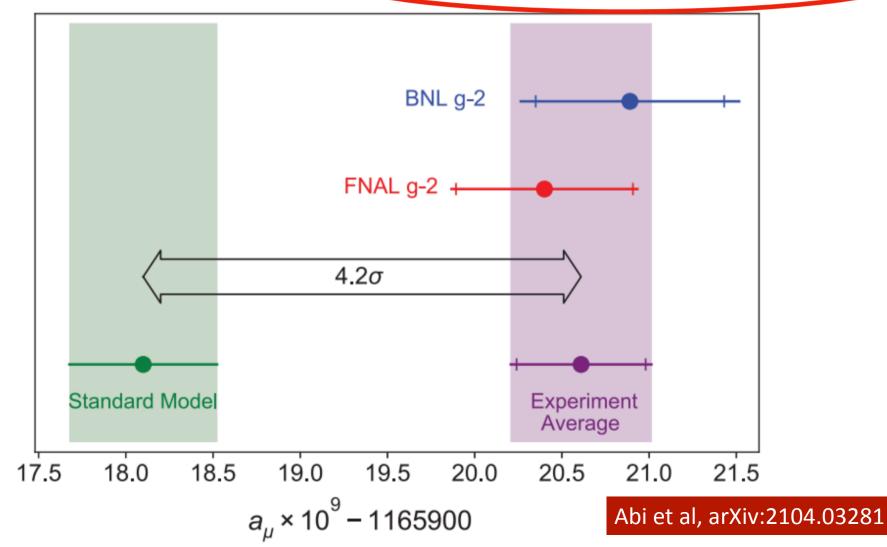
https://doi.org/10.1016/j.physrep.2020.07.006

0370-1573/© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons org/licenses/by-nc-nd/4.0/).


⁸ Corresponding authors

Hadronic Vacuum Polarization

- Most important contribution is from low energies ≤ 1 GeV, dominated by ρ and ω peaks, taking account of interference effects
- Uncertainties dominated by ρ and ω region, and by region between 1 and 2 GeV (ϕ , etc.)
- High energies under good control from perturbative QCD


$$a_{\mu}^{\text{HVP, LO}} = 693.1(2.8)_{\text{exp}}(2.8)_{\text{sys}}(0.7)_{\text{DV+QCD}} \times 10^{-10}$$

= 693.1(4.0) × 10⁻¹⁰.

Aoyama et al, arXiv:2006.04822

Fermilab Measurement

FNAL result: $a_{\mu}(\text{FNAL}) = 116\,592\,040(54) \times 10^{-11}$ (0.46 ppm) Combined result: $a_{\mu}(\text{Exp}) = 116\,592\,061(41) \times 10^{-11}$ (0.35 ppm) Difference from Standard Model: $a_{\mu}(\text{Exp}) - a_{\mu}(\text{SM}) = (251 \pm 59) \times 10^{-11}$

Interpretation Papers

2104.05685 Vector LQ	В	Du		890	Radiative seesaw		Chiang
5656 L_\mu - L_\tau	DM	Borah		2103.13991	Scalar LQ	B, H decays	Greljo
5006 B_q - L_\mu	В	Cen	Leptoquarks	2012.11766	DM		D'Agnolo
4494 LFV	LFV	Li		2012.07894	Axions		Darmé
4503 Pseudoscalar	DM, H decays	Lu	Extra U(1)	1812.06851	Charmphilic LQ		Kowalska
4456 2HDM	DM	Arcadi					
3542 B-LSSM	H decays	Yang	Extra Higgs	2104.04458	GUT-constrained SUSY	DM	Chakraborti
3701 Leptophilic spin 0	H factory	Chun		5730	LQ + charged singlet	B, Cabibbo	Marzocca
3839 SUSY	HL-LHC	Aboubrahim	Supersymmetry	6320	L-R symmetry		Boyarkin
3691 Survey	DM, LHC	Athron		6858	L_\mu - L_\tau	\nu masses	Zhou
3705 Seesaw	g_e	Escribano	Axion	6854	D-brane	U(1), Regge	Anchordoqui
3699 Gauged 2HDM	В	Chen		6656	vector LQ	В	Ban
3239 SUSY	Gravitino DM	Gu		7597	SUSY	LHC, landscape	Baer
3284 NMSSM	DM	Cao		7047	3HDM	Fermion masses	Carcamo
3262 GUT-constrained SUSY	DM, LHC	Wang		7680	Leptophilic Z'	Global analysis	Buras
3292 MSSM	CPV	Han		8289	Custodial symmetry	Light scalar + pseudoscala	ar Balkin
3296 lepton mass matrix	Flavour	Calibbi		9205	U(1)D	Neutrino mass	Dasgupta
3280 Z_d	Cs weak charge	Cadeddu		8819	Lepton non-universality	Naturalness	Cacciapaglia
3334 E_6 3-3-1	H stability	Li		8640	2x2x1	Higgses, heavy nus	Boyarkina
3242 \mu-\tau-philic H	\tau decays, LHC	Wang		8293	Multi-TeV sleptons in FSSM	Extended H, tau decays	Altmannshofe
3259 Anomaly mediation	DM	Yin		10114	SO(10)	Yukawa unification	Aboubrahim
3245 pMSSM	DM, fine-tuning	Van Beekveld		7681	U(1)B-L	DUNE	Dev
3274 NMSSM	DM, AMS-02 pbar	Abdughani		10324	Gauged lepton number	Dark matter	Ma
3290 MSSM	DM	Cox		10175	2HDM	Lighter Higgs?	Jueid
3367 2HDM	V-like leptons	Ferreira		11229	LQ	Matter unification	Fileviez
3267 Axion	Low-scale	Buen-Abad		15136	U(1)	HE neutrinos, H tension	Alonso
3340 L_\mu - L_tau	AMS-02 positrons	Zu					
3282 ALP	V-like fermions	Brdar		2105.00903	Anomalous 3-boson vertex	W mass	Arbuzov
3301 Lepton portal	DM	Bai		7655	U(1)T3R	RK(*)	Dutta
3276 Dark axion portal	Dark photon	Ge		8670	Leptoquark	nu mass, LFV	Zhang
3491 GmSUGRA	LHC	Ahmed					
3227 2HDM	LHC	Han					
3302 SUSY	small \mu	Baum					
3238 Scalar	DM, p radius	Zhu		n.			
3489 \mu \nu SSM	B, H decays	Zhang					
3287 pMSSM	ILC	Chakraborti		n			
3228 DM	B, H decays	Arcadi					

• Muon ψ_f , 4 neutralinos ψ_i , 2 smuons $\phi_k(\tilde{\mu}_{L,R})$

ik

$$-\mathcal{L}_{int} = \sum_{ik} \bar{\psi}_f (K_{ik} \frac{1-\gamma_5}{2} + L_{ik} \frac{1+\gamma_5}{2}) \psi_i \phi_k + H.c.$$

One-loop contributions from smuon/neutralino loops:

Most important

• Left-right mixing:
$$a_f^{11} = \sum_{ik} \frac{m_f}{8\pi^2 m_i} Re(K_{ik}L_{ik}^*) I_1(\frac{m_f^2}{m_i^2}, \frac{m_k^2}{m_i^2})$$

• Unmixed: $a_f^{12} = \sum_{ik} \frac{m_f^2}{16\pi^2 m_i^2} (|K_{ik}|^2 + |L_{ik}|^2) I_2(\frac{m_f^2}{m_i^2}, \frac{m_k^2}{m_i^2})$

0

Volume 116B, number 4

$g_{\mu} - 2$ in Supersymmetry

 One-loop contribution from smuon/neutralino loop

$$\begin{aligned} \Delta(g-2)_{\mu} &= -ab(\cos\alpha\sin\alpha/4\pi^2)(m_{\mu}/m_{\widetilde{G}}) \\ &\times \{1/(1-\eta_1) + 2\eta_1/(1-\eta_1)^2 \\ &+ [2\eta_1/(1-\eta_1)^3] \log\eta_1 - (\eta_1 \leftrightarrow \eta_2)\}, \end{aligned}$$

• where $\eta_i \equiv (m_{s\mu_i}^2/m_{\widetilde{G}}^2)$

• and
$$\mathcal{L} = a\sqrt{2} \operatorname{s}_{\mu} \overline{\mu}_{\mathrm{L}} \widetilde{\mathrm{G}} + b\sqrt{2} \operatorname{t}_{\mu} \overline{\mu}_{\mathrm{R}} \widetilde{\mathrm{G}}$$

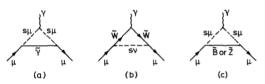
SPIN-ZERO LEPTONS AND THE ANOMALOUS MAGNETIC MOMENT OF THE MUON

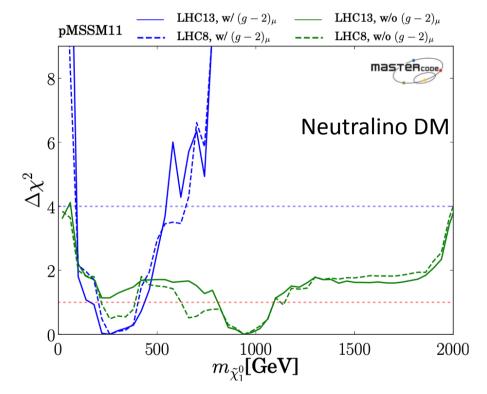
John ELLIS, John HAGELIN and D.V. NANOPOULOS CERN, Geneva, Switzerland

Received 14 June 1982

The anomalous magnetic moment of the muon $(g-2)_{\mu}$ imposes constraints on the masses and mixing of spin-zero leptons (sleptons). We develop the predictions of models of spontaneous supersymmetry breaking for the slepton mass matrix, and show that they are comfortably consistent with the $(g-2)_{\mu}$ constraints.

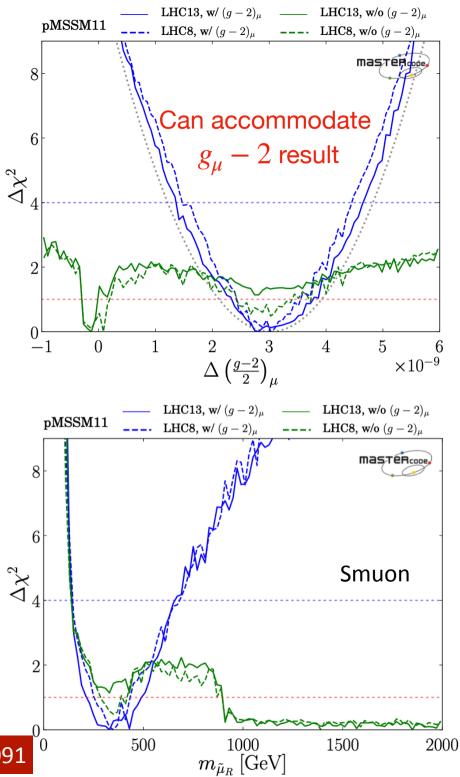
During the present resurgence of interest in supersymmetry broken at low energies [1] new significance is attached to the classical phenomenological playgrounds of gauge theories such as the anomalous magnetic moments of the electron and muon [2], flavourchanging neutral interactions [3-5] parity [6] and CP violation [7,8] in the strong interactions. The three latter phenomena make life rather difficult [3,7] for the most general form of soft supersymmetry breaking, whereas simple models [9-11] of spontaneously broken supersymmetry naturally [3,47] respect the ΔF $\neq 0, P$ and CP violation constraints. As for the anomalous magnetic moments of the leptons, it has long been known that they vanish in an exactly supersymmetric theory [12], and Fayet [2] showed that in his model of supersymmetry breaking $(g-2)_{\mu}$ would be compatible with experiment if the spin-zero muon (smuon) masses were heavier than 15 GeV. Direct experimental searches [13] now exclude the existence of lighter smuons. Fayet's analysis [2] was in the context of a model with a very light photino $\tilde{\gamma}$ (see fig. 1a), and Grifols and Méndez [14] have recently made the interesting observation that his analysis is significantly altered for massive gauginos (see figs. 1b, 1c). They show that there are potentially nontrivial constraints on the smuon masses in models of broken supersymmetry.



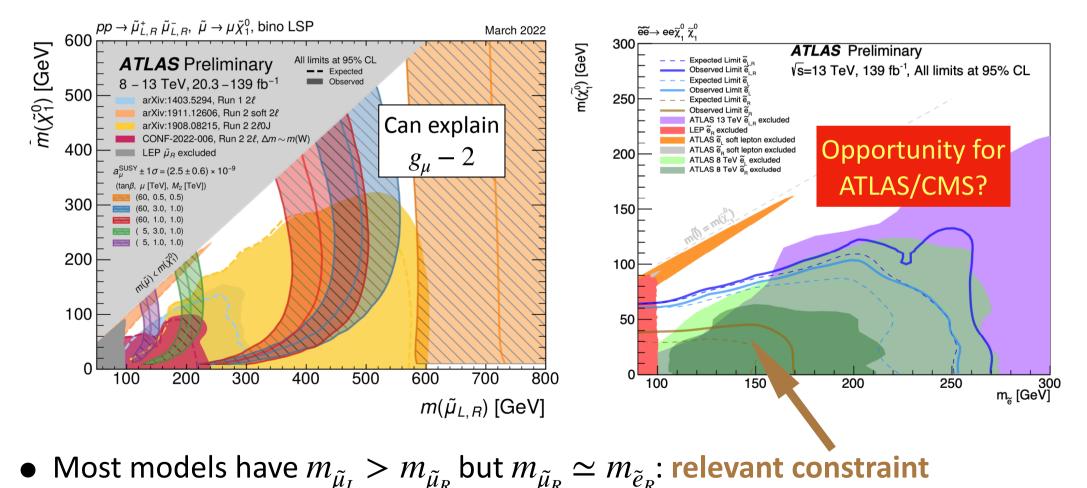

Fig. 1. One-loop diagrams contributing to $(g-2)_{\mu}$: (a) essentially massless photino ($\tilde{\gamma}$) exchange, (b) \tilde{W} and sneutrino (sv) exchange, and (c) \tilde{B} or \tilde{Z} exchange.

right transition operator there is a GIM [15]-like cancellation between the smuon mass eigenstates in fig. 1c which provides a potential suppression mechanism. We analyze recent models [10,11] of spontaneous supersymmetry breaking originating in the D and F sectors, respectively. We show that in the former case $(g-2)_{\mu}$ is suppressed by near degeneracy between the smuon mass eigenstates, while in the latter case $(g-2)_{\mu}$ is suppressed by small mixing angles between the leftand right-handed smuons. We close with some remarks about $(g-2)_{e}$ and about parity violation in the strong interactions.

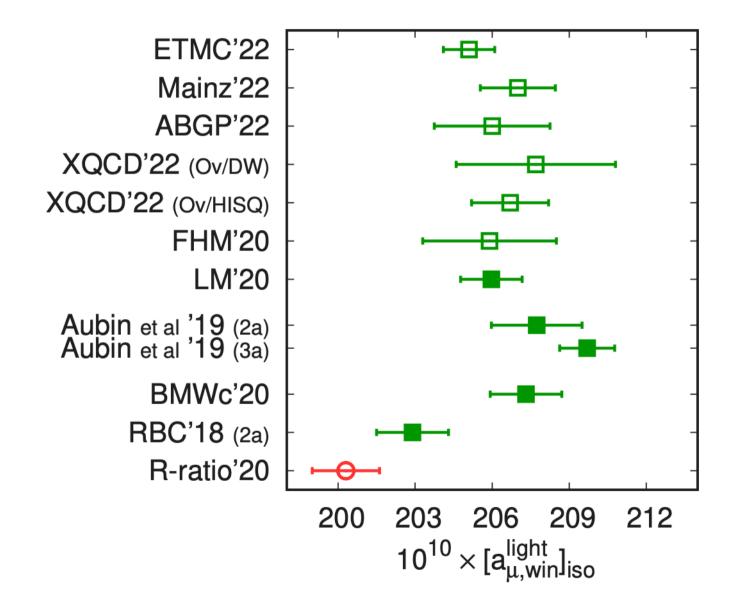
When they examined figs. 1a, 1b and 1c, Grifols and Méndez [14] realized that there was a fundamental difference between the (almost ?) massless $\tilde{\gamma}$ diagram of fig. 1a and the \tilde{W} diagram of fig. 1b as compared to the massive \tilde{B} or \tilde{Z} diagram of fig. 1c. The


$g_{\mu} - 2$ in Phenomenological Supersymmetry (pMSSM11)

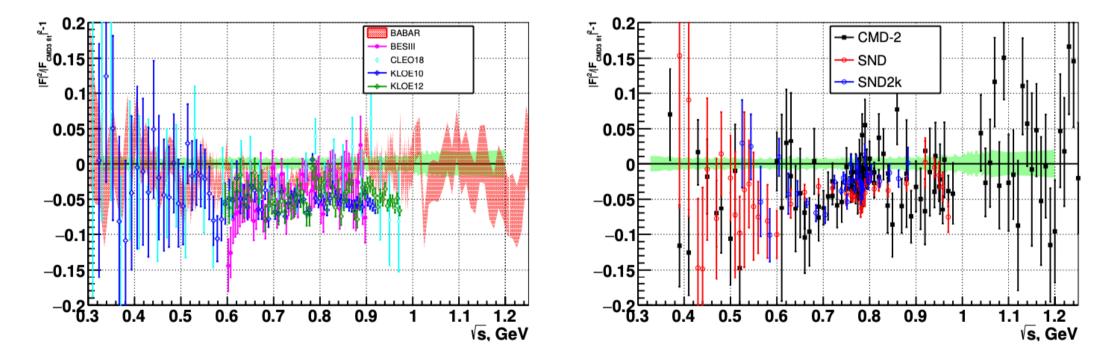
No relation between squark/gluino masses and slepton/neutralino masses


No problem accommodating BNL/FNAL result Neutralino DM, smuon masses $\,\sim\,300/400~{\rm GeV}$

MasterCode, E. Bagnaschi, ..., JE et al, arXiv:1710.11091

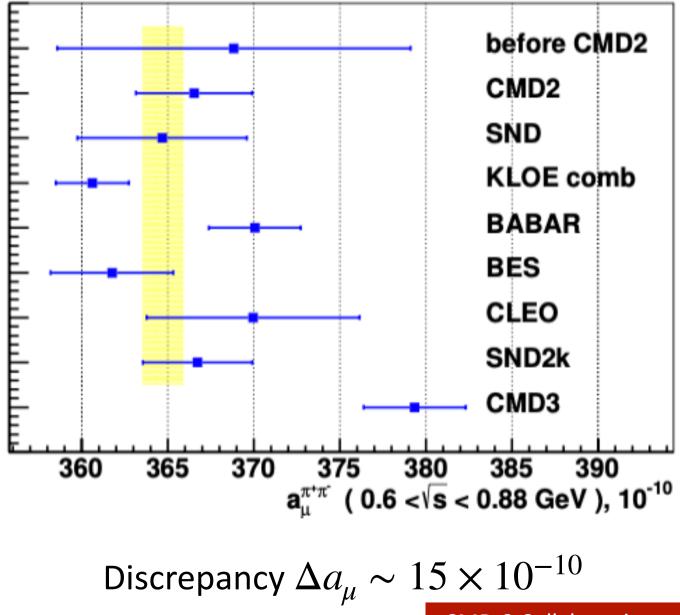

LHC vs Supersymmetry

- LHC favours squarks & gluinos > 2 TeV (but loopholes)
- Does not exclude lighter electroweakly-interacting particles, e.g., sleptons

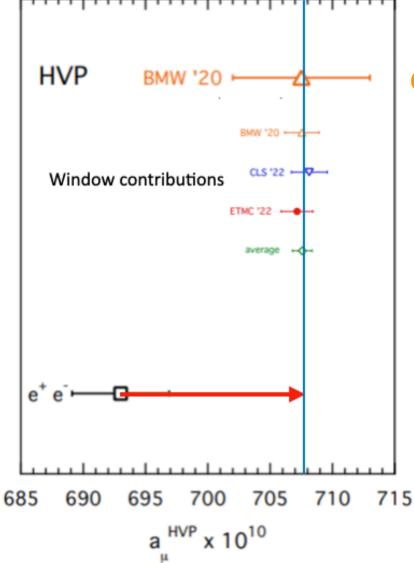

ATLAS Collaboration

Recent Lattice Calculations

New CMD-3 Measurement of HVP


Comparison with radiative return (ISR) measurements Comparison with previous energy scan measurementss

A task here for Belle II?


CMD-3 Collaboration, arXiv:2302.08834

New CMD-3 Measurement of HVP

CMD-3 Collaboration, arXiv:2302.08834

Update on Hadronic Vacuum Polarization

BMW including "window" + extrapolations to small/large distances

> New lattice values of "window" contribution from intermediate scales

Previous HVP world average Difference between CMD-3 and previous data

Quo Vadis $g_{\mu} - 2$?

- The jury is still out concerning the theoretical calculation: <u>https://</u> <u>muon-gm2-theory.illinois.edu/</u>
- Tension with experiment reduced by lattice calculations
- Also by CMD-3 measurement of hadronic vacuum polarization
- Still some scope for new physics
- Prospects for the LHC?
- New results 6pm today from Fermilab: <u>https://fnal.zoom.us/j/</u> <u>93860521626?pwd=K0JpMWFVMjlxbE1yRVA4a2NIWWdrZz09</u>
- J-PARC experiment in preparation, also MuonE at CERN

Summary

Visible matter

Higgs physics? m_W ? Muon magnetic moment? Dark Matter?

Standard Model